Neurocognitive, Clinical and Reelin Activity in Rehabilitation Using Neurofeedback Therapy in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Measures
2.3.1. Neurocognitive Tests
d2 Sustained-Attention Test (d2)
- TN—the total number of letters marked both correctly and incorrectly; the speed of processing score;
- E—raw score of omission and commission errors; the attention carelessness and confusion score;
- E%—percentage of all errors; the overall accuracy score;
- TN-E—the total number of items processed minus all errors; the impact of attention on the combined scores of speeds and accuracy as a perception ability;
- CP—the concentration performance, the number of correctly processed items minus the commission errors;
- FR—the fluctuation rate, which is based on the difference in the correct responses between the rows with the highest and lowest number of correct responses.
Beck Cognitive Insight Scale (BCIS)
Acceptance of Illness Scale (AIS)
General Self-Efficacy Scale (GSES)
Color Trials Test (CTT)
2.3.2. PANSS
2.3.3. Laboratory
2.4. Neurofeedback Therapy
2.5. Statistical Analyses
2.6. Ethical Issues
3. Results
4. Discussion
5. Conclusions
- An intensive, structured neurofeedback therapy as an add-on to ongoing antipsychotic treatment was related to an increase in the reelin serum level (NF group) in contrast to control patients (CON group).
- This study indicates a possible, comprehensive relationship between the effects of neurofeedback add-on therapy with an increase in reelin serum level and an improvement of neurocognitive functions as well as a reduction in negative and general symptoms of PANSS in patients with schizophrenia.
6. Study Limitations
- The number of respondents is a starting point for further, extended research.
- Measurements of reelin levels performed repeatedly during rehabilitation interventions can undoubtedly facilitate the analysis of the reelin level profile and determine its modification and expression. The analysis of the reelin profile may constitute an interesting interpretation from the point of view of neurophysiology.
- The group of subjects (NF/CON) was limited only to men, and this was an intentional assumption to eliminate intersexual hormonal differences and thus differences in possible reactions. Interesting research can be conducted by comparing groups of women with the analyzed group of men.
- When qualifying many patients for the study, additional blinding may be introduced in the NF group under study; in the case of a small group of patients, the introduction of such a procedure could limit the achievement of significant results.
- Demonstrating the positive impact of NF as a method increasing the effect of traditional rehabilitation can be confirmed by other neurotrophic markers such as: BDNF or neuropeptide S. From the point of view of neurophysiology, a comparison of the obtained level of reelin with other markers could confirm various interesting research hypotheses.
- Clearly, further genetic and biochemical studies are needed to determine the specific role of various receptors in the signaling pathway. Perhaps they will confirm preliminary findings that the reelin pathway influences the formation or stabilization of anatomical synapses.
7. Research Implications
- Neurorehabilitation as an integral element of comprehensive psychiatric treatment and should be implemented during the first episode of the disease.
- Rehabilitation interventions carried out by medical workers can improve the level of cognitive and social functioning of sick people.
- Mental health care workers should implement rehabilitation interventions at every level of treatment based on modern neurorehabilitation tools, including biofeedback.
8. Strengths of the Study
- Directing future clinical research toward a multi-aspect approach to neurogenesis.
- Emphasizing the importance of rehabilitation in the comprehensive treatment of schizophrenia.
- Searching for new neurorehabilitation methods (biofeedback) that can be used in people with mental disorders to improve their cognitive and social functioning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCutcheon, R.M.; Tiago Howes, O. Schizophrenia—An Overview. JAMA Psychiatry 2019, 77, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, R.; Markiewicz-Gospodarek, A.; Dobrowolska, B.; Łoza, B. Improving clinical, cognitive, and psychosocial dysfunctions in patients with schizophrenia: A neurofeedback randomized control trial. Nural Plast. 2021, 2021, 4488664. [Google Scholar] [CrossRef] [PubMed]
- Gandara, V.; Pineda, J.; I-Wei, S.; Singh, F. A systematic review of the potential use of neurofeedback in patients with schizophrenia. Schizophr. Bull. Open 2020, 1, sgaa005. [Google Scholar] [CrossRef] [PubMed]
- Bleuler, E. Dementia Praecox or the Group of Schizophrenias; Zinkin, J., Translator; International Universities Press: New York, NY, USA, 1950. [Google Scholar]
- Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M.L.; Rana, M.; Oblak, E.; et al. Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 2017, 18, 86–100. [Google Scholar] [CrossRef]
- Bauer, R.; Fels, M.; Toyter, V.; Gharabaghi, A. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning od brain self-regulation. Clin. Neurophysiol. 2016, 127, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Thibault, R.; Lifshitz, M.; Raz, A. The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex 2016, 74, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, R.; Dobrowolska, B. Cognitive and social rehabilitation in schizophrenia—From neurophysiology to neuromodulation. Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 4034. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Shunsuke, T. Recent findings on neurofeedback training for auditory hallucinations in schizophrenia. Curr. Opin. Psychiatry 2021, 34, 245–252. [Google Scholar] [CrossRef]
- Fiza, S.; I-Wei, S.; Granholm, E.; Pineda, J.A. Revisiting the potential of EEG neurofeedback for patients with schizophrenia. Schizophr. Bull. 2020, 46, 741–742. [Google Scholar] [CrossRef]
- Froster, E.; Bock, H.H.; Herz, J.; Chai, X.; Frotscher, M.; Zhao, S. Emerging topics in Reelin function. Eur. J. Neurosci. 2010, 31, 1511–1518. [Google Scholar] [CrossRef]
- Abdolmaleky, H.M.; Cheng, K.-H.; Russo, A.; Smith, C.L.; Faraone, S.V.; Wilcox, M.; Shafa, R.; Glatt, S.J.; Nguyen, G.; Ponte, J.F.; et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. Am. J. Med. Genet. Part B 2005, 134B, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Lakatosova, S.; Ostnikova, D. Reelin and its complex involvement in brain development and function. Int. J. Biochem. Cell Biol. 2012, 44, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Faini, G.; Del Bene, F.; Albadri, S. Reelin functions beyond neuronal migration: From synaptogenesis to network activity modulation. Curr. Opin. Neurobiol. 2021, 66, 135–143. [Google Scholar] [CrossRef] [PubMed]
- González-Billault, C.; Del Río, J.A.; Ureña, J.M.; Jiménez-Mateos, E.M.; Barallobre, M.J.; Pascual, M.; Pujadas, L.; Simó, S.; La Torre, A.; Gavin, R.; et al. A role of MAP1B in reelin-dependent neuronal migration. Cereb. Cortex 2005, 15, 1134–1145. [Google Scholar] [CrossRef]
- Simó, S.; Pujadas, L.; Segura, M.F.; La Torre, A.; Del Río, J.A.; Ureña, J.M.; Comella, J.X.; Soriano, E. Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erk1/2 activation. Cereb. Cortex 2007, 17, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Simó, S.; Jossin, Y.; Cooper, J.A. Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration. J. Neurosci. 2010, 30, 5668–5676. [Google Scholar] [CrossRef]
- Yasui, N.; Nogi, T.; Takagi, J. Structural basis for specific recognition of Reelin by its receptors. Structure 2010, 18, 320–331. [Google Scholar] [CrossRef]
- Molnár, Z.; Clowry, G.; Šestan, N.; Alzu’bi, A.; Bakken, T.; Hevner, R. New insights into the development of the human cerebral cortex. J. Anat. 2019, 235, 432–451. [Google Scholar] [CrossRef]
- Ovadia, G.; Shifman, S. The genetic variation of RELN expression in schizophrenia and bipolar disorder. PLoS ONE 2011, 6, e19955. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, Y.; Zou, L.; Zhong, R.; Zhu, B.; Shen, N. Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165, 192–200. [Google Scholar] [CrossRef]
- Baek, S.; Copeland, B.; Yun, E.; Kwon, S.; Guemez-Gamboa, A.; Schaffer, A. An AKT3-FOXG1-Reelin network underlies defective migration in human focal malformations of cortical development. Nat. Med. 2015, 21, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Lammert, D.; Howell, B. RELN mutations in autism spectrum disorder. Front. Cell. Neurosci. 2016, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Marrone, M.; Marinelli, S.; Biamonte, F.; Keller, F.; Sgobio, C.; Ammassari-Teule, M. Altered cortico-striatal synaptic plasticity and related behavioral impairments in reeler mice. Eur. J. Neurosci. 2006, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Ammassari-Teule, M.; Sgobio, C.; Biamonte, F.; Marrone, C.; Mercuri, N.; Keller, F. Reelin haploinsufficiency reduces the density of PV+ neurons in circumscribed regions of the striatum and selectively alters striatal-based behaviors. Psychopharmacology 2009, 204, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Folsom, T.; Fatemi, S. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013, 68, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Kron, M.; Masachs, N.; Zhang, H.; Lagace, D.; Martinez, A. Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J. Neurosci. 2012, 32, 12051–12065. [Google Scholar] [CrossRef] [PubMed]
- Bosch, C.; Masachs, N.; Exposito-Alonso, D.; Martínez, A.; Teixeira, C.; Fernaud, I. Reelin regulates the maturation of dendritic spines, synaptogenesis and glial ensheathment of newborn granule cells. Cereb. Cortex 2016, 26, 4282–4298. [Google Scholar] [CrossRef] [PubMed]
- Kempermann, G. The neurogenic reserve hypothesis: What is adult hippocampal neurogenesis good for? Trends Neurosci. 2008, 31, 163–169. [Google Scholar] [CrossRef]
- Pujadas, L.; Gruart, A.; Bosch, C.; Delgado, L.; Teixeira, C.; Rossi, D. Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J. Neurosci. 2010, 30, 4636–4649. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Earle, J.A.; McMenomy, T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder, and major depression. Mol. Psychiatry 2000, 5, 654–663. [Google Scholar] [CrossRef]
- Sánchez-Hidalgo, A.; Martín-Cuevas, C.; Crespo-Facorro, B.; Garrido-Torres, N. Reelin alterations, behavioral phenotypes, and brain anomalies in schizophrenia: A systematic review of insights from rodent models. Front. Neuroanat. 2022, 16, 844737. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, R.; Markiewicz-Gospodarek, A.; Borowski, B.; Trubalski, M.; Łoza, B. Reelin signaling and synaptic plasticity in schizophrenia. Brain Sci. 2023, 13, 1704. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D.; CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomized trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef]
- ICD-10-DCR; International Classification of Mental and Behavioral Disorders. Diagnostic Criteria for Research. WHO: Geneve, Switzerland, 1992; ISBN -13: 9789241544221.
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlabaum Associates: Hilsdale, NJ, USA, 1988; ISBN 0-8058-083-5. [Google Scholar]
- Shifman, S.; Johannesson, M.; Bronstein, M.; Chen, S.X.; Collier, D.A.; Craddock, N.J.; Kendler, K.S.; Li, T.; O’Donovan, M.; O’Neill, F.A.; et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet. 2008, 4, e28. [Google Scholar] [CrossRef]
- Wedenoja, J.; Loukola, A.; Tuulio-Henriksson, A.; Paunio, T.; Ekelund, J.; Silander, K.; Varilo, T.; Heikkilä, K.; Suvisaari, J.; Partonen, T.; et al. Replication of linkage on chromosome 7q22 and association of the regional reelin gene with working memory in schizophrenia families. Mol. Psychiatry 2008, 13, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Walsh-Messinger, J.; Antonius, D.; Opler, M.; Aujero, N.; Goetz, D.M.; Goetz, R.; Malaspina, D. Factor structure of the positive and negative syndrome scale (PANSS) differs by sex. Clin. Schizophr. Relat. Psychoses. 2018, 11, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz-Gospodarek, A.; Markiewicz, R.; Dobrowolska, B.; Maciejewski, R.; Łoza, B. Relationship of neuropeptide S with clinical and metabolic parameters of patients during rehabilitation therapy for schizophrenia. Brain Sci. 2022, 12, 768. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.E.; Lemay, E.P. The d2 Test of attention: Construct validity and extensions in scoring techniques. J. Int. Neuropsychol. Soc. 2004, 10, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Brickenkamp, R. Test d2 Aufmerksamkeits-BelastungsTest, 7th ed.; Verlag u Psychologie (Hogrefe): Gottingen, Germany, 1981. [Google Scholar]
- Steinborn, M.B.; Langner, R.; Flehmig, H.C.; Huestegge, L. Methodology of performance scoring in the d2 sustained-attention test: Cumulative-reliability functions and practical guidelines. Psychol. Assess. 2017, 30, 339–357. [Google Scholar] [CrossRef]
- Beck, A.T.; Baruch, E.; Balter, J.M.; Steer, R.A.; Warman, D.M. A new instrument for measuring insight: The Beck cognitive insight scale. Schizophr. Res. 2004, 68, 319–329. [Google Scholar] [CrossRef]
- Felton, B.J.; Revenson, T.A.; Hinrichsen, G.A. Stress and coping in the explanation of psychological adjustment among chronically ill adults. Soc. Sci. Med. 1984, 18, 889–898. [Google Scholar] [CrossRef]
- Leong, W.C.; Azmi, N.A.; Wee, L.H.; Rajah, H.D.A.; Chan, C.M.H. Validation, and reliability of the Bahasa Malaysia language version of the Acceptance of Illness Scale among Malaysian patients with cancer. PLoS ONE 2021, 16, e0256216. [Google Scholar] [CrossRef]
- Schwarzer, R.; Jerusalem, M. Generalized Self-Efficacy scale. In Measures in Health Psychology: A User’s Portfolio. Causal and Control Beliefs; Weinman, J., Wright, S., Johnston, M., Eds.; NFER-NELSON: Windsor, UK, 1995. [Google Scholar]
- Romppel, M.; Herrmann-Lingen, C.; Wachter, R.; Edelmann, F.; Düngen, H.D.; Pieske, B.; Grande, G. A short form of the General Self-Efficacy Scale (GSE-6): Development, psychometric properties and validity in an intercultural non-clinical sample and a sample of patients at risk for heart failure. Psychosoc. Med. 2013, 10, Doc01. [Google Scholar] [CrossRef]
- D’Elia, L.; Satz, P.; Uchiyama, C.L.; White, T. Color Trails Test; Professional Manual; Psychological Assessment Resources: Odessa, FL, USA, 1996. [Google Scholar]
- Dugbartey, A.T.; Townes, B.D.; Mahurin, R.K. Equivalence of the color trails test and trail making test in nonnative English-speakers. Arch. Clin. Neuropsychol. 2000, 15, 425–431. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Wykes, T.; Reeder, C.; Williams, C.; Corner, J.; Rice, C.; Everitt, B. Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia. Schizophr. Res. 2003, 61, 163–174. [Google Scholar] [CrossRef]
- Joseph, B.; Narayanaswamy, J.C.; Venkatasubramanian, G. Insight in schizophrenia: Relationship to positive, negative, and neurocognitive dimensions. Indian. J. Psychol. Med. 2015, 37, 5–11. [Google Scholar] [CrossRef]
- Ho, N.F.; Tng, J.X.; Wang, M.; Chen, G.; Subbaraju, V.; Shukor, S.; Ng, D.S.; Tan, B.L.; Puang, S.J.; Kho, S.H.; et al. Plasticity of DNA methylation, functional brain connectivity and efficiency in cognitive remediation for schizophrenia. J. Psychiatr. Res. 2020, 126, 122–133. [Google Scholar] [CrossRef]
- Fett, A.K.; Viechtbauer, W.; Penn, D.L.; van Os, J.; Krabbendam, L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 573–588. [Google Scholar] [CrossRef]
- Newman, L. What is social cognition? Four basic approaches and their implications for schizophrenia research. In Social cognition and Schizophrenia; Corrigan, P.W., Penn, D.L., Eds.; American Psychological Association: Washington, DC, USA, 2001; p. 41. [Google Scholar] [CrossRef]
- Eack, S.; Dworakowski, D.; Montrose, D.; Miewald, J.; Gur, R.; Keshavan, M. Social cognition deficits among individuals at familial high risk for schizophrenia. Schizophr. Bull. 2010, 36, 1081–1088. [Google Scholar] [CrossRef]
- Green, M.; Bearden, C.; Cannon, T.; Fiske, A.; Hellemann, G.; Horan, W.; Nuechterlein, K. Social cognition in schizophrenia, Part 1: Performance across phase of illness. Schizophr. Bull. 2012, 38, 854–864. [Google Scholar] [CrossRef]
- Carter, C.; Barch, D. Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: The CNTRICS initiative. Schizophr. Bull. 2007, 33, 1131–1137. [Google Scholar] [CrossRef]
- Savla, G.; Vella, L.; Armstrong, C.; Penn, D.; Twamley, E.W. Deficits in domains of social cognition in schizophrenia: A meta-analysis of the empirical evidence. Schizophr. Bull. 2013, 39, 979–992. [Google Scholar] [CrossRef]
- Keefe, R.; Bilder, R.; Davis, S.; Harvey, P.; Palmer, B.; Gold, J. and the Neurocognitive Working Group. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 2007, 64, 633–647. [Google Scholar] [CrossRef]
- Andreasen, N.C. Concept of schizophrenia: Past, present, and future. In Schizophrenia, 3rd ed.; Weinberger, D.R., Harrison, P.J., Eds.; Blackwell Publishing Ltd.: West Sussex, UK, 2011. [Google Scholar] [CrossRef]
- Just, M.; Cherkassky, V.; Keller, T.; Minshew, N. Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain 2004, 127, 1811–1821. [Google Scholar] [CrossRef]
- Garland, E.; Howard, M. Neuroplasticity, psychosocial genomics, and the biopsychosocial paradigm in the 21st century. Health Soc. Work 2009, 34, 191–199. [Google Scholar] [CrossRef]
- Subramaniam, K.; Luks, T.; Fisher, M.; Simpson, G.; Nagarajan, S.; Vinogradov, S. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron 2012, 73, 842–853. [Google Scholar] [CrossRef]
- Eack, S.; Hogarty, G.; Cho, R.; Prasad, K.; Greenwald, D.; Hogarty, S.; Keshavan, M. Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: Results from a two-year randomized controlled trial. Arch. Gen. Psychiatry 2010, 67, 674–682. [Google Scholar] [CrossRef]
- Eack, S. Cognitive remediation: A new generation of psychosocial interventions for people with schizophrenia. Soc. Work 2012, 57, 235–246. [Google Scholar] [CrossRef]
- Cooper, J. A mechanism for inside-out lamination in the neocortex. Trends Neurosci. 2008, 31, 113–119. [Google Scholar] [CrossRef]
- Bosch, C.; Muhaisen, A.; Pujadas, L.; Soriano, E.; Martinez, A. Reelin exerts structural, biochemical, and transcriptional regulation over presynaptic and postsynaptic elements in the adult hippocampus. Front. Cell. Neurosci. 2016, 10, 138. [Google Scholar] [CrossRef]
- Keshavan, M.; Mehta, U.; Padmanabhan, J.; Shah, J. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev. Psychopathol. 2015, 27, 615–635. [Google Scholar] [CrossRef]
- Weeber, E. Reelin signalling facilitates maturation of CA1 glutamatergic synapses. J. Neurophysiol. 2007, 97, 2312–2321. [Google Scholar] [CrossRef]
- Rogers, J.; Weeber, E. Reelin and apoE actions on signal transduction, synaptic function and memory formation. Neuron Glia Biol. 2008, 4, 259–270. [Google Scholar] [CrossRef]
- Herz, J.; Chen, Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci. 2006, 7, 850–859. [Google Scholar] [CrossRef]
- Krstic, D.; Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 2013, 9, 25–34. [Google Scholar] [CrossRef]
- Knuesel, I. Reelin-mediated signalling in neuropsychiatric and neurodegenerative diseases. Prog. Neurobiol. 2010, 91, 257–274. [Google Scholar] [CrossRef]
- Beffert, U. Functional dissection of reelin signalling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: Distinct roles in development and synaptic plasticity. J. Neurosci. 2006, 26, 2041–2052. [Google Scholar] [CrossRef]
- Dazzo, E.; Fanciulli, M.; Serioli, E.; Minervini, G.; Pulitano, P.; Binelli, S.; Di Bonaventura, C.; Luisi, C.; Pasini, E.; Striano, S. Heterozygous reelin mutations cause autosomal-dominant lateral temporal epilepsy. Am. J. Hum. Genet. 2015, 96, 992–1000. [Google Scholar] [CrossRef]
- Moon, U.; Park, J.; Park, R.; Cho, J.; Hughes, L.; McKenna, J.; Goetzl, L.; Cho, S.H.; Crino, P.B.; Gambello, M.J. Impaired Reelin-Dab1 signalling contributes to neuronal migration deficits of tuberous sclerosis complex. Cell Rep. 2015, 12, 965–978. [Google Scholar] [CrossRef]
- Impagnatiello, F.; Guidotti, A.; Pesold, C.; Dwivedi, Y.; Caruncho, H.; Pisu, M. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. USA 1998, 95, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Eack, S.M.; Newhill, C.E.; Keshavan, M.S. Cognitive enhancement therapy improves resting-state functional connectivity in early course schizophrenia. J. Soc. Soc. Work Res. 2016, 7, 211–230. [Google Scholar] [CrossRef] [PubMed]
- Marimoto, T.; Matsuda, Y.; Matsuoka, K.; Yasuno, F.; Ikebuchi, E.; Kameda, H.; Taoka, T.; Miyasaka, T.; Kichikawa, K.; Kishimoto, T. Computer- assisted cognitive remediation therapy increases hippocampal volume in patients with schizophrenia: A randomized controlled trial. BMC Psychiatry 2018, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, I.; MacDonald, A. Brain correlates of cognitive remediation in schizophrenia: Activation likelihood analysis shows preliminary evidence of neural target engagement. Schizophr. Bull. 2015, 41, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Wykes, T.; Huddy, V.; Cellard, C.; McGurk, S.; Czobor, P. A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. Am. J. Psychiatry 2011, 168, 472–485. [Google Scholar] [CrossRef]
- Penadé, R.; González-Rodríguez, A.; Catalán, R.; Segura, B.; Bernardo, M.; Junqué, C. Neuroimaging studies of cognitive remediation in schizophrenia: A systematic and critical review. World J. Psychiatry 2017, 7, 34–43. [Google Scholar] [CrossRef]
Variable | NF | CON | NF vs. CON | |||
---|---|---|---|---|---|---|
M | SD | M | SD | U | p | |
d2-TN | 309.89 | 80.65 | 335.16 | 50.25 | 143.00 | 0.403 |
d2-E | 77.50 | 47.99 | 94.79 | 44.84 | 132.50 | 0.248 |
d2-E% | 24.87 | 14.94 | 29.06 | 14.48 | 138.00 | 0.323 |
d2-TN-E | 232.39 | 71.98 | 240.37 | 70.27 | 165.50 | 0.879 |
d2-CP | 102.11 | 42.86 | 125.47 | 28.58 | 121.00 | 0.133 |
d2-FR | 13.61 | 6.03 | 15.74 | 9.01 | 151.50 | 0.564 |
BCIS-REF | 22.33 | 4.72 | 22.95 | 5.30 | 162.50 | 0.808 |
BCIS-CER | 14.33 | 2.52 | 16.47 | 3.82 | 117.50 | 0.107 |
BCIS-INDEX | 8.00 | 4.04 | 6.47 | 4.86 | 140.50 | 0.362 |
AIS-Total | 23.33 | 7.85 | 27.16 | 8.15 | 125.00 | 0.172 |
CTT-1 | 61.67 | 32.24 | 56.11 | 26.10 | 157.50 | 0.693 |
CTT-2 | 124.11 | 54.14 | 117.37 | 55.28 | 155.50 | 0.649 |
CTT-II | 1.16 | 0.75 | 1.13 | 0.61 | 167.50 | 0.927 |
GSES-Total | 28.78 | 4.80 | 32.21 | 6.39 | 113.00 | 0.081 |
PANSS Positive | 19.11 | 3.51 | 19.90 | 4.64 | 162.00 | 0.796 |
PANSS Negative | 14.56 | 3.26 | 15.16 | 3.70 | 154.00 | 0.616 |
PANSS General | 25.39 | 3.71 | 27.53 | 10.37 | 164.50 | 0.855 |
PANSS Total | 49.50 | 7.79 | 52.63 | 15.05 | 155.00 | 0.638 |
Age of first hospitalization (years) | 26.06 | 28.90 | 4.21 | 6.82 | 126.00 | 0.176 |
Hospitalizations | 5.78 | 3.67 | 4.95 | 2.68 | 157.00 | 0.682 |
Education (ISCED grades) | 2.67 | 1.03 | 2.90 | 0.99 | 151.00 | 0.554 |
Antipsychotics in milligrams (equivalents of olanzapine) | 16.44 | 4.88 | 18.47 | 6.13 | 134.50 | 0.274 |
Reelin (pg/mL) | 4.40 | 2.24 | 3.75 | 1.62 | 144.00 | 0.421 |
BMI (kg/m2) | 28.78 | 3.28 | 27.28 | 3.21 | 118.00 | 0.111 |
Age (years) | 36.61 | 6.45 | 37.84 | 10.36 | 162.50 | 0.808 |
Test | Subtest | CON | NF | U | p | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
d2 | TN | 364.79 | 70.40 | 320.28 | 79.18 | 119.50 | 0.121 |
E | 102.90 | 29.76 | 63.44 | 33.10 | 68.50 | 0.002 | |
E% | 29.45 | 11.35 | 20.22 | 10.32 | 94.00 | 0.020 | |
TN-E | 261.90 | 75.18 | 256.83 | 75.49 | 155.50 | 0.649 | |
CP | 149.47 | 78.74 | 103.33 | 45.45 | 101.50 | 0.036 | |
FR | 15.63 | 10.29 | 12.28 | 2.80 | 160.00 | 0.750 | |
CTT | CTT-1 | 53.46 | 0.88 | 54.17 | 28.98 | 162.50 | 0.808 |
CTT-2 | 104.77 | 44.72 | 113.44 | 42.23 | 140.50 | 0.362 | |
CTT-II | 1.10 | 0.56 | 1.37 | 0.82 | 147.50 | 0.485 | |
BCIS | BCIS-REF | 22.37 | 5.89 | 25.72 | 3.14 | 101.00 | 0.035 |
BCIS-CER | 17.90 | 4.05 | 13.50 | 2.31 | 62.50 | 0.001 | |
BCIS-INDEX | 4.47 | 6.05 | 12.22 | 3.17 | 46.00 | 0.000 | |
AIS | Total | 28.37 | 7.85 | 28.56 | 7.15 | 164.50 | 0.855 |
GSES | Total | 32.42 | 6.29 | 29.89 | 4.52 | 121.50 | 0.137 |
Reelin (pg/mL) | 3.08 | 1.44 | 5.74 | 2.64 | 64.00 | 0.001 | |
PANSS | Total | 56.68 | 16.41 | 42.67 | 8,47 | 65.50 | 0.001 |
Positive | 9.58 | 2.73 | 8.33 | 1.82 | 121.50 | 0.137 | |
Negative | 17.47 | 4.53 | 12.11 | 3.66 | 61.50 | 0.001 | |
General | 29.63 | 10.82 | 22.22 | 3.78 | 65.50 | 0.001 |
Wilks’ Test | F | df | Error | p | ||
---|---|---|---|---|---|---|
Reelin | pg/mL | 0.636 | 3.046 | 6 | 72 | 0.010 |
PANSS | Positive | 0.667 | 2.800 | 6 | 72 | 0.017 |
Negative | 0.254 | 11.790 | 6 | 72 | 0.000 | |
General | 0.326 | 9.020 | 6 | 72 | 0.000 | |
Total | 0.242 | 12.375 | 6 | 72 | 0.000 | |
CTT | CTT-1 | 0.941 | 0.368 | 6 | 72 | 0.897 |
CTT-2 | 0.940 | 0.382 | 6 | 72 | 0.889 | |
CTT-II | 0.939 | 0.385 | 6 | 72 | 0.887 | |
d2 | TN | 0.726 | 2.088 | 6 | 72 | 0.065 |
E | 0.630 | 3.119 | 6 | 72 | 0.009 | |
E% | 0.585 | 3.695 | 6 | 72 | 0.003 | |
TN-E | 0.859 | 0.951 | 6 | 72 | 0.465 | |
CP | 0.572 | 3.865 | 6 | 72 | 0.002 | |
FR | 0.915 | 0.546 | 6 | 72 | 0.772 | |
BCIS | REF | 0.609 | 3.378 | 6 | 72 | 0.005 |
CER | 0.581 | 3.749 | 6 | 72 | 0.003 | |
INDEX | 0.548 | 4.210 | 6 | 72 | 0.001 | |
AIS | Total | 0.765 | 1.721 | 6 | 72 | 0.128 |
GSES | Total | 0.693 | 2.419 | 6 | 72 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markiewicz, R.; Markiewicz-Gospodarek, A.; Trubalski, M.; Łoza, B. Neurocognitive, Clinical and Reelin Activity in Rehabilitation Using Neurofeedback Therapy in Patients with Schizophrenia. J. Clin. Med. 2024, 13, 4035. https://doi.org/10.3390/jcm13144035
Markiewicz R, Markiewicz-Gospodarek A, Trubalski M, Łoza B. Neurocognitive, Clinical and Reelin Activity in Rehabilitation Using Neurofeedback Therapy in Patients with Schizophrenia. Journal of Clinical Medicine. 2024; 13(14):4035. https://doi.org/10.3390/jcm13144035
Chicago/Turabian StyleMarkiewicz, Renata, Agnieszka Markiewicz-Gospodarek, Mateusz Trubalski, and Bartosz Łoza. 2024. "Neurocognitive, Clinical and Reelin Activity in Rehabilitation Using Neurofeedback Therapy in Patients with Schizophrenia" Journal of Clinical Medicine 13, no. 14: 4035. https://doi.org/10.3390/jcm13144035
APA StyleMarkiewicz, R., Markiewicz-Gospodarek, A., Trubalski, M., & Łoza, B. (2024). Neurocognitive, Clinical and Reelin Activity in Rehabilitation Using Neurofeedback Therapy in Patients with Schizophrenia. Journal of Clinical Medicine, 13(14), 4035. https://doi.org/10.3390/jcm13144035