The Effects of Physiotherapy Programmes, Aided by Virtual Reality Solutions, on Balance in Older Women: A Randomised Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Baseline Assessment
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, H.H.; Fang, I.Y.; Yu, Y.C.; Huang, Y.P.; Kuo, I.L.; Wang, L.T.; Tsai, M.C.; Chang, S.H.; Hsueh, M.C. Is Functional Fitness Performance a Useful Predictor of Risk of Falls among Community-Dwelling Older Adults? Arch. Public Health 2021, 79, 108. [Google Scholar] [CrossRef] [PubMed]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and Gait in the Elderly: A Contemporary Review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Dunsky, A. The Effect of Balance and Coordination Exercises on Quality of Life in Older Adults: A Mini-Review. Front. Aging Neurosci. 2019, 11, 318. [Google Scholar] [CrossRef] [PubMed]
- Hartholt, K.A.; Lee, R.; Burns, E.R.; van Beeck, E.F. Mortality from Falls Among US Adults Aged 75 Years or Older, 2000–2016. JAMA 2019, 321, 2131–2133. [Google Scholar] [CrossRef] [PubMed]
- Marquez, D.X.; Aguiñaga, S.; Vásquez, P.M.; Conroy, D.E.; Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Sheppard, B.B.; Petruzzello, S.J.; et al. A systematic review of physical activity and quality of life and well-being. Transl. Behav. Med. 2020, 10, 1098–1109. [Google Scholar] [CrossRef]
- Gulla, B.; Golonka, K.; Dutka, J.; Bandura, A.; Bernasik-Smagała, Z. Autonomy as a basic determinant of the quality of life in disorders of the musculoskeletal system. Med. Stud./Stud. Med. 2023, 39, 198–205. [Google Scholar] [CrossRef]
- Yi, M.; Zhang, W.; Zhang, X.; Zhou, J.; Wang, Z. The Effectiveness of Otago Exercise Program in Older Adults with Frailty or Pre-Frailty: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2023, 114, 105083. [Google Scholar] [CrossRef]
- Jardim, N.Y.V.; Bento-Torres, N.V.O.; Costa, V.O.; Carvalho, J.P.R.; Pontes, H.T.S.; Tomás, A.M.; Sosthenes, M.C.K.; Erickson, K.I.; Bento-Torres, J.; Diniz, C.W.P. Dual-Task Exercise to Improve Cognition and Functional Capacity of Healthy Older Adults. Front. Aging Neurosci. 2021, 13, 589299. [Google Scholar] [CrossRef]
- Wang, L.T. Effectiveness of Virtual Reality Exercise for Functional Fitness in Community-Dwelling Older Adults: A 12-Week Follow-Up Study. Sage Open 2023, 13, 21582440231218515. [Google Scholar] [CrossRef]
- Qian, J.; McDonough, D.J.; Gao, Z. The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4133. [Google Scholar] [CrossRef]
- Rodríguez-Almagro, D.; Achalandabaso-Ochoa, A.; Ibáñez-Vera, A.J.; Góngora-Rodríguez, J.; Rodríguez-Huguet, M. Effectiveness of Virtual Reality Therapy on Balance and Gait in the Elderly: A Systematic Review. Healthcare 2024, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Podlasek, A.; Somaa, F. Virtual Reality in Post-Stroke Neurorehabilitation—A Systematic Review and Meta-Analysis. Top. Stroke Rehabil. 2023, 30, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Gos, E.; Ratajczak, A.; Tacikowska, G.; Sosna, M.; Piłka, A.; Skarżyński, P.H. Kwestionariusz Przesiewowy do Oceny Zawrotów Głowy i Zaburzeń Równowagi/Screening questionnaire of vestibular symptoms. Now. Audiofonol. 2019, 8, 37–42. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring Balance in the Elderly: Validation of an Instrument. Can. J. Public Health 1992, 83, S7–S11. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The Timed Up & Go: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- Jacobs, J.V.; Horak, F.B.; Tran, V.K.; Nutt, J.G. Multiple Balance Tests Improve the Assessment of Postural Stability in Subjects with Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 322–326. [Google Scholar] [CrossRef]
- Campbell, J.; Robertson, C. The Otago Exercise Programme; ACC: Wellington, New Zealand, 1997. [Google Scholar]
- Zak, M.; Sikorski, T.; Krupnik, S.; Wasik, M.; Grzanka, K.; Courteix, D.; Dutheil, F.; Brola, W. Physiotherapy Programmes Aided by VR Solutions Applied to the Seniors Affected by Functional Capacity Impairment: Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 6018. [Google Scholar] [CrossRef]
- Donoghue, D.; Physiotherapy Research and Older People (PROP) group; Stokes, E.K. How much change is true change? The minimum detectable change of the Berg Balance Scale in elderly people. J. Rehabil. Med. 2009, 41, 343–346. [Google Scholar] [CrossRef]
- Chen, P.J.; Penn, I.W.; Wei, S.H.; Chuang, L.R.; Sung, W.H. Augmented reality-assisted training with selected Tai-Chi movements improves balance control and increases lower limb muscle strength in older adults: A prospective randomized trial. J. Exerc. Sci. Fit. 2020, 18, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.N.; Chung, E.; Lee, B.H. The Effects of Augmented Reality-based Otago Exercise on Balance, Gait, and Falls Efficacy of Elderly Women. J. Phys. Ther. Sci. 2013, 25, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Rebêlo, F.L.; de Souza Silva, L.F.; Doná, F.; Sales Barreto, A.; de Souza Siqueira Quintans, J. Immersive virtual reality is effective in the rehabilitation of older adults with balance disorders: A randomized clinical trial. Exp. Gerontol. 2021, 149, 111308. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.M.; Rios, E.; Ferris, D.P. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity. J. Neurophysiol. 2018, 120, 1998–2010. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, P.; Li, L.; Huang, D. Virtual reality training improves balance function. Neural. Regen. Res. 2014, 9, 1628–1634. [Google Scholar]
- Sadeghi, H.; Jehu, D.A.; Daneshjoo, A.; Shakoor, E.; Razeghi, M.; Amani, A.; Hakim, M.N.; Yusof, A. Effects of 8 Weeks of Balance Training, Virtual Reality Training, and Combined Exercise on Lower Limb Muscle Strength, Balance, and Functional Mobility Among Older Men: A Randomized Controlled Trial. Sport. Health 2021, 13, 606–612. [Google Scholar] [CrossRef]
- Ozkul, C.; Guclu-Gunduz, A.; Yazici, G.; Atalay-Guzel, N.; Irkec, C. Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. Eur. J. Integr. Med. 2020, 35, 101092. [Google Scholar] [CrossRef]
- Jung, J.; Yu, J.; Kang, H. Effects of Virtual Reality Treadmill Training on Balance and Balance Self-efficacy in Stroke Patients with a History of Falling. J. Phys. Ther. Sci. 2012, 24, 1133–1136. [Google Scholar] [CrossRef]
- Muhla, F.; Clanché, F.; Duclos, K.; Meyer, P.; Maïaux, S.; Colnat-Coulbois, S.; Gauchard, G.C. Impact of using immersive virtual reality over time and steps in the Timed Up and Go test in elderly people. PLoS ONE 2020, 15, e0229594. [Google Scholar] [CrossRef]
- Zak, M.; Wasik, M.; Sikorski, T.; Aleksandrowicz, K.; Miszczuk, R.; Courteix, D.; Dutheil, F.; Januszko-Szakiel, A.; Brola, W. Rehabilitation in Older Adults Affected by Immobility Syndrome, Aided by Virtual Reality Technology: A Narrative Review. J. Clin. Med. 2023, 12, 5675. [Google Scholar] [CrossRef]
- Hahn, M.E.; Lee, H.J.; Chou, L.S. Increased muscular challenge in older adults during obstructed gait. Gait Posture 2005, 22, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Dockx, K.; Alcock, L.; Bekkers, E.; Ginis, P.; Reelick, M.; Pelosin, E.; Lagravinese, G.; Hausdorff, J.M.; Mirelman, A.; Rochester, L.; et al. Fall-Prone Older People’s Attitudes towards the Use of Virtual Reality Technology for Fall Prevention. Gerontology 2017, 63, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Alsina-Rey, B.; Rodríguez-Fuentes, G. Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. J. Clin. Med. 2022, 11, 3911. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Feasibility and Effects of an Immersive Virtual Reality Exergame Program on Physical Functions in Institutionalized Older Adults: A Randomized Clinical Trial. Sensors 2022, 22, 6742. [Google Scholar] [CrossRef] [PubMed]
- Phu, S.; Vogrin, S.; Al Saedi, A.; Duque, G. Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clin. Interv. Aging 2019, 14, 1567–1577. [Google Scholar] [CrossRef]
- Malik, J.; Stemplewski, R.; Maciaszek, J. The Effect of Juggling as Dual-Task Activity on Human Neuroplasticity: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 7102. [Google Scholar] [CrossRef]
- de Vries, A.W.; Faber, G.; Jonkers, I.; Van Dieen, J.H.; Verschueren, S.M.P. Virtual reality balance training for elderly: Similar skiing games elicit different challenges in balance training. Gait Posture 2018, 59, 111–116. [Google Scholar] [CrossRef]
- Sikorski, T.; Krupnik, S.; Pasiut, S.; Wasik, M.; Andrychowski, J.; Zak, M.R. Assessment of selected variables of functional capacity in three-generational family households. Med. Stud./Stud. Med. 2022, 38, 182–189. [Google Scholar] [CrossRef]
Characteristics | Total (N = 80) | OTAGO Group (n = 40) | VR + DT Group (n = 40) | χ2 or U b | p-Value |
---|---|---|---|---|---|
Age (years), mean (SD) | 76.73 (1.99) | 76.75 (1.77) | 76.70 (2.21) | 0.52 | 0.59 |
Gender (woman), n (%) | 80 (100.00) | 40 (50.00) | 40 (50.00) | 0.00 | 1.00 |
Education (years), mean (SD) | 11.38 (3.47) | 11.03 (3.34) | 11.73 (3.61) | 2.11 | 0.91 |
Body weight [kg] mean (SD) | 73.19 (11.69) | 75.68 (11.83) | 70.70 (11.14) | 1.84 | 0.07 |
Height [m] mean (SD) | 1.67 (0.08) | 1.68 (0.09) | 1.66 (0.07) | 1.26 | 0.20 |
BMI [kg/m2] mean (SD) | 26.09 (2.41) | 26.94 (2.51) | 25.61 (2.23) | 1.81 | 0.07 |
Number of persons who sustained a fall within the last year n (%) | 19 (21.59) | 8 (20.00) | 11 (27.50) | 0.62 | 0.43 |
Number of medications taken regularly mean (SD) | 4.85 (2.30) | 5.15 (2.21) | 4.55 (2.36) | 1.01 | 0.27 |
MMSE (pts) mean (SD) | 26.74 (1.76) | 26.47 (2.02) | 27.18 (1.38) | −0.87 | 0.37 |
BBS (pts) mean (SD) | 39.50 (1.16) | 39.33 (0.94) | 39.68 (1.33) | −1.49 | 0.11 |
TUG (s) mean (SD) | 13.73 (1.41) | 13.45 (1.06) | 14.02 (1.66) | −1.33 | 0.18 |
TUG MAN (s) mean (SD) | 13.47 (1.21) | 13.72 (1.24) | 13.23 (1.14) | 1.77 | 0.08 |
TUG COG (s) mean (SD) | 16.59 (2.75) | 16.16 (1.67) | 17.02 (3.48) | −0.96 | 0.34 |
SLS OP (s) mean (SD) | 7.01 (6.63) | 5.39 (1.56) | 8.81 (8.99) | −0.98 | 0.33 |
SLS CL (s) mean (SD) | 1.46 (1.23) | 1.40 (0.85) | 1.52 (1.54) | 0.34 | 0.73 |
Characteristics | Total (N = 80) | OTAGO Group (n = 40) | VR + DT Group (n = 40) | U b | p-Value |
---|---|---|---|---|---|
TUG (s) mean (SD) | 11.98 (1.36) | 11.35 (1.09) | 12.60 (1.34) | −3.96 | <0.001 |
TUG MAN (s) mean (SD) | 12.02 (1.38) | 12.42 (1.57) | 11.62 (1.02) | 1.84 | 0.06 |
TUG COG (s) mean (SD) | 14.37 (1.82) | 14.60 (1.46) | 14.13 (2.11) | 0.41 | 0.68 |
SLS OP (s) mean (SD) | 8.88 (6.99) | 7.90 (4.94) | 9.87 (8.52) | −1.47 | 0.14 |
SLS CL (s) mean (SD) | 2.11 (1.03) | 2.07 (0.71) | 2.33 (1.27) | −0.94 | 0.34 |
BBS (pts) mean (SD) | 42.23 (2.63) | 42.58 (2.79) | 41.88 (2.44) | 0.01 | 0.99 |
Characteristics | Total (N = 80) | OTAGO Group (n = 40) | VR + DT Group (n = 40) | U b | p-Value |
---|---|---|---|---|---|
TUG (s) mean (SD) | 12.54 (0.98) | 12.26 (0.75) | 12.82 (1.11) | −2.74 | 0.01 |
TUG MAN (s) mean (SD) | 12.93 (2.08) | 12.75 (1.32) | 13.12 (2.64) | 0.35 | 0.73 |
TUG COG (s) mean (SD) | 15.01 (1.25) | 14.88 (1.19) | 15.15 (1.31) | −0.99 | 0.32 |
SLS OP (s) mean (SD) | 7.96 (6.92) | 6.92 (4.50) | 9.00 (8.64) | −1.39 | 0.16 |
SLS CL (s) mean (SD) | 2.00 (1.06) | 1.91 (0.74) | 2.08 (1.32) | −0.16 | 0.87 |
BBS (pts) mean (SD) | 41.85 (2.70) | 42.33 (2.94) | 41.38 (2.36) | 0.89 | 0.36 |
VR + DT Group | OTAGO Group | |||||||
---|---|---|---|---|---|---|---|---|
Pre- Intervention (n = 40) | Post- Intervention (n = 40) | After 3 Weeks (n = 40) | p-Value | Pre- Intervention (n = 40) | Post- Intervention (n = 40) | After 3 Weeks (n = 40) | p-Value | |
TUG (s) mean (SD) | 14.02 (1.66) | 12.60 (1.34) | 12.82 (1.11) | 0.001 | 13.45 (1.06) | 11.35 (1.09) | 12.26 (0.75) | <0.001 |
TUG MAN (s) mean (SD) | 13.23 (1.14) | 11.62 (1.02) | 13.12 (2.64) | 0.001 | 13.72 (1.24) | 12.42 (1.57) | 12.75 (1.32) | <0.001 |
TUG COG (s) mean (SD) | 17.02 (3.48) | 14.13 (2.11) | 15.15 (1.31) | 0.001 | 16.16 (1.67) | 14.60 (1.46) | 14.88 (1.19) | <0.001 |
SLS OP (s) mean (SD) | 8.81 (8.99) | 9.87 (8.52) | 9.00 (8.64) | 0.01 | 5.39 (1.56) | 7.90 (4.94) | 6.92 (4.50) | 0.001 |
SLS CL (s) mean (SD) | 1.52 (1.54) | 2.33 (1.27) | 2.08 (1.32) | 0.001 | 1.40 (0.85) | 2.07 (0.71) | 1.91 (0.74) | <0.001 |
BBS (pts) mean (SD) | 39.68 (1.33) | 41.88 (2.44) | 41.38 (2.36) | 0.001 | 39.33 (0.94) | 42.58 (2.79) | 42.33 (2.94) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zak, M.; Sikorski, T.; Michalska, A.; Sztandera, P.; Szczepanowska-Wolowiec, B.; Brola, W.; Courteix, D.; Dutheil, F. The Effects of Physiotherapy Programmes, Aided by Virtual Reality Solutions, on Balance in Older Women: A Randomised Controlled Trial. J. Clin. Med. 2024, 13, 6462. https://doi.org/10.3390/jcm13216462
Zak M, Sikorski T, Michalska A, Sztandera P, Szczepanowska-Wolowiec B, Brola W, Courteix D, Dutheil F. The Effects of Physiotherapy Programmes, Aided by Virtual Reality Solutions, on Balance in Older Women: A Randomised Controlled Trial. Journal of Clinical Medicine. 2024; 13(21):6462. https://doi.org/10.3390/jcm13216462
Chicago/Turabian StyleZak, Marek, Tomasz Sikorski, Agata Michalska, Paulina Sztandera, Beata Szczepanowska-Wolowiec, Waldemar Brola, Daniel Courteix, and Frederic Dutheil. 2024. "The Effects of Physiotherapy Programmes, Aided by Virtual Reality Solutions, on Balance in Older Women: A Randomised Controlled Trial" Journal of Clinical Medicine 13, no. 21: 6462. https://doi.org/10.3390/jcm13216462
APA StyleZak, M., Sikorski, T., Michalska, A., Sztandera, P., Szczepanowska-Wolowiec, B., Brola, W., Courteix, D., & Dutheil, F. (2024). The Effects of Physiotherapy Programmes, Aided by Virtual Reality Solutions, on Balance in Older Women: A Randomised Controlled Trial. Journal of Clinical Medicine, 13(21), 6462. https://doi.org/10.3390/jcm13216462