Subclinical Detection of Hydroxychloroquine-Induced Retinopathy in Patients with Systemic Lupus Erythematous Using Multifocal Electroretinography and Optical Coherence Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Thickness of Ganglion Cell Complex (GCC) Using Swept-Source OCT
2.3. Multifocal Electroretinogram
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Thickness of Macular GCC in SS-OCT
3.3. Parameters of mfERG Metrics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willis, R.; Seif, A.M.; McGwin, G., Jr.; Martinez-Martinez, L.A.; González, E.B.; Dang, N.; Papalardo, E.; Liu, J.; Vilá, L.M.; Reveille, J.D.; et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: Data from LUMINA (LXXV), a multiethnic US cohort. Lupus 2012, 21, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Melles, R.B.; Mieler, W.F. American Academy of Ophthalmology. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology 2016, 123, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Lyons, J.S.; Mieler, W.F.; American Academy of Ophthalmology. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 2011, 118, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Melles, R.B.; Marmor, M.F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 2014, 132, 1453–1460. [Google Scholar] [CrossRef]
- Marmor, M.F.; Hu, J. Effect of disease stage on progression of hydroxychloroquine retinopathy. JAMA Ophthalmol. 2014, 132, 1105–1112. [Google Scholar] [CrossRef]
- Kellner, S.; Weinitz, S.; Farmand, G.; Kellner, U. Cystoid macular oedema and epiretinal membrane formation during progression of chloroquine retinopathy after drug cessation. Br. J. Ophthalmol. 2014, 98, 200–206. [Google Scholar] [CrossRef]
- Wetterholm, D.H.; Winter, F.C. Histopathology of chloroquine retinal toxicity. Arch. Ophthalmol. 1964, 71, 82–87. [Google Scholar] [CrossRef]
- Bernstein, H.N.; Ginsberg, J. The pathology of chloroquine retinopathy. Arch. Ophthalmol. 1964, 71, 238–245. [Google Scholar] [CrossRef]
- Rosenthal, A.R.; Kolb, H.; Bergsma, D.; Huxsoll, D.; Hopkins, J.L. Chloroquine retinopathy in the rhesus monkey. Investig. Ophthalmol. Vis. Sci. 1978, 17, 1158–1175. [Google Scholar]
- Tsang, A.C.; Ahmadi Pirshahid, S.; Virgili, G.; Gottlieb, C.C.; Hamilton, J.; Coupland, S.G. Hydroxychloroquine and chloroquine retinopathy: A systematic review evaluating the multifocal electroretinogram as a screening test. Ophthalmology 2015, 122, 1239–1251.e4. [Google Scholar] [CrossRef]
- Trenkic Božinovic, M.S.; Stankovic Babic, G.; Petrovic, M.; Karadžic, J.; Šarenac Vulovic, T.; Trenkic, M. Role of optical coherence tomography in the early detection of macular thinning in rheumatoid arthritis patients with chloroquine retinopathy. J. Res. Med. Sci. 2019, 24, 55. [Google Scholar] [CrossRef] [PubMed]
- Turgut, B.; Turkcuoglu, P.; Serdar Koca, S.; Aydemir, O. Detection of the regression on hydroxychloroquine retinopathy in optical coherence tomography. Clin. Rheumatol. 2009, 28, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Aydın Kurna, S.; Kanar, H.S.; Garlı, M.; Çakır, N. Evaluation of the role of spectral-domain optical coherence tomography in the early detection of macular and ganglion cell complex thickness changes in patients with rheumatologic diseases taking hydroxychloroquine. Photodiagnosis Photodyn. Ther. 2022, 38, 102741. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.B.; Bach, M.; Kondo, M.; Li, S.; Walker, S.; Holopigian, K.; Viswanathan, S.; Robson, A.G. ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update). Doc. Ophthalmol. 2021, 142, 5–16. [Google Scholar] [CrossRef]
- Ozawa, H.; Ueno, S.; Ohno-Tanaka, A.; Sakai, T.; Hashiguchi, M.; Shimizu, M.; Fujinami, K.; Ahn, S.J.; Kondo, M.; Browning, D.J.; et al. Ocular findings in Japanese patients with hydroxychloroquine retinopathy developing within 3 years of treatment. Jpn. J. Ophthalmol. 2021, 65, 472–481. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, H.C.; Kwon, H.Y.; Kim, Y.H.; Ahn, S.J. Demographic and clinical characteristics associated with screening practices for hydroxychloroquine retinopathy. Sci. Rep. 2024, 14, 974. [Google Scholar] [CrossRef]
- Payne, J.F.; Hubbard, G.B., 3rd; Aaberg, T.M., Sr.; Yan, J. Clinical characteristics of hydroxychloroquine retinopathy. Br. J. Ophthalmol. 2011, 95, 245–250. [Google Scholar] [CrossRef]
- Michaelides, M.; Stover, N.B.; Francis, P.J.; Weleber, R.G. Retinal toxicity associated with hydroxychloroquine and chloroquine: Risk factors, screening, and progression despite cessation of therapy. Arch. Ophthalmol. 2011, 129, 30–39. [Google Scholar] [CrossRef]
- Kellner, U.; Kellner, S.; Weinitz, S. Chloroquine retinopathy: Lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc. Ophthalmol. 2008, 116, 119–127. [Google Scholar] [CrossRef]
- Kellner, S.; Weinitz, S.; Kellner, U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br. J. Ophthalmol. 2009, 93, 1444–1447. [Google Scholar] [CrossRef]
- Mahon, G.J.; Anderson, H.R.; Gardiner, T.A.; McFarlane, S.; Archer, D.B.; Stitt, A.W. Chloroquine causes lysosomal dysfunction in neural retina and RPE: Implications for retinopathy. Curr. Eye Res. 2004, 28, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Battista, M.; Cascavilla, M.L.; Viganò, C.; Borghesan, F.; Nicolini, N.; Clemente, L.; Sacconi, R.; Barresi, C.; Marchese, A.; et al. Impact of structural changes on multifocal electroretinography in patients with use of hydroxychloroquine. Investig. Ophthalmol. Vis. Sci. 2021, 62, 28. [Google Scholar] [CrossRef] [PubMed]
- Tsang, A.C.; Ahmadi, S.; Hamilton, J.; Gao, J.; Virgili, G.; Coupland, S.G.; Gottlieb, C.C. The diagnostic utility of multifocal electroretinography in detecting chloroquine and hydroxychloroquine retinal toxicity. Am. J. Ophthalmol. 2019, 206, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.K.; Covert, D.J.; Stepien, K.E.; Han, D.P. Quantitative assessment of the 103-hexagon multifocal electroretinogram in detection of hydroxychloroquine retinal toxicity. Br. J. Ophthalmol. 2012, 96, 723–729. [Google Scholar] [CrossRef]
- Browning, D.J.; Lee, C. Relative sensitivity and specificity of 10-2 visual fields, multifocal electroretinography, and spectral domain optical coherence tomography in detecting hydroxychloroquine and chloroquine retinopathy. Clin. Ophthalmol. 2014, 8, 1389–1399. [Google Scholar] [CrossRef]
Characteristics | Group 1 | Group 1A | Group 1B | Group 2 |
---|---|---|---|---|
All Patients with HCQ Use | Patients with HCQ Use <5 Years | Patients with HCQ Use >5 Years | Controls | |
Eyes enrolled (patients) | 38 (76 eyes) | 19 (38 eyes) | 19 (38 eyes) | 18 (36 eyes) |
Age (years) | 49.7 ± 14.4 | 49.4 ± 14.8 | 49.9 ± 12.4 | 46.9 ± 16.7 |
Gender | ||||
Male | 1 | 1 | 0 | 1 |
Female | 37 | 18 | 19 | 17 |
BCVA (logMAR) | 0.08 ± 0.07 | 0.07 ± 0.06 | 0.09 ± 0.10 | 0.08 ± 0.06 |
Duration of HCQ therapy | 8.60 ± 6.09 | 4.05 ± 1.14 | 13.42 ± 5.48 |
Macular Ganglion Cell Complex (μm) | Group 1A | Group 1B | Group 2 | p Values |
---|---|---|---|---|
Patients with HCQ Use <5 Years | Patients with HCQ Use >5 Years | Controls | ||
Superior temporal | 69.2 ± 7.16 | 68.6 ± 6.5 | 70.1 ± 6.68 | 0.186 |
Superior | 68.8 ± 4.77 | 69.1 ± 5.71 | 70.3 ± 6.44 | 0.934 |
Superiornasal | 74.1 ± 6.74 | 74.7 ± 5.68 | 73.9 ± 7.11 | 0.828 |
Inferiortemporal | 71.1 ± 5.29 | 71.6 ± 7.33 | 71.0 ± 8.18 | 0.712 |
Inferior | 65.2 ± 4.49 | 63.6 ± 10.2 | 67.3 ± 5.8 | 0.972 |
Inferior nasal | 69.4 ± 6.84 | 67.5 ± 10.9 | 67.1 ± 12.8 | 0.751 |
Average | 69.7 ± 4.76 | 69.5 ± 6.58 | 70.3 ± 8.29 | 0.527 |
ERG Values (nV/deg2) | Group 1A | Group 1B | Group 2 | p Values |
---|---|---|---|---|
Patients with HCQ Use <5 Years | Patients with HCQ Use >5 Years | Controls | ||
Ring | ||||
R1 | 132.0 ± 35.8 | 125.0 ±39.9 | 139.0 ± 29.8 | 0.366 |
R2 | 53.0 ± 13.7 | 52.4 ± 14.0 | 55.6 ± 16.4 | 0.853 |
R3 | 30.9 ± 8.06 | 33.1 ± 9.15 | 30.0 ± 7.36 | 0.404 |
R4 | 22.5 ± 4.38 | 23.6 ± 5.89 | 21.9 ± 5.62 | 0.688 |
R5 | 20.4 ± 3.55 | 21.9 ± 4.97 | 20.6 ± 6.56 | 0.253 |
Quadrants | ||||
1 | 24.1 ± 4.43 | 25.9 ± 6.36 | 25.1 ± 7.54 | 0.602 |
2 | 24.0 ± 5.08 | 25.4 ± 5.68 | 24.6 ± 5.33 | 0.407 |
3 | 24.3 ± 5.86 | 26.1 ± 7.06 | 25.2 ± 6.9 | 0.452 |
4 | 25.6 ± 5.66 | 26.8 ± 7.59 | 22.9 ± 8.01 | 0.221 |
Average | 24.2 ± 3.59 | 25.9 ± 5.82 | 24.2 ± 6.75 | 0.47 |
ERG Values (ms) | Group 1A | Group 1B | Group 2 | p Values |
---|---|---|---|---|
Patients with HCQ Use <5 Years | Patients with HCQ Use >5 Years | Controls | ||
Ring | ||||
R1 | 40.5 ± 3.12 | 39.2 ± 2.97 | 39.1 ± 3.57 | 0.206 |
R2 | 35.4 ± 3.1 | 35.3 ± 1.9 | 35.8 ± 3.68 | 0.811 |
R3 | 33.9 ± 1.4 | 33.9 ± 1.67 | 35.0 ± 3.63 | 0.386 |
R4 | 36.0 ± 4.4 | 34.8 ± 1.48 | 36.4 ± 4.7 | 0.776 |
R5 | 36.3 ± 1.86 | 36.1 ± 1.53 | 39.3 ± 6.11 | 0.488 |
Quadrants | ||||
1 | 34.8 ± 1.46 | 34.9 ± 1.5 | 36.0 ± 4.76 | 0.961 |
2 | 38.1 ± 4.06 | 37.1 ± 2.72 | 39.5 ± 5.76 | 0.657 |
3 | 37.5 ± 4.12 | 36.8 ± 2.79 | 37.9 ± 5.12 | 0.842 |
4 | 34.6 ± 1.36 | 34.7 ± 1.81 | 36.2 ± 4.77 | 0.769 |
Average | 36.5 ± 4.42 | 35.5 ± 1.38 | 35.5 ± 1.54 | 0.988 |
ERG Values (nV/deg2) | Group 1A | Group 1B | Group 2 | p Values |
---|---|---|---|---|
Patients with HCQ Use <5 Years | Patients with HCQ Use >5 Years | Controls | ||
R1/R1 | 1 | 1 | 1 | |
R1/R2 | 2.67 ± 1.01 | 3.27 ± 3.98 | 2.69 ± 0.86 | 0.759 |
R1/R3 | 4.58 ± 1.71 | 4.43 ± 3.41 | 4.74 ± 1.32 | 0.018 * |
R1/R4 | 6.06 ± 1.73 | 5.57 ± 2.03 | 6.71 ± 2.03 | 0.029 * |
R1/R5 | 6.61 ± 1.90 | 6.1 ± 2.57 | 7.6 ± 3.21 | 0.029 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.H.; Park, Y.-H.; Park, Y.G. Subclinical Detection of Hydroxychloroquine-Induced Retinopathy in Patients with Systemic Lupus Erythematous Using Multifocal Electroretinography and Optical Coherence Tomography. J. Clin. Med. 2024, 13, 7663. https://doi.org/10.3390/jcm13247663
Jung SH, Park Y-H, Park YG. Subclinical Detection of Hydroxychloroquine-Induced Retinopathy in Patients with Systemic Lupus Erythematous Using Multifocal Electroretinography and Optical Coherence Tomography. Journal of Clinical Medicine. 2024; 13(24):7663. https://doi.org/10.3390/jcm13247663
Chicago/Turabian StyleJung, Suk Hoon, Young-Hoon Park, and Young Gun Park. 2024. "Subclinical Detection of Hydroxychloroquine-Induced Retinopathy in Patients with Systemic Lupus Erythematous Using Multifocal Electroretinography and Optical Coherence Tomography" Journal of Clinical Medicine 13, no. 24: 7663. https://doi.org/10.3390/jcm13247663
APA StyleJung, S. H., Park, Y.-H., & Park, Y. G. (2024). Subclinical Detection of Hydroxychloroquine-Induced Retinopathy in Patients with Systemic Lupus Erythematous Using Multifocal Electroretinography and Optical Coherence Tomography. Journal of Clinical Medicine, 13(24), 7663. https://doi.org/10.3390/jcm13247663