A New Assessment of Two Transferase-Based Liver Enzymes in Low- and High-Fibrosis Patients Chronically Infected with Hepatitis B Virus: A Meta-Analysis and Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. The Search Process
2.2. Article Selection
2.3. The Data Extraction Process and Quality Check
2.4. Patient Selection for the Pilot Study
2.5. Statistics
3. Results
3.1. Article Selection Diagram
3.2. The Characteristics of the Selected Articles
3.3. Results from the Meta-Analysis
3.4. The Pilot Study Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Sounds Alarm on Viral Hepatitis Infections Claiming 3500 Lives Each Day. Available online: https://www.who.int/news/item/09-04-2024-who-sounds-alarm-on-viral-hepatitis-infections-claiming-3500-lives-each-day (accessed on 27 May 2024).
- Consolidated Guidelines on Person-Centred Viral Hepatitis Strategic Information. Available online: https://www.who.int/publications/i/item/9789240091313 (accessed on 27 May 2024).
- Lai, J.C.-T.; Liang, L.Y.; Wong, G.L.-H. Noninvasive tests for liver fibrosis in 2024: Are there different scales for different diseases? Gastroenterol. Rep. 2024, 12, goae024. [Google Scholar] [CrossRef]
- Bera, C.; Hamdan-Perez, N.; Patel, K. Non-Invasive Assessment of Liver Fibrosis in Hepatitis B Patients. J. Clin. Med. 2024, 13, 1046. [Google Scholar] [CrossRef]
- Crossan, C.; Tsochatzis, E.A.; Longworth, L.; Gurusamy, K.; Papastergiou, V.; Thalassinos, E.; Mantzoukis, K.; Rodriguez-Peralvarez, M.; O’Brien, J.; Noel-Storr, A.; et al. Cost-effectiveness of noninvasive liver fibrosis tests for treatment decisions in patients with chronic hepatitis B in the UK: Systematic review and economic evaluation. J. Viral Hepat. 2016, 23, 139–149. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Li, N.; Fan, X.; Li, C.; Zhang, P.; Han, Q.; Liu, Z. A noninvasive score to predict liver fibrosis in HBeAg-positive hepatitis B patients with normal or minimally elevated alanine aminotransferase levels. Dis. Markers 2018, 2018, 3924732. [Google Scholar] [CrossRef]
- Chen, S.; Huang, H.; Huang, W. A noninvasive model to predict liver histology for antiviral therapy decision in chronic hepatitis B with alanine aminotransferase < 2 upper limit of normal. BMC Gastroenterol. 2021, 21, 4. [Google Scholar] [CrossRef]
- Seto, W.-K.; Lee, C.-F.; Lai, C.-L.; Ip, P.P.C.; Fong, Y.-T.; Fung, J.; Wong, K.-H.; Yuen, M.-F. A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B. PLoS ONE 2011, 6, e23077. [Google Scholar] [CrossRef]
- Kang, N.-L.; Ruan, Q.-F.; Zhang, D.-S.; Yu, X.-P.; Hu, Z.-T.; Lin, Z.-M.; Wu, L.-Y.; Lin, M.-X.; Huang, Z.-X.; Jiang, J.-J.; et al. Advantages of a Novel Model for Predicting Hepatic Fibrosis in Chronic Hepatitis B Virus Carriers Compared with APRI and FIB-4 Scores. J. Clin. Transl. Hepatol. 2022, 10, 412–419. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, J.; Zhou, W.; Jie, Y.; Li, Z.; Chong, Y.; Hu, B. A Novel Prediction Model for Significant Liver Fibrosis in Patients with Chronic Hepatitis B. BioMed Res. Int. 2020, 2020, 6839137. [Google Scholar] [CrossRef]
- Calès, P.; Oberti, F.; Michalak, S.; Hubert-Fouchard, I.; Rousselet, M.-C.; Konaté, A.; Gallois, Y.; Ternisien, C.; Chevallier, A.; Lunel, F. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005, 42, 1373–1381. [Google Scholar] [CrossRef]
- Nyarko, E.N.Y.; Obirikorang, C.; Owiredu, W.K.B.A.; Adu, E.A.; Acheampong, E. Assessment of the performance of haematological and non-invasive fibrotic indices for the monitoring of chronic HBV infection: A pilot study in a Ghanaian population. BMC Res. Notes 2023, 16, 312. [Google Scholar] [CrossRef]
- Ding, R.; Lu, W.; Zhou, X.; Huang, D.; Wang, Y.; Li, X.; Li, Y.; Lin, W.; Song, S.; Zhang, Z.; et al. A Novel Non-invasive Model Based on GPR for the Prediction of Liver Fibrosis in Patients With Chronic Hepatitis B. Front. Med. 2021, 8, 727706. [Google Scholar] [CrossRef]
- Wang, R.-Q.; Zhang, Q.-S.; Zhao, S.-X.; Niu, X.-M.; Du, J.-H.; Du, H.-J.; Nan, Y.-M. Gamma-glutamyl transpeptidase to platelet ratio index is a good noninvasive biomarker for predicting liver fibrosis in Chinese chronic hepatitis B patients. J. Int. Med. Res. 2016, 44, 1302–1313. [Google Scholar] [CrossRef]
- Sanai, F.M.; Farah, T.; Albeladi, K.; Batwa, F.; Dahlan, Y.; Babatin, M.A.; Al-Ashgar, H.; AlMana, H.; Alsaad, K.S.; AlSwat, K.; et al. Diminished accuracy of biomarkers of fibrosis in low replicative chronic hepatitis B. BMC Gastroenterol. 2017, 17, 101. [Google Scholar] [CrossRef]
- Huang, R.; Wang, G.; Tian, C.; Liu, Y.; Jia, B.; Wang, J.; Yang, Y.; Li, Y.; Sun, Z.; Yan, X.; et al. Gamma-glutamyl-Transpeptidase to platelet ratio is not superior to APRI,FIB-4 and RPR for diagnosing liver fibrosis in CHB patients in China. Sci. Rep. 2017, 7, 8543. [Google Scholar] [CrossRef]
- Mbaye, P.S.; Sarr, A.; Sire, J.-M.; Evra, M.-L.; Ba, A.; Daveiga, J.; Diallo, A.; Fall, F.; Chartier, L.; Simon, F.; et al. Liver stiffness measurement and biochemical markers in senegalese chronic hepatitis B patients with normal ALT and high viral load. PLoS ONE 2011, 6, e22291. [Google Scholar] [CrossRef]
- Kalas, M.A.; Chavez, L.; Leon, M.; Taweesedt, P.T.; Surani, S. Abnormal liver enzymes: A review for clinicians. World J. Hepatol. 2021, 13, 1688. [Google Scholar] [CrossRef]
- Wei, S.; Xie, Q.; Liao, G.; Chen, H.; Hu, M.; Lin, X.; Li, H.; Peng, J. Patients with chronic hepatitis B who have persistently normal alanine aminotransferase or aged < 30 years may exhibit significant histologic damage. BMC Gastroenterol. 2024, 24, 120. [Google Scholar] [CrossRef]
- Lv, H.; Jiang, Y.; Zhu, G.; Liu, S.; Wang, D.; Wang, J.; Zhao, K.; Liu, J. Liver fibrosis is closely related to metabolic factors in metabolic associated fatty liver disease with hepatitis B virus infection. Sci. Rep. 2023, 13, 1388. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Clark, J.; Glasziou, P.; Del Mar, C.; Bannach-Brown, A.; Stehlik, P.; Scott, A.M. A full systematic review was completed in 2 weeks using automation tools: A case study. J. Clin. Epidemiol. 2020, 121, 81–90. [Google Scholar] [CrossRef]
- ZOTERO. Available online: http://www.zotero.org (accessed on 14 February 2023).
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Campbell, J.M.; Klugar, M.; Ding, S.; Carmody, D.P.; Hakonsen, S.J.; Jadotte, Y.T.; White, S.; Munn, Z. Diagnostic test accuracy: Methods for systematic review and meta-analysis. Int. J. Evid. Based Healthc. 2015, 13, 154–162. [Google Scholar] [CrossRef]
- Patel, K.; Wilder, J. Fibroscan. Clin. Liver Dis. 2014, 4, 97–101. [Google Scholar] [CrossRef]
- Osman, A.M.; El Shimy, A.; Abd El Aziz, M.M. 2D shear wave elastography (SWE) performance versus vibration-controlled transient elastography (VCTE/fibroscan) in the assessment of liver stiffness in chronic hepatitis. Insights Imaging 2020, 11, 38. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 23 March 2023).
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Cheng, D.; Wan, G.; Sun, L.; Wang, X.; Ou, W.; Xing, H. A Novel Diagnostic Nomogram for Noninvasive Evaluating Liver Fibrosis in Patients with Chronic Hepatitis B Virus Infection. BioMed Res. Int. 2020, 2020, 5218930. [Google Scholar] [CrossRef]
- Zeng, D.-W.; Huang, Z.-X.; Lin, M.-X.; Kang, N.-L.; Lin, X.; Li, Y.-N.; Zhu, Y.-Y.; Liu, Y.-R. A novel HBsAg-based model for predicting significant liver fibrosis among Chinese patients with immune-tolerant phase chronic hepatitis B: A multicenter retrospective study. Ther. Adv. Gastroenterol. 2021, 14, 17562848211010675. [Google Scholar] [CrossRef]
- Nishikawa, H.; Hasegawa, K.; Ishii, A.; Takata, R.; Enomoto, H.; Yoh, K.; Kishino, K.; Shimono, Y.; Iwata, Y.; Nakano, C.; et al. A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation. Medicine 2016, 95, e4679. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Chen, X.-Q.; Lv, Z.-L.; Tang, Q.; Shan, Q.-W.; Enomoto, H. A simple noninvasive model to predict significant fibrosis in children with chronic hepatitis B. Medicine 2021, 100, e26462. [Google Scholar] [CrossRef]
- Wu, X.; Cai, B.; Su, Z.; Li, Y.; Xu, J.; Deng, R.; Wang, L. Aspartate transaminase to platelet ratio index and gamma-glutamyl transpeptidase-to-platelet ratio outweigh fibrosis index based on four factors and red cell distribution width-platelet ratio in diagnosing liver fibrosis and inflammation in chronic hepatitis B. J. Clin. Lab. Anal. 2018, 32, e22341. [Google Scholar] [CrossRef]
- Tag-Adeen, M.; Omar, M.Z.; Abd-Elsalam, F.M.; Hasaneen, A.; Mohamed, M.A.; Elfeky, H.M.; Said, E.M.; Abdul-Aziz, B.; Osman, A.H.; Ahmed, E.S.; et al. Assessment of liver fibrosis in Egyptian chronic hepatitis B patients: A comparative study including 5 noninvasive indexes. Medicine 2018, 97, e9781. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Yang, K.; Zhang, H.; Wang, Q.; Lv, X.; Guan, S. Comparison and evaluation of non-invasive models in predicting liver inflammation and fibrosis of chronic hepatitis B virus-infected patients with high hepatitis B virus DNA and normal or mildly elevated alanine transaminase levels. Medicine 2020, 99, e20548. [Google Scholar] [CrossRef]
- Xu, S.-H.; Li, Q.; Hu, Y.-P.; Ying, L. Development of a model based on biochemical, real-time tissue elastography and ultrasound data for the staging of liver fibrosis and cirrhosis in patients with chronic hepatitis B. Mol. Med. Rep. 2016, 14, 3609–3619. [Google Scholar] [CrossRef]
- Chen, X.; Wen, H.; Zhang, X.; Dong, C.; Lin, H.; Guo, Y.; Shan, L.; Yao, S.; Yang, M.; Le, X.; et al. Development of a Simple Noninvasive Model to Predict Significant Fibrosis in Patients with Chronic Hepatitis B: Combination of Ultrasound Elastography, Serum Biomarkers, and Individual Characteristics. Clin. Transl. Gastroenterol. 2017, 8, e84. [Google Scholar] [CrossRef]
- Li, Q.; Lu, C.; Li, W.; Huang, Y.; Chen, L. Evaluation of eLIFT for Non-invasive Assessment of Liver fibrosis and Cirrhosis in Patients with Chronic Hepatitis B Virus Infection. Sci. Rep. 2017, 7, 5429. [Google Scholar] [CrossRef]
- Demir, N.A.; Kolgelier, S.; Ozcimen, S.; Gungor, G.; Sumer, S.; Demir, L.S.; Inkaya, A.C.; Ural, O. Evaluation of the relation between hepatic fibrosis and basic laboratory parameters in patients with chronic hepatitis B fibrosis and basic laboratory parameters. Hepat. Mon. 2014, 14, e16975. [Google Scholar] [CrossRef]
- Ren, T.; Wang, H.; Wu, R.; Niu, J. Gamma-glutamyl transpeptidase-to-platelet ratio predicts significant liver fibrosis of chronic Hepatitis B patients in China. Gastroenterol. Res. Pract. 2017, 2017, 7089702. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Shan, F.; Liu, B.; Lu, C. Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers. BMC Infect. Dis. 2010, 10, 251. [Google Scholar] [CrossRef]
- Celikbilek, M.; Dogan, S.; Gursoy, S.; Zararsiz, G.; Yurci, A.; Ozbakir, O.; Guven, K.; Yucesoy, M. Noninvasive assessment of liver damage in chronic hepatitis B. World J. Hepatol. 2013, 5, 439–445. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, L.; Lin, S.; Li, M.; Luo, J.; Chen, L. Noninvasive Models to Assess Liver Inflammation and Fibrosis in Chronic HBV Infected Patients with Normal or Mildly Elevated Alanine Transaminase Levels: Which One Is Most Suitable? Diagnostics 2024, 14, 456. [Google Scholar] [CrossRef]
- Korkmaz, P.; Demirturk, N.; Batırel, A.; Cem Yardimci, A.; Cagir, U.; Nemli, S.A.; Korkmaz, F.; Akcam, F.Z.; Barut, H.S.; Bayrak, B.; et al. Noninvasive models to predict liver fibrosis in patients with chronic hepatitis B: A study from Turkey. Hepat. Mon. 2017, 17, e60266. [Google Scholar] [CrossRef]
- Liao, M.-J.; Li, J.; Dang, W.; Chen, D.-B.; Qin, W.-Y.; Chen, P.; Zhao, B.-G.; Ren, L.-Y.; Xu, T.-F.; Chen, H.-S.; et al. Novel index for the prediction of significant liver fibrosis and cirrhosis in chronic hepatitis B patients in China. World J. Gastroenterol. 2022, 28, 3503–3513. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xu, C.; He, D.; Li, M.; Zhang, H.; Wu, Q.; Xiang, D.; Wang, Y. Performance of several simple, noninvasive models for assessing significant liver fibrosis in patients with chronic hepatitis B. Croat. Med. J. 2015, 56, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, S.; Jha, A.; Kumar, R.; Dayal, V.; Jha, S. Serum Gamma-Glutamyl Transpeptidase-to-Platelet Ratio as a Noninvasive Marker of Liver Fibrosis in Chronic Hepatitis B. Cureus J. Med. Sci. 2023, 15, e33744. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Wang, X.; Wei, R.; Wang, J.; Zhao, A.; Chen, T.; Wang, Y.; Zhang, H.; Xiao, Z.; Liu, X.; et al. Serum metabolite profiles are associated with the presence of advanced liver fibrosis in Chinese patients with chronic hepatitis B viral infection. BMC Med. 2020, 18, 144. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-D.; Wang, J.-Y.; Li, L. Staging of liver fibrosis in chronic hepatitis B patients with a composite predictive model: A comparative study. World J. Gastroenterol. 2010, 16, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, G.; Kang, K.; Wu, G.; Wang, P. The diagnostic accuracy and clinical utility of three noninvasive models for predicting liver fibrosis in patients with HBV infection. PLoS ONE 2016, 11, e0152757. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, M.; Shimakawa, Y.; Nayagam, S.; Khalil, M.; Suso, P.; Lloyd, J.; Goldin, R.; Njai, H.-F.; Ndow, G.; Taal, M.; et al. The gamma-glutamyl transpeptidase to platelet ratio (GPR) predicts significant liver fibrosis and cirrhosis in patients with chronic HBV infection in West Africa. Gut 2016, 65, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, J.; Huang, Y.; Li, X.; Zhuo, Q.; Li, W.; Chen, C.; Lu, C.; Qi, X.; Chen, L. The gamma-glutamyl-transpeptidase to platelet ratio does not show advantages than APRI and fib-4 in diagnosing significant fibrosis and cirrhosis in patients with chronic hepatitis B A retrospective cohort study in China. Medicine 2016, 95, e3372. [Google Scholar] [CrossRef]
- Huang, D.; Lin, T.; Wang, S.; Cheng, L.; Xie, L.; Lu, Y.; Chen, M.; Zhu, L.; Shi, J. The liver fibrosis index is superior to the APRI and FIB-4 for predicting liver fibrosis in chronic hepatitis B patients in China. BMC Infect. Dis. 2019, 19, 878. [Google Scholar] [CrossRef]
- Chi, X.-L.; Shi, M.-J.; Xiao, H.-M.; Xie, Y.-B.; Cai, G.-S. The score model containing Chinese medicine syndrome element of blood stasis presented a better performance compared to APRI and FIB-4 in diagnosing advanced fibrosis in patients with chronic hepatitis B. Evid.-Based Complement. Altern. Med. 2016, 2016, 3743427. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-T.; Wang, L.-L.; Yao, J.; Yang, Y.-T.; Mao, X.-R.; Yue, W.; Mao, Y.-W.; Zhou, W.; Chen, Q.-F.; Chen, Y.; et al. Total bile acid-to-cholesterol ratio as a novel noninvasive marker for significant liver fibrosis and cirrhosis in patients with non-cholestatic chronic hepatitis B virus infection. Medicine 2020, 99, e19248. [Google Scholar] [CrossRef] [PubMed]
- Fibrosis-4 (FIB-4) Index for Liver Fibrosis. Available online: https://www.mdcalc.com/calc/2200/fibrosis-4-fib-4-index-liver-fibrosis (accessed on 27 May 2024).
- Castera, L. Hepatitis B: Are non-invasive markers of liver fibrosis reliable? Liver Int. 2014, 34, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Larrey, D.; Meunier, L.; Ursic-Bedoya, J. Liver Biopsy in Chronic Liver Diseases: Is There a Favorable Benefit: Risk Balance? Ann. Hepatol. 2017, 16, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridis, G.V.; Manolakopoulos, S.; Liaw, Y.-F.; Lok, A. Follow-up and indications for liver biopsy in HBeAg-negative chronic hepatitis B virus infection with persistently normal ALT: A systematic review. J. Hepatol. 2012, 57, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.T.; Lim, J.K.; Ayoub, W.S.; Nguyen, L.H.; Nguyen, M.H. Systematic review with meta-analysis: The proportion of chronic hepatitis B patients with normal alanine transaminase ≤40 IU/L and significant hepatic fibrosis. Aliment. Pharmacol. Ther. 2014, 39, 349–358. [Google Scholar] [CrossRef]
- Johannessen, A.; Stockdale, A.J.; Henrion, M.Y.R.; Okeke, E.; Seydi, M.; Wandeler, G.; Sonderup, M.; Spearman, C.W.; Vinikoor, M.; Sinkala, E.; et al. Systematic review and individual-patient-data meta-analysis of non-invasive fibrosis markers for chronic hepatitis B in Africa. Nat. Commun. 2023, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Hepatitis. South-East Asia. Available online: https://www.who.int/southeastasia/health-topics/hepatitis (accessed on 27 May 2024).
- Fernandes da Silva, C.; Keeshan, A.; Cooper, C. Hepatitis B virus genotypes influence clinical outcomes: A review. Can. Liver J. 2023, 6, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Raihan, R.; Akbar, S.M.F. A Narrative Review on the Specific Pattern of HBV Genotype in Bangladesh: Clinical Implications for Management. Euroasian J. Hepato-Gastroenterol. 2023, 13, 152–158. [Google Scholar] [CrossRef]
- Al-Sadeq, D.W.; Taleb, S.A.; Zaied, R.E.; Fahad, S.M.; Smatti, M.K.; Rizeq, B.R.; Al Thani, A.A.; Yassine, H.M.; Nasrallah, G.K. Hepatitis B Virus Molecular Epidemiology, Host-Virus Interaction, Coinfection, and Laboratory Diagnosis in the MENA Region: An Update. Pathogens 2019, 8, 63. [Google Scholar] [CrossRef]
- Ganesan, M.; Eikenberry, A.; Poluektova, L.Y.; Kharbanda, K.K.; Osna, N.A. Role of alcohol in pathogenesis of hepatitis B virus infection. World J. Gastroenterol. 2020, 26, 883–903. [Google Scholar] [CrossRef]
- Roman, S.; Jose-Abrego, A.; Fierro, N.A.; Escobedo-Melendez, G.; Ojeda-Granados, C.; Martinez-Lopez, E.; Panduro, A. Hepatitis B virus infection in Latin America: A genomic medicine approach. World J. Gastroenterol. 2014, 20, 7181–7196. [Google Scholar] [CrossRef]
- Ie, S.I.; Thedja, M.D.; Sidarta, E.; Purnomo, G.A.; Turyadi; Pattiiha, M.Z.; Muljono, D.H.; Sadhewa, A.; Harahap, A.R.; Soedarmono, Y.S.M. High Prevalence of Hepatitis B Virus Infection in Young Adults in Ternate, Eastern Indonesia. Am. J. Trop. Med. Hyg. 2015, 93, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-S.; Kim, W.R.; Dieterich, D.; Kao, J.-H.; Flaherty, J.F.; Yee, L.J.; Roberts, L.R.; Razavi, H.; Kennedy, P.T.F. Evidence for Benefits of Early Treatment Initiation for Chronic Hepatitis B. Viruses 2023, 15, 997. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.L.-H. Management of chronic hepatitis B patients in immunetolerant phase: What latest guidelines recommend. Clin. Mol. Hepatol. 2018, 24, 108–113. [Google Scholar] [CrossRef]
- Kennedy, P.T.F.; Litwin, S.; Dolman, G.; Bertoletti, A.; Mason, W. Immune Tolerant Chronic Hepatitis B: The Unrecognized Risks. Viruses 2017, 9, 96. [Google Scholar] [CrossRef]
- Kunutsor, S.K. Gamma-glutamyltransferase—Friend or foe within? Liver Int. 2016, 36, 1723–1734. [Google Scholar] [CrossRef]
- Fujii, H.; Doi, H.; Ko, T.; Fukuma, T.; Kadono, T.; Asaeda, K.; Kobayashi, R.; Nakano, T.; Doi, T.; Nakatsugawa, Y.; et al. Frequently abnormal serum gamma-glutamyl transferase activity is associated with future development of fatty liver: A retrospective cohort study. BMC Gastroenterol. 2020, 20, 217. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhu, Y.; Ni, X.; Lin, J.; Li, H.; Zheng, L.; Zhang, C.; Qi, X.; Huo, H.; Lou, X.; et al. Serum GGT/ALT ratio predicts vascular invasion in HBV-related HCC. Cancer Cell Int. 2021, 21, 517. [Google Scholar] [CrossRef]
- Xy, X.; Wang, W.S.; Zhang, Q.M.; Li, J.L.; Sun, J.B.; Qin, T.T.; Liu, H.B. Performance of common imaging techniques vs serum biomarkers in assessing fibrosis in patients with chronic hepatitis B: A systematic review and meta-analysis. World J. Clin. Cases 2019, 7, 2022–2037. [Google Scholar] [CrossRef]
- Wu, J.; Mao, W. Review of Serum Biomarkers and Models Derived from Them in HBV-Related Liver Diseases. Dis. Markers 2020, 2020, 2471252. [Google Scholar] [CrossRef] [PubMed]
First Author, Publication Year; Reference | Country | Study Type | Low Fibrosis Category * | High Fibrosis Category * | JBI Score * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Participant Count | Participant Age (Years) * | ALT (IU/L) | GGT (IU/L) | Participant Count | Participant Age (Years) * | ALT (IU/L) | GGT (IU/L) | ||||
Cheng et al., 2020 [30] | China | Diagnostic | 209 | 38.8 ± 10.54 | 46.95 ± 40.90 | 25.29 ± 22.67 | 146 | 41.16 ± 9.18 | 51.37 ± 49.64 | 46.49 ± 54.04 | 8/10 |
Zeng et al., 2021 [31] | China | Diagnostic | 69 | 36.6 ± 9.1 | 27.5 ± 10.1 | 18.9 ± 9.4 | 44 | 39.5 ± 9.4 | 33.5 ± 8.5 | 34.6 ± 19.9 | 9/10 |
Nishikawa et al., 2016 [32] | Japan | Diagnostic | 100 | 45.5 ± 13.1 | 64.1 ± 104.6 | 32.6 ± 32.7 | 25 | 47.5 ± 11.9 | 67.6 ± 83.2 | 67.2 ± 85.1 | 8/10 |
Zhang et al., 2021 [33] | China | Diagnostic | 65 | - | 65.12 ± 68.94 | 17.35 ± 5.3 | 51 | - | 106.85 ± 124.52 | 31.3 ± 23.22 | 9/10 |
Wu et al., 2018 [34] | China | Diagnostic | 252 | 34.3 ± 10.44 | 35.7 ± 19.38 | 17.4 ± 8.94 | 70 | 37.52 ± 10.43 | 46.53 ± 32.87 | 24.59 ± 17 | 7/10 |
Tag-Adeen et al., 2018 [35] | Egypt | Diagnostic | Group 1: 34 Group 2: 68 | Group 1: 29.5 ± 5 Group 2: 36 ± 6.7 | Group 1: 34 ± 27 Group 2: 46 ± 33 | Group 1: 32 ± 12 Group 2: 37 ± 14 | Group 3: 44 Group 4: 32 Group 5: 22 | Group 3: 36 ± 6.7 Group 4: 36.3 ± 9.8 Group 5: 39.1 ± 7 | Group 3: 39 ± 30 Group 4: 32 ± 14 Group 5: 40 ± 31 | Group 3: 38 ± 16 Group 4: 63 ± 40 Group 5: 104 ± 51 | 9/10 |
Wang et al., 2020 [36] | China | Diagnostic | 249 | 33.7 ± 10.44 | 43.05 ± 27.59 | 20.05 ± 9.69 | 121 | 37.18 ± 10.87 | 49.05 ± 20.25 | 27.46 ± 17.25 | 9/10 |
Xu et al., 2016 [37] | China | Diagnostic | 24 | 36.33 ± 7.86 | 49.96 ± 37.53 | 28.5 ± 29.11 | 61 | 38.82 ± 8.33 | 69.89 ± 99.92 | 47.46 ± 63.72 | 9/10 |
Chen et al., 2017 [38] | China | Diagnostic | 75 | 34 ± 7.55 | 24.76 ± 13.59 | 17.53 ± 10.19 | 143 | 40 ± 8.98 | 36.64 ± 20.58 | 32.15 ± 25.07 | 8/10 |
Li et al., 2017 [39] | China | Diagnostic | 512 | 34.7 ± 10.4 | 42.75 ± 24.53 | 21.5 ± 14.86 | 235 | 39.7 ± 13.42 | 48.56 ± 30.58 | 45.86 ± 33.56 | 9/10 |
Demir et al., 2014 [40] | Turkey | Cross-sectional | 281 | 34.1 ± 11.5 | 99.1 ± 103.1 | 31.3 ± 11.5 | 175 | 40.9 ± 12 | 139.7 ± 79.2 | 30.8 ± 11.4 | 6/8 |
Ren et al., 2017 [41] | China | Diagnostic | Group 1: 34 Group 2: 62 | Group 1: 35.21 ± 10.02 Group 2: 39.56 ± 12.12 | Group 1: 37.29 ± 24.84 Group 2: 58.45 ± 50 | Group 1: 25.44 ± 22.34 Group 2: 43.95 ± 37.84 | Group 3: 18 Group 4: 24 Group 5: 22 | Group 3: 44.68 ± 9.92 Group 4: 39.63 ± 12.36 Group 5: 39.22 ± 12.56 | Group 3: 38.11 ± 18.03 Group 4: 46.03 ± 33.59 Group 5: 39.41 ± 27.28 | Group 3: 36.08 ± 27.3 Group 4: 50.37 ± 25.58 Group 5: 69.34 ± 74.92 | 8/10 |
Wang et al., 2010 [42] | China | Diagnostic | 329 | 29.44 ± 7.6 | 80.2 ± 80.32 | 35.46 ± 80.67 | 126 | 40.58 ± 11.24 | 183.66 ± 101.77 | 76.21 ± 61.84 | 9/10 |
Celikbelik et al., 2013 [43] | Turkey | Diagnostic | 34 | 40.2 ± 11.7 | 75.14 ± 76.27 | 31.62 ± 22.34 | 55 | 42.2 ± 13.7 | 66.02 ± 53.19 | 37.06 ± 22.04 | 8/10 |
Ma et al., 2024 [44] | China | Diagnostic | 411 | 36.7 ± 8.92 | 29.75 ± 14.13 | 21.4 ± 10.41 | 188 | 37.35 ± 8.21 | 34.86 ± 14 | 28.61 ± 14.75 | 6/10 |
Korkmez et al., 2017 [45] | Turkey | Diagnostic | 1767 | 39.29 ± 11.92 | 50.05 ± 41.55 | 25.4 ± 14.84 | 753 | 43.67 ± 12.76 | 78.91 ± 65.36 | 36.15 ± 24.51 | 6/10 |
Liao et al., 2022 [46] | China | Diagnostic | 113 | 45.15 ± 14.97 | 65.01 ± 70.72 | 78.42 ± 66.62 | 183 | 43.63 ± 13.32 | 51.84 ± 47.06 | 106.5 ± 73.21 | 6/10 |
Zeng et al., 2015 [47] | China | Diagnostic | 171 | 35.8 ± 11 | 47.16 ± 26.16 | 27.46 ± 18.68 | 91 | 35.8 ± 10.6 | 55.94 ± 29.34 | 51.82 ± 43.64 | 7/10 |
Purkayastha et al., 2023 [48] | India | Diagnostic | 23 | 28.96 ± 11.91 | 59.48 ± 73.38 | 21.89 ± 13.19 | 25 | 37.52 ± 17.82 | 61.3 ± 37.18 | 31.54 ± 14.33 | 6/10 |
Xie et al., 2020 [49] | China | Diagnostic | Group 1: 349 Group 2: 134 | Group 1: 33.23 ± 9.95 Group 2: 41.55 ± 12.83 | Group 1: 195.3 ± 213.41 Group 2: 111.4 ± 141.39 | Group 1: 61.13 ± 69.75 Group 2: 72.22 ± 55.75 | Group 1: 155 Group 2: 166 | Group 1: 44.88 ± 12.22 Group 2: 53.14 ± 11.26 | Group 1: 128.51 ± 150.32 Group 2: 57.2 ± 87.35 | Group 1: 89.73 ± 143.43 Group 2: 112.56 ± 76.25 | 7/10 |
Wu et al., 2010 [50] | China | Diagnostic | 46 | 29.6 ± 12 | 123.61 ± 158.66 | 38.98 ± 28.98 | 32 | 36.9 ± 11.4 | 158.71 ± 144.74 | 68.99 ± 37.15 | 7/10 |
Zhang et al., 2016 [51] | China | Diagnostic | 267 | 29.43 ± 9.09 | 79.87 ± 64.85 | 37.61 ± 31.3 | Group 3: 554 Group 4: 423 Group 5: 299 | Group 3: 30.55 ± 9.23 Group 4: 31.22 ± 9.11 Group 5: 35.79 ± 10.8 | Group 3: 101.21 ± 83.24 Group 4: 111.72 ± 104.14 Group 5: 96.14 ± 90.88 | Group 3: 51.66 ± 40.88 Group 4: 70.86 ± 55.79 Group 5: 92.06 ± 67.78 | 10/10 |
Lemoine et al., 2016 [52] | Gambia | Diagnostic | 82 | 36 ± 10 | 37 ± 25 | 35 ± 21 | 53 | 35 ± 11 | 64 ± 79 | 72 ± 55 | 7/10 |
Li et al., 2016 [53] | China | Diagnostic | 196 | 38 ± 11 | 39 ± 25.39 | 26.51 ± 17.92 | 176 | 40 ± 12 | 44.81 ± 26.9 | 56.94 ± 52.32 | 9/10 |
Huang et al., 2019 [54] | China | Diagnostic | Group 1: 12 Group 2: 18 | Group 1: 32.25 ± 10.36 Group 2: 38.17 ± 10.99 | Group 1: 60.67 ± 17.84 Group 2: 83.22 ± 54.43 | Group 1: 46.5 ± 32.95 Group 2: 55.53 ± 38.34 | Group 3: 21 Group 4: 19 Group 5: 21 | Group 3: 40.9 ± 11.45 Group 4: 43.68 ± 12.37 Group 5: 46.33 ± 13.46 | Group 3: 83.3 ± 57.13 Group 4: 94.21 ± 74.63 Group 5: 105.35 ± 75.36 | Group 3: 90.49 ± 53.86 Group 4: 104.32 ± 99.57 Group 5: 136.96 ± 110.49 | 9/10 |
Chi et al., 2016 [55] | China | Diagnostic | 477 | 37.9 ± 9.7 | 35.9 ± 17.8 | 27.3 ± 19.8 | 432 | 42.2 ± 10.6 | 37.7 ± 16.9 | 47.4 ± 55.9 | 6/10 |
Yan et al., 2020 [56] | China | Diagnostic | 4 | 45.5 ± 5.97 | 28.45 ± 7.64 | 19.58 ± 6.07 | 28 | 46.18 ± 10.4 | 40.89 ± 36.82 | 62.85 ± 80 | 7/10 |
Variable | Total (n = 14) | Low or no Fibrosis (n = 10) | Significant Fibrosis (n = 4) | p-Value ** |
---|---|---|---|---|
Age (years) | 48.8 ± 14.2 | 46.8 ± 15.4 | 53.8 ± 10.9 | 0.41 |
Sex-female (%) | 5 (35.7) | 3 (30) | 2 (50) | 0.92 |
ALT * (IU/L) | 41 ± 25.6 | 45.9 ± 27.3 | 28.8 ± 18 | 0.25 |
AST * (IU/L) | 28.6 ± 10.1 | 27.2 ± 9.1 | 32 ± 13 | 0.43 |
GGT * (IU/L) | 41.1 ± 37 | 26.7 ± 10.4 | 77 ± 56.7 | 0.004 |
GGT/ALT index | 1.2 ± 1.2 | 0.6 ± 0.2 | 2.6 ± 1.6 | <0.0001 |
Leucocyte count (×103 µL) | 7.2 ± 3 | 7.8 ± 3.3 | 5.7 ± 1.5 | 0.22 |
Platelet count (×103 µL) | 219.6 ± 58.6 | 239.2 ± 53.1 | 170.8 ± 44.4 | 0.02 |
HBV-DNA (IU/mL) | 394.5 [81.5, 4687.2] | 548.5 [81.5, 4687.2] | 394.5 [250.5, 13,697.5] | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manea, M.; Mărunțelu, I.; Constantinescu, I. A New Assessment of Two Transferase-Based Liver Enzymes in Low- and High-Fibrosis Patients Chronically Infected with Hepatitis B Virus: A Meta-Analysis and Pilot Study. J. Clin. Med. 2024, 13, 3903. https://doi.org/10.3390/jcm13133903
Manea M, Mărunțelu I, Constantinescu I. A New Assessment of Two Transferase-Based Liver Enzymes in Low- and High-Fibrosis Patients Chronically Infected with Hepatitis B Virus: A Meta-Analysis and Pilot Study. Journal of Clinical Medicine. 2024; 13(13):3903. https://doi.org/10.3390/jcm13133903
Chicago/Turabian StyleManea, Marina, Ion Mărunțelu, and Ileana Constantinescu. 2024. "A New Assessment of Two Transferase-Based Liver Enzymes in Low- and High-Fibrosis Patients Chronically Infected with Hepatitis B Virus: A Meta-Analysis and Pilot Study" Journal of Clinical Medicine 13, no. 13: 3903. https://doi.org/10.3390/jcm13133903
APA StyleManea, M., Mărunțelu, I., & Constantinescu, I. (2024). A New Assessment of Two Transferase-Based Liver Enzymes in Low- and High-Fibrosis Patients Chronically Infected with Hepatitis B Virus: A Meta-Analysis and Pilot Study. Journal of Clinical Medicine, 13(13), 3903. https://doi.org/10.3390/jcm13133903