Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation
Abstract
1. Introduction
2. Role of BAP1 in Clear Cell Renal Cell Carcinoma
3. Material and Methods
3.1. Search Strategy
3.2. Data Extraction
4. Discussion
5. Advantages of Radiogenomics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piva, F.; Santoni, M.; Matrana, M.R.; Satti, S.; Giulietti, M.; Occhipinti, G.; Massari, F.; Cheng, L.; Lopez-Beltran, A.; Scarpelli, M.; et al. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: Molecular diagnostics and possible targets for personalized therapies. Expert Rev. Mol. Diagn. 2015, 15, 1201–1210. [Google Scholar] [CrossRef]
- Alessandrino, F.; Shinagare, A.B.; Bossé, D.; Choueiri, T.K.; Krajewski, K.M. Radiogenomics in renal cell carcinoma. Abdom. Radiol. 2019, 44, 1990–1998. [Google Scholar] [CrossRef]
- Greco, F.; D’Andrea, V.; Beomonte Zobel, B.; Mallio, C.A. Radiogenomics and Texture Analysis to Detect von Hippel-Lindau (VHL) Mutation in Clear Cell Renal Cell Carcinoma. Curr. Issues Mol. Biol. 2024, 46, 3236–3250. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, J.H.; Kim, H.S.; Zang, D.Y. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: A meta-analysis and review. Oncotarget 2017, 8, 13979–13985. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Durmaz, E.S.; Kaya, O.K.; Kilickesmez, O. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol. 2020, 61, 856–864. [Google Scholar] [CrossRef]
- Peña-Llopis, S.; Vega-Rubín-de-Celis, S.; Liao, A.; Leng, N.; Pavía-Jiménez, A.; Wang, S.; Yamasaki, T.; Zhrebker, L.; Sivanand, S.; Spence, P. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 2012, 44, 751–759. [Google Scholar] [CrossRef]
- Greco, F.; Panunzio, A.; Tafuri, A.; Bernetti, C.; Pagliarulo, V.; Beomonte Zobel, B.; Scardapane, A.; Mallio, C.A. CT-Based Radiogenomics of P4HA3 Expression in Clear Cell Renal Cell Carcinoma. Acad. Radiol. 2024, 31, 902–908. [Google Scholar] [CrossRef]
- Greco, F.; Panunzio, A.; Bernetti, C.; Tafuri, A.; Beomonte Zobel, B.; Mallio, C.A. Exploring the ADAM12 Expression in Clear Cell Renal Cell Carcinoma: A Radiogenomic Analysis on CT Imaging. Acad. Radiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Greco, F.; Panunzio, A.; Tafuri, A.; Bernetti, C.; Pagliarulo, V.; Beomonte Zobel, B.; Scardapane, A.; Mallio, C.A. Radiogenomic Features of GIMAP Family Genes in Clear Cell Renal Cell Carcinoma: An Observational Study on CT Images. Genes 2023, 14, 1832. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Krajewski, K.M.; Shinagare, A.B. Novel imaging in renal cell carcinoma. Curr. Opin. Urol. 2016, 26, 388–395. [Google Scholar] [CrossRef]
- Gulati, S.; Previtera, M.; Lara, P.N., Jr. BRCA1-Associated Protein 1 (BAP-1) as a Prognostic and Predictive Biomarker in Clear Cell Renal Cell Carcinoma: A Systematic Review. Kidney Cancer 2022, 6, 23–35. [Google Scholar] [CrossRef]
- Kapur, P.; Rajaram, S.; Brugarolas, J. The expanding role of BAP1 in clear cell renal cell carcinoma. Hum. Pathol. 2023, 133, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Okino, Y.; Machida, Y.; Frankland-Searby, S.; Machida, Y.J. BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. J. Biol. Chem. 2015, 290, 1580–1591. [Google Scholar] [CrossRef]
- Daou, S.; Hammond-Martel, I.; Mashtalir, N.; Barbour, H.; Gagnon, J.; Iannantuono, N.V.G.; Nkwe, N.S.; Motorina, A.; Pak, H.; Yu, H.; et al. The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. J. Biol. Chem. 2015, 290, 28643–28663. [Google Scholar] [CrossRef]
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.O.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010, 330, 1410–1413. [Google Scholar] [CrossRef]
- Su, D.; Singer, E.A.; Srinivasan, R. Molecular pathways in renal cell carcinoma: Recent advances in genetics and molecular biology. Curr. Opin. Oncol. 2015, 27, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Gallan, A.J.; Parilla, M.; Segal, J.; Ritterhouse, L.; Antic, T. BAP1-Mutated Clear Cell Renal Cell Carcinoma. Am. J. Clin. Pathol. 2021, 155, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Karlo, C.A.; Di Paolo, P.L.; Chaim, J.; Hakimi, A.A.; Ostrovnaya, I.; Russo, P.; Hricak, H.; Motzer, R.; Hsieh, J.J.; Akin, O. Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and mutations. Radiology 2014, 270, 464–471. [Google Scholar] [CrossRef]
- Shinagare, A.B.; Vikram, R.; Jaffe, C.; Akin, O.; Kirby, J.; Huang, E.; Freymann, J.; Sainani, N.I.; Sadow, C.A.; Bathala, T.K. Radiogenomics of clear cell renal cell carcinoma: Preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA-RCC) Imaging Research Group. Abdom. Imaging 2015, 40, 1684–1692. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhu, J.M.; Lin, B.H.; Qiu, Q.R.S.; Ruan, Z.T.; Wei, Y.; Xue, X.Y.; Zheng, Q.S.; Chen, S.H.; Xu, N. Semantic Computed Tomography Features for Predicting BRCA1-associated Protein 1 and/or Tumor Protein p53 Gene Mutation Status in Clear Cell Renal Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 116, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, Z.; Hannan, R.; Thomas, K.; Pedrosa, I.; Kapur, P.; Brugarolas, J.; Mou, X.; Wang, J. Reliable gene mutation prediction in clear cell renal cell carcinoma through multi-classifier multi-objective radiogenomics model. Phys. Med. Biol. 2018, 63, 215008. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, L.; Qi, Z.; Shen, Q.; Hu, Z.; Chen, F. Identifying BAP1 Mutations in Clear-Cell Renal Cell Carcinoma by CT Radiomics: Preliminary Findings. Front. Oncol. 2020, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Tamboli, P.; Vikram, R.; Rao, A. Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features. J. Med. Imaging 2015, 2, 041009. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Chen, L.; Wang, M.; Luo, Y.; Huang, Y.; Ma, X. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Aging 2021, 13, 9960–9975. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front. Oncol. 2020, 10, 570465. [Google Scholar] [CrossRef] [PubMed]
- Akin, O.; Elnajjar, P.; Heller, M.; Jarosz, R.; Erickson, B.J.; Kirk, S.; Lee, Y.; Linehan, M.W.; Gautam, R.; Vikram, R.; et al. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma Collection (TCGA-KIRC). 2016. Available online: https://www.cancerimagingarchive.net/collection/tcga-kirc/ (accessed on 15 March 2024).
- Hakimi, A.A.; Chen, Y.B.; Wren, J.; Gonen, M.; Abdel-Wahab, O.; Heguy, A.; Liu, H.; Takeda, S.; Tickoo, S.K.; Reuter, V.E.; et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 2013, 63, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Kapur, P.; Peña-Llopis, S.; Christie, A.; Zhrebker, L.; Pavía-Jiménez, A.; Rathmell, W.K.; Xie, X.J.; Brugarolas, J. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: A retrospective analysis with independent validation. Lancet Oncol. 2013, 14, 159–617. [Google Scholar] [CrossRef] [PubMed]
- Cen, D.; Xu, L.; Zhang, S.; Chen, Z.; Huang, Y.; Li, Z.; Liang, B. Renal cell carcinoma: Predicting RUNX3 methylation level and its consequences on survival with CT features. Eur. Radiol. 2019, 29, 5415–5422. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892, Erratum in N. Engl. J. Med. 2012, 367, 976. [Google Scholar] [CrossRef]
- Bakouny, Z.; Braun, D.A.; Shukla, S.A.; Pan, W.; Gao, X.; Hou, Y.; Flaifel, A.; Tang, S.; Bosma-Moody, A.; He, M.X.; et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat. Commun. 2021, 12, 808. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Type of Study: Patient (n) | Imaging Technique | Genes | Outcomes Related with Bap Mutation | With/without Texture Analysis |
---|---|---|---|---|---|
Karlo et al., 2014 [19] | Retrospective: 233 | CT | VHL, BAP1, KD5MC | Mutations of KDM5C and BAP1 were significantly associated with evidence of renal vein invasion (p = 0.022 and 0.046, respectively). The genotype of solid ccRCC differed significantly from the one of multicystic ccRCC. While mutations of SETD2, KDM5C, and BAP1 were absent in multicystic ccRCC, mutations of VHL (p = 0.016) and PBRM1 (p = 0.017) were significantly more common among solid ccRCC. | Without |
Shinagare et al., 2015 [20] | Retrospective: 103 | CT/MR | VHL, BAP1, PBRM1, SETD2, KDM5C, and MUC4 | BAP1 mutation was associated with ill-defined tumor margins and presence of calcification (p = 0.02 and 0.002, respectively, Pearson’s χ2 test); MUC4 mutation was associated with exophytic growth (p = 0.002, Mann–Whitney U test). | Without |
Wu et al., 2022 [21] | Retrospective: 156 patients | CT | BAP1, TP53 | Kaplan–Meier analysis revealed a significant correlation between BAP1 and/or TP53 mutation and poorer survival outcomes. Multivariate binary logistic regression analysis identified ill-defined margin (p = 0.001), spiculated margin (p = 0.018), renal vein invasion (p = 0.002), and renal pelvis invasion (p = 0.001) as independent predictors of BAP1 and/or TP53 mutation. A nomogram containing these 4 semantic CT features was constructed; the area under the receiver operating characteristic curves was 0.872 (95% CI, 0.809–0.920). BAP1 and/or TP53 mutation were significantly associated with advanced American Joint Committee on cancer stage (stage III–IV, p = 0.002), a higher (WHO/ISUP) grade (G3-4, p = 0.032), and higher T stage (T3-4, p = 0.03). | Without |
Kocak et al. [5] | Retrospective: 65 patients (13 with and 52 without BAP1 mutation). | Unenhanced CT | BAP1 | No statistically difference for tumor size p = 0.517 and CT attuenation p = 0.838 between ccRCCs with and without BAP1 mutation. The RF classifier accurately categorized 84.6% of the ccRCCs based on BAP1 mutation status, achieving an AUC value of 0.897. The weighted average sensitivity, specificity, and precision stood at 84.6%, 84.6%, and 85.1%, respectively. In predicting ccRCCs with BAP1 mutation, the sensitivity, specificity, and precision were 90.4%, 78.8%, and 81%, respectively. | With: CT acqusition parameters: slice thickness, kV, mAs, pixel size. Texture feature extracted by PyRadiomics software (Python 2.7.13; PyRadiomics 2.0.1; Numpy 1.13.1; SimpleITK 1.1.0; PyWavelet 0.5.2). Mann–Whitney U test was used for comparison of tumor size and CT attenuation. Feature selection was performed using WEKA toolkit version 3.8.2. RF was used for model development. |
Chen et al., 2018 [22] | Retrospective: 57 | CT | VHL, PBRM1, BAP1 | Using the proposed MCMO model, they achieved a predictive area under the receiver operating characteristic curve (AUC) over 0.85 for VHL, PBRM1, and BAP1 (AUC = 0.955) genes with balanced sensitivity and specificity. | With: They proposed a MCMO radiogenomics predictive model. |
Feng et al., 2020 [23] | Retrospective: 54 patients | CT | BAP1 | The results indicate that the RF-based predictive model demonstrated an accuracy of 0.83 [95% CI: 0.76–0.88], a sensitivity of 0.72 (95% CI: 0.65–0.79), a specificity of 0.87 (95% CI: 0.82–0.93), a precision of 0.65 (95% CI: 0.58–0.74), an AUC of 0.77 (95% CI: 0.70–0.83), an F-score of 0.68 (95% CI: 0.61–0.76), and an MCC of 0.58 (95% CI: 0.50–0.66). | With: texture features extracted with Matlab-based IBEX package. They used SMOTE to analyze and stimulate data and LOCCV for cross validation. |
Ghosh et al., 2015 [24] | Retrospective: 78 patients | CT | BAP1 | The subset of 4037 nephrographic features yielded the most favorable adjusted p values, indicating their significant predictive ability for BAP1 mutation status. No significant features with adjusted p-values ≤ 0.1 were identified from other phases of renal CT scans. The RF classifier, trained to forecast gene mutation status from 3-D texture features, achieved AUC values of 0.66 (nc), 0.62 (cm), 0.71 (neph), and 0.52 (ex), respectively, for BAP1 mutation. | With: molecular data regarding gene mutation status were sourced from the cBioPortal. The correlation between image features and gene mutation status was evaluated utilizing the Mann–Whitney–Wilcoxon rank-sum test. Additionally, the random forests classifier in the Waikato Environment for Knowledge Analysis (WEKA) software was employed to evaluate the predictive capability of computationally derived image features in distinguishing cases with BAP1 mutations for ccRCC. |
Zeng et al., 2021 [25] | Retrospective: 207 | CT | VHL, BAP1, PBRM1, SETD2, molecular subtypes (m1–m4) | They evaluated the potential value of CT radiomics features in classifying mutations and molecular subtypes of ccRCC, with the use of multiple machine learning algorithms. Leveraging radiomics features, the random forest algorithm exhibited strong capability in detecting mutations in VHL (AUC = 0.971), BAP1 (AUC = 0.955), PBRM1 (AUC = 0.972), and SETD2 (AUC = 0.949), as well as molecular subtypes m1 (AUC = 0.973), m2 (AUC = 0.968), m3 (AUC = 0.961), and m4 (AUC = 0.953). | With: they employed 4 algorithms (GBDT, LASSO, RF, XGBoost) for feature selection and 8 algorithms (RF, GBDT, AdaBoost, LR, DT, SVM, NB, KNN) as classifiers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, F.; D’Andrea, V.; Buoso, A.; Cea, L.; Bernetti, C.; Beomonte Zobel, B.; Mallio, C.A. Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation. J. Clin. Med. 2024, 13, 3960. https://doi.org/10.3390/jcm13133960
Greco F, D’Andrea V, Buoso A, Cea L, Bernetti C, Beomonte Zobel B, Mallio CA. Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation. Journal of Clinical Medicine. 2024; 13(13):3960. https://doi.org/10.3390/jcm13133960
Chicago/Turabian StyleGreco, Federico, Valerio D’Andrea, Andrea Buoso, Laura Cea, Caterina Bernetti, Bruno Beomonte Zobel, and Carlo Augusto Mallio. 2024. "Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation" Journal of Clinical Medicine 13, no. 13: 3960. https://doi.org/10.3390/jcm13133960
APA StyleGreco, F., D’Andrea, V., Buoso, A., Cea, L., Bernetti, C., Beomonte Zobel, B., & Mallio, C. A. (2024). Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation. Journal of Clinical Medicine, 13(13), 3960. https://doi.org/10.3390/jcm13133960