Evaluation of the Efficacy of the 755 nm Picosecond Laser in Eliminating Pigmented Skin Lesions after a Single Treatment Based on Photographic Analysis with Polarised Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laser Treatment
2.3. Laser Treatment Efficacy
2.4. Outcome Measures
- Score—absolute result providing a comprehensive measure of the impact the feature has on the patient’s complexion. These results include the total size and area, as well as the intensity of the detected elements of the analysed feature.
- Feature count—the number of elements of a trait being assessed, regardless of the size and intensity of each instance.
- Comparison figure—a percentage result of the patient’s complexion analysis, showing a comparison of individual values for people with similar features (useful in providing a baseline assessment of the patient’s overall complexion).
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, T.-T.; Lan, C.-C.E. Impacts of Skin Disorders Associated with Facial Discoloration on Quality of Life: Novel Insights Explaining Discordance between Life Quality Scores and Willingness to Pay. J. Cosmet. Dermatol. 2022, 21, 3053–3058. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.E.; Henry, M.; Burgess, C.; Saedi, N.; Chilukuri, S.; Campbell-Chambers, D.A. Laser Treatment of Skin of Color for Medical and Aesthetic Uses with a New 650-Microsecond Nd:YAG 1064 nm Laser. J. Drugs Dermatol. JDD 2019, 18, s135–s137. [Google Scholar] [PubMed]
- Fitzpatrick, R.E. Laserowa Chirurgia Kosmetyczna; Kaszuby, A., Ed.; Wydaw. Medyczne Urban i Partner: Wrocław, Poland, 2004; ISBN 978-83-89581-40-2. [Google Scholar]
- Gaffey, M.M.; Johnson, A.B. Laser Treatment of Pigmented Lesions. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Minkis, K.; Bolotin, D.; Council, M.L.; Bar, A.; Farah, R.S.; Kibbi, N.; Miest, R.Y.N.; Orringer, J.S.; Ortiz, A.; Suozzi, K.C.; et al. The Association of Academic Cosmetic Dermatology: Improving Cosmetic Dermatology Education through Collaboration, Research, and Advocacy. Arch. Dermatol. Res. 2023, 315, 1449–1452. [Google Scholar] [CrossRef] [PubMed]
- Adamski, Z.; Kaszuba, A. Dermatologia dla Kosmetologów; Wydawnictwo Naukowe Uniwersytetu Medycznego im. Karola Marcinkowskiego: Poznań, Poland, 2008; ISBN 978-83-7597-008-1. [Google Scholar]
- Chan, J.C.; Shek, S.Y.; Kono, T.; Yeung, C.K.; Chan, H.H. A Retrospective Analysis on the Management of Pigmented Lesions Using a Picosecond 755-nm Alexandrite Laser in Asians. Lasers Surg. Med. 2016, 48, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Sakio, R.; Ohshiro, T.; Sasaki, K.; Ohshiro, T. Usefulness of Picosecond Pulse Alexandrite Laser Treatment for Nevus of Ota. Laser Ther. 2018, 27, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Vanaman Wilson, M.J.; Jones, I.T.; Bolton, J.; Larsen, L.; Wu, D.C.; Goldman, M.P. Prospective Studies of the Efficacy and Safety of the Picosecond 755, 1064, and 532 nm Lasers for the Treatment of Infraorbital Dark Circles. Lasers Surg. Med. 2018, 50, 45–50. [Google Scholar] [CrossRef]
- Ge, Y.; Yang, Y.; Guo, L.; Zhang, M.; Wu, Q.; Zeng, R.; Rong, H.; Jia, G.; Shi, H.; Fang, J.; et al. Comparison of a Picosecond Alexandrite Laser versus a Q-Switched Alexandrite Laser for the Treatment of Nevus of Ota: A Randomized, Split-Lesion, Controlled Trial. J. Am. Acad. Dermatol. 2020, 83, 397–403. [Google Scholar] [CrossRef]
- Henseler, H. Investigation of the precision of the Visia® Complexion Analysis Camera System in the Assessment of Skin Surface Features. GMS Interdiscip. Plast. Reconstr. Surg. DGPW 2022, 11, Doc08. [Google Scholar] [CrossRef]
- Goldsberry, A.; Hanke, C.W.; Hanke, K.E. VISIA System: A Possible Tool in the Cosmetic Practice. J. Drugs Dermatol. JDD 2014, 13, 1312–1314. [Google Scholar]
- Wang, Y.-J.; Lin, E.-T.; Chen, Y.-T.; Chiu, P.-C.; Lin, B.-S.; Chiang, H.-M.; Huang, Y.-H.; Wang, K.-Y.; Lin, H.-Y.; Chang, T.-M.; et al. Prospective Randomized Controlled Trial Comparing Treatment Efficacy and Tolerance of Picosecond Alexandrite Laser with A Diffractive Lens Array and Triple Combination Cream in Female Asian Patients with Melasma. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 624–632. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, J.; Yu, W.; Lyu, D.; Lin, X.; Zhang, Z. A Split-Face, Single-Blinded, Randomized Controlled Comparison of Alexandrite 755-nm Picosecond Laser versus Alexandrite 755-nm Nanosecond Laser in the Treatment of Acquired Bilateral Nevus of Ota-like Macules. J. Am. Acad. Dermatol. 2018, 79, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Shang, S.; Zhang, W.; Tan, A.; Zhou, B.; Mei, X.; Li, L. Comparison of the Efficacy and Safety of Picosecond Nd:YAG Laser (1064 nm), Picosecond Alexandrite Laser (755 nm) and 2% Hydroquinone Cream in the Treatment of Melasma: A Randomized, Controlled, Assessor-Blinded Trial. Front. Med. 2023, 10, 1132823. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Lin, E.-T.; Chang, C.-C.; Lin, B.-S.; Chiang, H.-M.; Huang, Y.-H.; Lin, H.-Y.; Wang, K.-Y.; Chang, T.-M. Efficacy and Safety Evaluation of Picosecond Alexandrite Laser with a Diffractive Lens Array for Treatment of Melasma in Asian Patients by VISIA Imaging System. Photobiomodul. Photomed. Laser Surg. 2019, 37, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Bao, S.; Qian, W.; Zhao, H. 755-nm Alexandrite Picosecond Laser with a Diffractive Lens Array or Zoom Handpiece for Post-Inflammatory Hyperpigmentation: Two Case Reports with a Three-Year Follow-Up. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, L.; Ge, Y.; Lin, T. Comparison of the Efficacy and Safety of a Picosecond Alexandrite Laser and a Q-Switched Alexandrite Laser for the Treatment of Freckles in Chinese Patients. J. Am. Acad. Dermatol. 2018, 79, 1155–1156. [Google Scholar] [CrossRef]
- Alegre-Sanchez, A.; Jiménez-Gómez, N.; Moreno-Arrones, Ó.M.; Fonda-Pascual, P.; Pérez-García, B.; Jaén-Olasolo, P.; Boixeda, P. Treatment of Flat and Elevated Pigmented Disorders with a 755-nm Alexandrite Picosecond Laser: Clinical and Histological Evaluation. Lasers Med. Sci. 2018, 33, 1827–1831. [Google Scholar] [CrossRef]
- Weiss, E.; Streight, K.L.; Rizk, C.B.; Markus, R. Side-by-Side Comparison of a Picosecond 755-nm Alexandrite Laser and a Quality-switched 1064-nm Neodymium-Doped Yttrium Aluminum Garnet Laser in the Treatment of Argyria. Cureus 2019, 11, e5206. [Google Scholar] [CrossRef]
- Jakus, J.; Kailas, A. Picosecond Lasers: A New and Emerging Therapy for Skin of Color, Minocycline-Induced Pigmentation, and Tattoo Removal. J. Clin. Aesthetic Dermatol. 2017, 10, 14–15. [Google Scholar]
- Sasaki, K.; Ohshiro, T.; Ohshiro, T.; Sakio, R.; Fukazawa, E.; Toriumi, M.; Ebihara, T. Type 2 Minocycline-Induced Hyperpigmentation Successfully Treated with the Novel 755 nm Picosecond Alexandrite Laser—A case report. Laser Ther. 2017, 26, 137–144. [Google Scholar] [CrossRef]
- Barrett, T.; de Zwaan, S. Picosecond Alexandrite Laser is Superior to Q-Switched Nd:YAG Laser in Treatment of Minocycline-Induced Hyperpigmentation: A Case Study and Review of the Literature. J. Cosmet. Laser Ther. 2018, 20, 387–390. [Google Scholar] [CrossRef]
- Bonan, P.; Troiano, M.; Bruscino, N.; Verdelli, A. Treatment of Benign Hyperpigmentations and Pigmented Scars by 755 Alexandrite Laser Comparing the Single Pass versus MultiPass (MoveoPL) Emission in Skin Types I–IV. Dermatol. Ther. 2021, 34, e14819. [Google Scholar] [CrossRef] [PubMed]
- Felton, S.J.; Al-Niaimi, F.; Ferguson, J.E.; Madan, V. Our Perspective of the Treatment of Naevus of Ota with 1064-, 755- and 532-nm Wavelength Lasers. Lasers Med. Sci. 2014, 29, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.K.; Ng, E.; Bae, Y.C.; Brauer, J.A.; Geronemus, R.G. Treatment of Pigmentary Disorders in Patients with Skin of Color with a Novel 755 nm Picosecond, Q-Switched Ruby, and Q-Switched Nd:YAG Nanosecond Lasers: A Retrospective Photographic Review. Lasers Surg. Med. 2016, 48, 181–187. [Google Scholar] [CrossRef] [PubMed]
- van Geel, N.; Depaepe, L.; Speeckaert, R. Laser (755 nm) and Cryotherapy as Depigmentation Treatments for Vitiligo: A Comparative Study. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zheng, H.; Ge, Y.; Yang, Y.; Guo, L.; Wu, Q.; Zeng, R.; Shi, H.; Huang, Y.; Zhao, W.; et al. Comparison of the Efficacy and Safety of a 730 nm Picosecond Titanium Sapphire Laser and a 755 nm Picosecond Alexandrite Laser for the Treatment of Freckles in Asian Patients: A Two-Center Randomized, Split-Face, Controlled Trial. Lasers Surg. Med. 2023, 55, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Manuskiatti, W.; Yan, C.; Tantrapornpong, P.; Cembrano, K.A.G.; Techapichetvanich, T.; Wanitphakdeedecha, R. A Prospective, Split-Face, Randomized Study Comparing a 755-nm Picosecond Laser with and Without Diffractive Lens Array in the Treatment of Melasma in Asians. Lasers Surg. Med. 2021, 53, 95–103. [Google Scholar] [CrossRef]
- Ng, J.N.C.; Manuskiatti, W.; Apinuntham, C.; Yan, C. The Efficacy and Safety of a 755-nm Picosecond Laser in the Treatment of Physiologic Lip Hyperpigmentation in Thai Patients. Dermatol. Surg. 2022, 48, 1210–1214. [Google Scholar] [CrossRef]
- Chesnut, C.; Diehl, J.; Lask, G. Treatment of Nevus of Ota with a Picosecond 755-nm Alexandrite Laser. Dermatol. Surg. 2015, 41, 508. [Google Scholar] [CrossRef]
- Huang, C.-H.; Hsieh, F.-S.; Chang, H.-C.; Peng, J.-H.; Peng, H.-L.P. 755 nm Picosecond Laser for Facial Atrophic Scar—Case Reports of Long-Term Clinical Efficacy Following Up. J. Cosmet. Dermatol. 2019, 18, 778–782. [Google Scholar] [CrossRef]
- Fabi, S.G.; Friedmann, D.P.; Niwa Massaki, A.B.; Goldman, M.P. A Randomized, Split-Face Clinical Trial of Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminum Garnet (1064 nm) Laser versus Low-Fluence Q-Switched Alexandrite Laser (755 nm) for the Treatment of Facial Melasma. Lasers Surg. Med. 2014, 46, 531–537. [Google Scholar] [CrossRef]
- Li, Y.; Yao, C.; Zhang, H.; Li, L.; Song, Y. Efficacy and safety of 755-nm Picosecond Alexandrite Laser with Topical Tranexamic Acid versus Laser Monotherapy for Melasma and Facial Rejuvenation: A Multicenter, Randomized, Double-Blinded, Split-Face Study in Chinese Patients. Lasers Med. Sci. 2022, 37, 2879–2887. [Google Scholar] [CrossRef] [PubMed]
- Iwayama, T.; Oka, M.; Fukumoto, T. Treatment of Henna-Induced Riehl’s Melanosis with a 755-nm Picosecond Alexandrite Laser. Lasers Med. Sci. 2020, 35, 1659–1661. [Google Scholar] [CrossRef] [PubMed]
- Kok, W.L.; Chua, S.H. Picosecond 755-nm Alexandrite Lasers Are an Effective Treatment for Imatinib-Induced Hyperpigmentation. Dermatol. Surg. 2019, 45, 616. [Google Scholar] [CrossRef] [PubMed]
- Rivers, J.K.; Zarbafian, M.; Vestvik, B.; Kawamura, S.; Ulmer, M.; Kuritzky, L.A. Minocycline-Induced Hyperpigmentation: Rapid Resolution after 755 nm Alexandrite Picosecond Laser Treatment. J. Cosmet. Laser Ther. 2020, 22, 96–99. [Google Scholar] [CrossRef]
- Alster, T.S.; Gupta, S.N. Minocycline-Induced Hyperpigmentation Treated with a 755-nm Q-Switched Alexandrite Laser. Dermatol. Surg. 2004, 30, 1201. [Google Scholar]
- Pindado-Ortega, C.; Alegre-Sánchez, A.; Robledo-Sánchez, A.; Tormo-Alfaro, I.; Boixeda, P. Treatment of Gingival Pigmentation with a 755-nm Alexandrite Picosecond Laser. J. Cosmet. Laser Ther. 2020, 22, 39–41. [Google Scholar] [CrossRef]
VISIA Variable | n | Median Baseline | Median Endpoint | Median Paired Difference | p-Value |
---|---|---|---|---|---|
Score | 109 | 38.926 | 35.302 | −3.752 | <0.0001 |
Feature count | 506 | 463 | −40 | <0.0001 | |
Comparative figure | 42 | 61 | 11 | <0.0001 |
Variable | Females (n = 103) | Males (n = 6) | p-Value | ||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Score_baseline | 38.56 | 35.63–43.21 | 42.09 | 37.83–47.49 | 0.24 |
Score_endpoint | 35.12 | 31.04–39.70 | 38.63 | 34.73–41.94 | 0.14 |
Score_delta | −3.77 | −6.78–−1.96 | −2.79 | −6.54–−0.39 | 0.41 |
Feature_count_baseline | 503.00 | 343.50–595.50 | 631.00 | 487.00–678.00 | 0.06 |
Feature_count_endpoint | 463.00 | 312.50–554.50 | 547.00 | 441.00–555.00 | 0.22 |
Feature_count_delta | −38.00 | −71.00–15.25 | −58.00 | −98.00–52.00 | 0.08 |
Comparative_figure_baseline | 42.00 | 26.50–59.00 | 45.00 | 39.00–53.00 | 0.99 |
Comparative_figure_endpoint | 61.00 | 42.00–76.75 | 60.00 | 43.00–70.00 | 0.65 |
Comparative_figure_delta | 11.00 | 7.00–21.25 | 12.50 | 2.00–18.00 | 0.67 |
Factor | n | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | p-Value |
---|---|---|---|---|---|---|---|
Score delta | |||||||
I | 26 | −10.6 | −6.07 | −3.805 | −0.9 | −0.02 | 0.16 |
II | 74 | −22.43 | −6.57 | −3.535 | −1.85 | 0.31 | |
III | 9 | −12.1 | −11.14 | −5.81 | −3.855 | −1.59 | |
Feature Count_delta | |||||||
I | 26 | −138 | −99 | −61.5 | −26 | 97 | 0.11 |
II | 74 | −178 | −70 | −37 | −16 | 122 | |
III | 9 | −94 | −76.25 | −34 | −2.75 | 39 | |
Comparative Figure_delta | |||||||
I | 26 | 0 | 8 | 15 | 19 | 37 | 0.47 |
II | 74 | 0 | 7 | 10 | 19 | 68 | |
III | 9 | 5 | 7.5 | 19 | 26.25 | 32 |
Age | ||
---|---|---|
Score_baseline | Correlation coefficient | 0.124 |
p | 0.1994 | |
n | 109 | |
Score_endpoint | Correlation coefficient | 0.155 |
p | 0.1079 | |
n | 109 | |
Score_delta | Correlation coefficient | 0.092 |
p | 0.3415 | |
n | 109 | |
Feature_count_baseline | Correlation coefficient | 0.133 |
p | 0.1689 | |
n | 109 | |
Feature_count_endpoint | Correlation coefficient | 0.092 |
p | 0.3418 | |
n | 109 | |
Feature_count_delta | Correlation coefficient | −0.052 |
p | 0.5939 | |
n | 109 | |
Comparative_figure_baseline | Correlation coefficient | −0.061 |
p | 0.5305 | |
n | 109 | |
Comparative_figure_endpoint | Correlation coefficient | −0.053 |
p | 0.586 | |
n | 109 | |
Comparative_figure_delta | Correlation coefficient | −0.02 |
p | 0.8329 | |
n | 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawodny, P.; Wahidi, N.; Zawodny, P.; Duchnik, E.; Stój, E.; Malec, W.R.; Kulaszyńska, M.; Skonieczna-Żydecka, K.; Sieńko, J. Evaluation of the Efficacy of the 755 nm Picosecond Laser in Eliminating Pigmented Skin Lesions after a Single Treatment Based on Photographic Analysis with Polarised Light. J. Clin. Med. 2024, 13, 304. https://doi.org/10.3390/jcm13020304
Zawodny P, Wahidi N, Zawodny P, Duchnik E, Stój E, Malec WR, Kulaszyńska M, Skonieczna-Żydecka K, Sieńko J. Evaluation of the Efficacy of the 755 nm Picosecond Laser in Eliminating Pigmented Skin Lesions after a Single Treatment Based on Photographic Analysis with Polarised Light. Journal of Clinical Medicine. 2024; 13(2):304. https://doi.org/10.3390/jcm13020304
Chicago/Turabian StyleZawodny, Piotr, Nicole Wahidi, Paweł Zawodny, Ewa Duchnik, Elżbieta Stój, Wiola Rozalia Malec, Monika Kulaszyńska, Karolina Skonieczna-Żydecka, and Jerzy Sieńko. 2024. "Evaluation of the Efficacy of the 755 nm Picosecond Laser in Eliminating Pigmented Skin Lesions after a Single Treatment Based on Photographic Analysis with Polarised Light" Journal of Clinical Medicine 13, no. 2: 304. https://doi.org/10.3390/jcm13020304
APA StyleZawodny, P., Wahidi, N., Zawodny, P., Duchnik, E., Stój, E., Malec, W. R., Kulaszyńska, M., Skonieczna-Żydecka, K., & Sieńko, J. (2024). Evaluation of the Efficacy of the 755 nm Picosecond Laser in Eliminating Pigmented Skin Lesions after a Single Treatment Based on Photographic Analysis with Polarised Light. Journal of Clinical Medicine, 13(2), 304. https://doi.org/10.3390/jcm13020304