The Effect of Bisphenol and Its Cytotoxicity on Female Infertility and Pregnancy Outcomes: A Narrative Review
Abstract
:1. Introduction
2. Literature Research
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fertility, G.B.D.; Forecasting, C. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: A comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2057–2099. [Google Scholar] [CrossRef]
- Chin, A.H.B.; Nguma, J.B.; Ahmad, M.F. The American Society for Reproductive Medicine’s new and more inclusive definition of infertility may conflict with traditional and conservative religious-cultural values. Fertil. Steril. 2024, 121, 892. [Google Scholar] [CrossRef] [PubMed]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef] [PubMed]
- Guerri, G.; Maniscalchi, T.; Barati, S.; Gerli, S.; Di Renzo, G.C.; Della Morte, C.; Marceddu, G.; Casadei, A.; Lagana, A.S.; Sturla, D.; et al. Non-syndromic monogenic female infertility. Acta Biomed. 2019, 90, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Potiris, A.; Perros, P.; Drakaki, E.; Mavrogianni, D.; Machairiotis, N.; Sfakianakis, A.; Karampitsakos, T.; Vrachnis, D.; Antonakopoulos, N.; Panagopoulos, P.; et al. Investigating the Association of Assisted Reproduction Techniques and Adverse Perinatal Outcomes. J. Clin. Med. 2024, 13, 328. [Google Scholar] [CrossRef]
- Kyriakopoulos, K.; Domali, E.; Stavrou, S.; Rodolakis, A.; Loutradis, D.; Drakakis, P. Recurrent benign leiomyomas after total abdominal hysterectomy. Rich or poor estrogenic environment may lead to their recurrence? Int. J. Surg. Case Rep. 2018, 44, 191–193. [Google Scholar] [CrossRef]
- Panagopoulos, P.; Mavrogianni, D.; Christodoulaki, C.; Drakaki, E.; Chrelias, G.; Panagiotopoulos, D.; Potiris, A.; Drakakis, P.; Stavros, S. Effects of endocrine disrupting compounds on female fertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102347. [Google Scholar] [CrossRef]
- Lee, H.R.; Jeung, E.B.; Cho, M.H.; Kim, T.H.; Leung, P.C.; Choi, K.C. Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J. Cell. Mol. Med. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Land, K.L.; Miller, F.G.; Fugate, A.C.; Hannon, P.R. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol. Reprod. Dev. 2022, 89, 608–631. [Google Scholar] [CrossRef]
- Rolfo, A.; Nuzzo, A.M.; De Amicis, R.; Moretti, L.; Bertoli, S.; Leone, A. Fetal-Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020, 12, 1744. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and Phthalates in Diet: An Emerging Link with Pregnancy Complications. Nutrients 2020, 12, 525. [Google Scholar] [CrossRef]
- Srnovrsnik, T.; Virant-Klun, I.; Pinter, B. Polycystic Ovary Syndrome and Endocrine Disruptors (Bisphenols, Parabens, and Triclosan)—A Systematic Review. Life 2023, 13, 138. [Google Scholar] [CrossRef]
- Mehlsen, A.; Hollund, L.; Boye, H.; Frederiksen, H.; Andersson, A.M.; Bruun, S.; Husby, S.; Jensen, T.K.; Timmermann, C.A.G. Pregnancy exposure to bisphenol A and duration of breastfeeding. Environ. Res. 2022, 206, 112471. [Google Scholar] [CrossRef]
- Gorini, F.; Bustaffa, E.; Coi, A.; Iervasi, G.; Bianchi, F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. Int. J. Environ. Res. Public Health 2020, 17, 2654. [Google Scholar] [CrossRef]
- Loukas, N.; Vrachnis, D.; Antonakopoulos, N.; Pergialiotis, V.; Mina, A.; Papoutsis, I.; Iavazzo, C.; Fotiou, A.; Stavros, S.; Valsamakis, G.; et al. Prenatal Exposure to Bisphenol A: Is There an Association between Bisphenol A in Second Trimester Amniotic Fluid and Fetal Growth? Medicina 2023, 59, 882. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.M.; Li, Y.; Tan, Y.; Liu, N.; Liu, Y. The efficient hydroxyalkylation of phenol with formaldehyde to bisphenol F over a thermoregulated phase-separable reaction system containing a water-soluble Brønsted acidic ionic liquid. RSC Adv. 2014, 4, 33466–33473. [Google Scholar] [CrossRef]
- Thoene, M.; Rytel, L.; Nowicka, N.; Wojtkiewicz, J. The state of bisphenol research in the lesser developed countries of the EU: A mini-review. Toxicol. Res. Camb. 2018, 7, 371–380. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeon, J.H.; Jeong, K.; Chung, H.W.; Lee, H.; Sung, Y.A.; Ye, S.; Ha, E.H. The Association of Ovarian Reserve with Exposure to Bisphenol A and Phthalate in Reproductive-aged Women. J. Korean Med. Sci. 2021, 36, e1. [Google Scholar] [CrossRef]
- Czubacka, E.; Wielgomas, B.; Klimowska, A.; Radwan, M.; Radwan, P.; Karwacka, A.; Kaluzny, P.; Jurewicz, J. Urinary Bisphenol A Concentrations and Parameters of Ovarian Reserve among Women from a Fertility Clinic. Int. J. Environ. Res. Public Health 2021, 18, 8041. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, Y.; Zhai, L.; Bai, Y.; Jia, L. Urinary bisphenol A and S are associated with diminished ovarian reserve in women from an infertility clinic in Northern China. Ecotoxicol. Environ. Saf. 2023, 256, 114867. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, Y.; Zhai, L.; Bai, Y.; Wei, W.; Sun, Q.; Jia, L. Urinary concentrations of bisphenol A and its alternatives: Potential predictors of and associations with antral follicle count among women from an infertility clinic in Northern China. Environ. Res. 2024, 249, 118433. [Google Scholar] [CrossRef]
- Zhan, W.; Tang, W.; Shen, X.; Xu, H.; Zhang, J. Exposure to bisphenol A and its analogs and polycystic ovarian syndrome in women of childbearing age: A multicenter case-control study. Chemosphere 2023, 313, 137463. [Google Scholar] [CrossRef]
- Patel, J.; Chaudhary, H.; Panchal, S.; Parekh, B.; Joshi, R. Connecting Bisphenol A Exposure to PCOS: Findings from a Case-Control Investigation. Reprod. Sci. 2024, 31, 2273–2281. [Google Scholar] [CrossRef]
- Liang, F.; Huo, X.; Wang, W.; Li, Y.; Zhang, J.; Feng, Y.; Wang, Y. Association of bisphenol A or bisphenol S exposure with oxidative stress and immune disturbance among unexplained recurrent spontaneous abortion women. Chemosphere 2020, 257, 127035. [Google Scholar] [CrossRef]
- Soomro, M.H.; England-Mason, G.; Reardon, A.J.F.; Liu, J.; MacDonald, A.M.; Kinniburgh, D.W.; Martin, J.W.; Dewey, D.; APrON Study Team. Maternal exposure to bisphenols, phthalates, perfluoroalkyl acids, and trace elements and their associations with gestational diabetes mellitus in the APrON cohort. Reprod. Toxicol. 2024, 127, 108612. [Google Scholar] [CrossRef]
- Tang, P.; Liang, J.; Liao, Q.; Huang, H.; Guo, X.; Lin, M.; Liu, B.; Wei, B.; Zeng, X.; Liu, S.; et al. Associations of bisphenol exposure with the risk of gestational diabetes mellitus: A nested case-control study in Guangxi, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 25170–25180. [Google Scholar] [CrossRef]
- Zhu, Y.; Hedderson, M.M.; Calafat, A.M.; Alexeeff, S.E.; Feng, J.; Quesenberry, C.P.; Ferrara, A. Urinary Phenols in Early to Midpregnancy and Risk of Gestational Diabetes Mellitus: A Longitudinal Study in a Multiracial Cohort. Diabetes 2022, 71, 2539–2551. [Google Scholar] [CrossRef]
- Trasande, L.; Nelson, M.E.; Alshawabkeh, A.; Barrett, E.S.; Buckley, J.P.; Dabelea, D.; Dunlop, A.L.; Herbstman, J.B.; Meeker, J.D.; Naidu, M.; et al. Prenatal Phenol and Paraben Exposures and Adverse Birth Outcomes: A Prospective Analysis of U.S. Births. Environ. Int. 2024, 183, 108378. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Q.; Wu, D.; Xiao, Z.; Shi, C.; Dong, Y.; Jia, L. High Levels of BPA and BPF Exposure during Pregnancy Are Associated with Lower Birth Weight in Shenyang in Northeast China. Chem. Res. Toxicol. 2024, 37, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kang, B.S.; Kim, O.; Won, S.; Kim, H.S.; Wie, J.H.; Shin, J.E.; Choi, S.K.; Jo, Y.S.; Kim, Y.H.; et al. The associations between maternal and fetal exposure to endocrine-disrupting chemicals and asymmetric fetal growth restriction: A prospective cohort study. Front. Public Health 2024, 12, 1351786. [Google Scholar] [CrossRef] [PubMed]
- Sol, C.M.; van Zwol-Janssens, C.; Philips, E.M.; Asimakopoulos, A.G.; Martinez-Moral, M.P.; Kannan, K.; Jaddoe, V.W.V.; Trasande, L.; Santos, S. Maternal bisphenol urine concentrations, fetal growth and adverse birth outcomes: A population-based prospective cohort. Environ. Health 2021, 20, 60. [Google Scholar] [CrossRef]
- Liang, J.; Yang, C.; Liu, T.; Tan, H.J.J.; Sheng, Y.; Wei, L.; Tang, P.; Huang, H.; Zeng, X.; Liu, S.; et al. Prenatal exposure to bisphenols and risk of preterm birth: Findings from Guangxi Zhuang birth cohort in China. Ecotoxicol. Environ. Saf. 2021, 228, 112960. [Google Scholar] [CrossRef]
- Zhou, W.; Fang, F.; Zhu, W.; Chen, Z.J.; Du, Y.; Zhang, J. Bisphenol A and Ovarian Reserve among Infertile Women with Polycystic Ovarian Syndrome. Int. J. Environ. Res. Public Health 2016, 14, 18. [Google Scholar] [CrossRef]
- Ziv-Gal, A.; Flaws, J.A. Evidence for bisphenol A—Induced female infertility: A review (2007–2016). Fertil. Steril. 2016, 106, 827–856. [Google Scholar] [CrossRef]
- Hung, P.H.; Van Winkle, L.S.; Williams, C.J.; Hunt, P.A.; VandeVoort, C.A. Prenatal Bisphenol A Exposure Alters Epithelial Cell Composition in the Rhesus Macaque Fetal Oviduct. Toxicol. Sci. 2019, 167, 450–457. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2020, 114, 1151–1157. [Google Scholar] [CrossRef]
- Souter, I.; Smith, K.W.; Dimitriadis, I.; Ehrlich, S.; Williams, P.L.; Calafat, A.M.; Hauser, R. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod. Toxicol. 2013, 42, 224–231. [Google Scholar] [CrossRef]
- Cao, Y.; Qu, X.; Ming, Z.; Yao, Y.; Zhang, Y. The correlation between exposure to BPA and the decrease of the ovarian reserve. Int. J. Clin. Exp. Pathol. 2018, 11, 3375–3382. [Google Scholar] [PubMed]
- Jurewicz, J.; Majewska, J.; Berg, A.; Owczarek, K.; Zajdel, R.; Kaleta, D.; Wasik, A.; Rachon, D. Serum bisphenol A analogues in women diagnosed with the polycystic ovary syndrome—Is there an association? Environ. Pollut. 2021, 272, 115962. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, A.; Rachon, D.; Owczarek, K.; Kubica, P.; Kowalewska, A.; Kudlak, B.; Wasik, A.; Namiesnik, J. Serum bisphenol A concentrations correlate with serum testosterone levels in women with polycystic ovary syndrome. Reprod. Toxicol. 2018, 82, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.C.; Cajdler-Luba, A.; Salata, I.; Bienkiewicz, M.; Lewinski, A. The utility of the gonadotrophin releasing hormone (GnRH) test in the diagnosis of polycystic ovary syndrome (PCOS). Endokrynol. Pol. 2011, 62, 120–128. [Google Scholar] [PubMed]
- Christ, J.P.; Cedars, M.I. Current Guidelines for Diagnosing PCOS. Diagnostics 2023, 13, 1113. [Google Scholar] [CrossRef] [PubMed]
- Kandaraki, E.; Christakou, C.; Diamanti-Kandarakis, E. Metabolic syndrome and polycystic ovary syndrome… and vice versa. Arq. Bras. Endocrinol. Metabol. 2009, 53, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Rasool, S.U.A.; Nabi, M.; Ganie, M.A.; Jabeen, F.; Rashid, F.; Amin, S. CYP17 gene polymorphic sequence variation is associated with hyperandrogenism in Kashmiri women with polycystic ovarian syndrome. Gynecol. Endocrinol. 2021, 37, 230–234. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, B.; Hu, G.; Chu, Y.; Ge, R.S. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol. Lett. 2011, 207, 137–142. [Google Scholar] [CrossRef]
- ESHRE Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; McHeik, S.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open 2023, 2023, hoad002. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2020, 113, 533–535. [Google Scholar] [CrossRef]
- Peng, F.; Ji, W.; Zhu, F.; Peng, D.; Yang, M.; Liu, R.; Pu, Y.; Yin, L. A study on phthalate metabolites, bisphenol A and nonylphenol in the urine of Chinese women with unexplained recurrent spontaneous abortion. Environ. Res. 2016, 150, 622–628. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, Y.; Jiang, J.; Liu, Y.; Luo, X.; Shen, Z.; Chen, X.; Wang, Y.; Dai, Y.; Zhao, J.; et al. Higher urinary bisphenol A concentration is associated with unexplained recurrent miscarriage risk: Evidence from a case-control study in eastern China. PLoS ONE 2015, 10, e0127886. [Google Scholar] [CrossRef]
- Panchanathan, R.; Liu, H.; Leung, Y.K.; Ho, S.M.; Choubey, D. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells. Mol. Cell. Endocrinol. 2015, 415, 45–55. [Google Scholar] [CrossRef]
- Ren, H.; Li, Y.; Jiang, H.; Du, M. Porphyromonas gingivalis induces IL-8 and IFN-gamma secretion and apoptosis in human extravillous trophoblast derived HTR8/SVneo cells via activation of ERK1/2 and p38 signaling pathways. Placenta 2016, 45, 8–15. [Google Scholar] [CrossRef]
- White, C.A.; Johansson, M.; Roberts, C.T.; Ramsay, A.J.; Robertson, S.A. Effect of interleukin-10 null mutation on maternal immune response and reproductive outcome in mice. Biol. Reprod. 2004, 70, 123–131. [Google Scholar] [CrossRef]
- Stavros, S.; Panagopoulos, P.; Machairiotis, N.; Potiris, A.; Mavrogianni, D.; Sfakianakis, A.; Drakaki, E.; Christodoulaki, C.; Panagiotopoulos, D.; Sioutis, D.; et al. Association between cytokine polymorphisms and recurrent pregnancy loss: A review of current evidence. Int. J. Gynaecol. Obstet. 2024, 167, 45–57. [Google Scholar] [CrossRef]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A Clinical Update on Gestational Diabetes Mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr. Diabetes Rep. 2016, 16, 7. [Google Scholar] [CrossRef]
- Chen, W.J.; Robledo, C.; Davis, E.M.; Goodman, J.R.; Xu, C.; Hwang, J.; Janitz, A.E.; Garwe, T.; Calafat, A.M.; Peck, J.D. Assessing urinary phenol and paraben mixtures in pregnant women with and without gestational diabetes mellitus: A case-control study. Environ. Res. 2022, 214, 113897. [Google Scholar] [CrossRef]
- Cantonwine, D.; Meeker, J.D.; Hu, H.; Sanchez, B.N.; Lamadrid-Figueroa, H.; Mercado-Garcia, A.; Fortenberry, G.Z.; Calafat, A.M.; Tellez-Rojo, M.M. Bisphenol a exposure in Mexico City and risk of prematurity: A pilot nested case control study. Environ. Health 2010, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhou, Q.; Feng, L.; Wu, J.; Xiong, Y.; Li, X. Maternal serum bisphenol A levels and risk of pre-eclampsia: A nested case-control study. Eur. J. Public Health 2017, 27, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, Z.; Zhang, M.; Shi, L.; Qin, S.; Lv, D.; Li, D.; Ma, L.; Zhang, Y. Maternal exposure to bisphenol A induces fetal growth restriction via upregulating the expression of estrogen receptors. Chemosphere 2022, 287, 132244. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jin, H.; Kim, G.; Bae, J. A low dose of bisphenol A stimulates estradiol production by regulating beta-catenin-FOXL2-CYP19A1 pathway in human ovarian granulosa cells. Biochem. Biophys. Res. Commun. 2021, 583, 192–198. [Google Scholar] [CrossRef]
- Kwintkiewicz, J.; Nishi, Y.; Yanase, T.; Giudice, L.C. Peroxisome proliferator-activated receptor-gamma mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ. Health Perspect. 2010, 118, 400–406. [Google Scholar] [CrossRef]
- Watanabe, M.; Ohno, S.; Nakajin, S. Effects of bisphenol A on the expression of cytochrome P450 aromatase (CYP19) in human fetal osteoblastic and granulosa cell-like cell lines. Toxicol. Lett. 2012, 210, 95–99. [Google Scholar] [CrossRef]
- Shi, J.; Liu, C.; Chen, M.; Yan, J.; Wang, C.; Zuo, Z.; He, C. The interference effects of bisphenol A on the synthesis of steroid hormones in human ovarian granulosa cells. Environ. Toxicol. 2021, 36, 665–674. [Google Scholar] [CrossRef]
- Bernal, A.J.; Jirtle, R.L. Epigenomic disruption: The effects of early developmental exposures. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 938–944. [Google Scholar] [CrossRef]
- Dolinoy, D.C. The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 2008, 66 (Suppl. S1), S7–S11. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhang, L.J.; Feng, Y.N.; Chen, B.; Feng, Y.M.; Liang, G.J.; Li, L.; Shen, W. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol. Biol. Rep. 2012, 39, 8621–8628. [Google Scholar] [CrossRef]
- Iqbal, K.; Tran, D.A.; Li, A.X.; Warden, C.; Bai, A.Y.; Singh, P.; Wu, X.; Pfeifer, G.P.; Szabo, P.E. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol. 2015, 16, 59. [Google Scholar] [CrossRef]
- Chao, H.H.; Zhang, X.F.; Chen, B.; Pan, B.; Zhang, L.J.; Li, L.; Sun, X.F.; Shi, Q.H.; Shen, W. Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem. Cell Biol. 2012, 137, 249–259. [Google Scholar] [CrossRef]
- Jalal, N.; Surendranath, A.R.; Pathak, J.L.; Yu, S.; Chung, C.Y. Bisphenol A (BPA) the mighty and the mutagenic. Toxicol. Rep. 2018, 5, 76–84. [Google Scholar] [CrossRef]
- Tang, Z.R.; Xu, X.L.; Deng, S.L.; Lian, Z.X.; Yu, K. Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int. J. Mol. Sci. 2020, 21, 1519. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.R.; Iqbal, K.; Tran, D.A.; Rivas, G.E.; Singh, P.; Pfeifer, G.P.; Szabo, P.E. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics 2011, 6, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Susiarjo, M.; Sasson, I.; Mesaros, C.; Bartolomei, M.S. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013, 9, e1003401. [Google Scholar] [CrossRef] [PubMed]
Authors, Year | Study Design | Study Location | Sample | Sample Size | Mean Age | Ethnicity | Main Outcome |
---|---|---|---|---|---|---|---|
Studies investigating the effect of bisphenols on female fertility | |||||||
Park et al., 2021 [19] | Cross-sectional study | Ewha Womans University Mokdong Hospital in Seoul of Korea | Urine samples | 307 women | 36.8 ± 4.4 years | Korean women | BPA concentration was significantly elevated in the DOR group. |
Czubacka et al., 2021 [20] | Cross-sectional study | Fertility clinic | Urine samples | 511 women | 33.30 ± 3.69 years | Polish women | Significant association between BPA levels and diminished ovarian reserve. |
Zhang et al., 2023 [21] | Cohort study | Shenyang, China | Urine samples | 111 women | 32.0 (interquartile range 4.1) | Chinese population |
|
Zhang et al., 2024 [22] | Cohort study | Shenyang, China | Urine samples | 111 women | 32.0 (interquartile range 4.1) | Chinese population | Higher urinary concentrations of BPA, BPF, and BPS were associated with lower AFC (β = 0.016; 95% CI: 0.025, 0.006 in BPA; β = 0.017; 95% CI: 0.029, 0.004 in BPF; β = 0.128; 95% CI: 0.197, 0.060 in BPS). |
Zhan et al., 2023 [23] | Case-control study | Shandong, Shanghai, and Zhejiang Provinces, China | Urine samples | 733 women | 29 years | Chinese women | Exposure to BPA and its analog is correlated with a significantly higher risk of developing PCOS. |
Patel et al., 2024 [24] | Case-control study | Ahmedabad, India | Blood samples in early follicular phase | 130 women (80 women in the PCOS group and 50 controls) | 29.16 ± 4.15 in the PCOS group and 24.34 ± 5.11 in Control group | Indian population | BPA levels of the PCOS group were significantly higher compared to the controls (102.15 ± 0.1 ng/mL vs. 61.35 ± 50.13 ng/mL, p < 0.0001). |
Liang et al., 2020 [25] | Cross-sectional study | Center for Reproductive Medicine of Shandong University | Urine samples | 111 women | 28 years | Chinese women | Association between exposure to bisphenol A and S and oxidative stress as well as immune system imbalance in women with unexplained recurrent spontaneous abortion (URSA). |
Studies investigating the effect of bisphenols on pregnancy outcomes | |||||||
Soomro et al., 2024 [26] | Cohort study | Calgary or Edmonton, Alberta, Canada | Urine samples | 420 women | 50.71% were in the 30 to 34 age range and 113 26.90% were over the age of 35 | Canadian women | Significant association between BPA and the onset of gestational diabetes mellitus (GDM). |
Tang et al., 2023 [27] | Case-control Study | Guangxi, China | Serum samples collected during the first trimester | 500 women (100 women with GDM and 400 matched controls) | 30.62 ± 6.46 for the cases and 30.6 ± 6.41 for controls | Chinese population | Bisphenol S exposure in first trimester is statistically significantly associated with an increased risk of developing gestational diabetes mellitus. |
Zhu et al., 2022 [28] | Case-control Study | United States, Pregnancy Environment and Lifestyle Study (PETALS) cohort | Urine samples collected during the first and second trimester | 333 women (111 women with GDM and 222 matched controls) | 31.2 ± 4.6 | Asian/Pacific Islander 39.6%, Black 9%, Hispanic 33.3%, White 14.1% and Other 3.9% |
|
Trasande et al., 2024 [29] | Cohort study | United States, The NIH Environmental influences on Child Health Outcomes (ECHO) Program | Urine samples | 3619 women | 22.9% were less than 25 years old, 58.8% were between 25 and 34 years old, and 18.3% were more than 35 years old. | Non-Hispanic White (41.3%), Non-Hispanic Black (13.4%), Hispanic (34.5%) and Other (10.8%) |
|
Li et al., 2024 [30] | Cohort Study | Shenyang, China | Urine samples in the third trimester | 113 women | 56.6% were less than 30 years old and 43.4% were older than 30 years old | Han 84.1% and Other 15.9% | BPA and BPF exposure during pregnancy was significantly associated with lower birth weight (standardized regression coefficients (β = −0.081 kg, 95% CI: −0.134 to −0.027; β = −0.049 kg, 95% CI: −0.097 to −0.001)). |
Hong et al., 2024 [31] | Cohort Study | Seoul, Republic of Korea | Maternal urine samples and cord blood samples | 146 women | 50.0% were less than 35 years old and 50.0% were older than 35 years old | Korean population | The asymmetric FGR group showed significantly higher maternal and fetal BPA levels compared to normal growth (p < 0.05 in both maternal urine and cord blood BPA). |
Sol et al., 2021 [32] | Cohort Study | Rotterdam, The Netherlands | Maternal urine samples in all three trimesters | 1379 women | 30.5 (SD: 4.8) | European population |
|
Liang et al., 2021 [33] | Cohort Study | Guangxi, China | Maternal blood samples in first trimester | 2023 women (113 in the preterm group and 1910 in term group) | 28.2 ± 5.5 for the term group and 29.1 ± 5.9 for the preterm group | Chinese population | Bisphenol F (BPF) concentrations were positively associated with the risk of PTB (OR = 1.73, 95% CI: 1.18, 2.55). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drakaki, E.; Stavros, S.; Dedousi, D.; Potiris, A.; Mavrogianni, D.; Zikopoulos, A.; Moustakli, E.; Skentou, C.; Thomakos, N.; Rodolakis, A.; et al. The Effect of Bisphenol and Its Cytotoxicity on Female Infertility and Pregnancy Outcomes: A Narrative Review. J. Clin. Med. 2024, 13, 7568. https://doi.org/10.3390/jcm13247568
Drakaki E, Stavros S, Dedousi D, Potiris A, Mavrogianni D, Zikopoulos A, Moustakli E, Skentou C, Thomakos N, Rodolakis A, et al. The Effect of Bisphenol and Its Cytotoxicity on Female Infertility and Pregnancy Outcomes: A Narrative Review. Journal of Clinical Medicine. 2024; 13(24):7568. https://doi.org/10.3390/jcm13247568
Chicago/Turabian StyleDrakaki, Eirini, Sofoklis Stavros, Dimitra Dedousi, Anastasios Potiris, Despoina Mavrogianni, Athanasios Zikopoulos, Efthalia Moustakli, Charikleia Skentou, Nikolaos Thomakos, Alexandros Rodolakis, and et al. 2024. "The Effect of Bisphenol and Its Cytotoxicity on Female Infertility and Pregnancy Outcomes: A Narrative Review" Journal of Clinical Medicine 13, no. 24: 7568. https://doi.org/10.3390/jcm13247568
APA StyleDrakaki, E., Stavros, S., Dedousi, D., Potiris, A., Mavrogianni, D., Zikopoulos, A., Moustakli, E., Skentou, C., Thomakos, N., Rodolakis, A., Drakakis, P., & Domali, E. (2024). The Effect of Bisphenol and Its Cytotoxicity on Female Infertility and Pregnancy Outcomes: A Narrative Review. Journal of Clinical Medicine, 13(24), 7568. https://doi.org/10.3390/jcm13247568