Diagnostic and Prognostic Value of Right Ventricular Fat Quantification from Computed Tomography in Arrhythmogenic Right Ventricular Cardiomyopathy
Abstract
:1. Introduction
2. Methods
2.1. Cardiac CT
2.2. Quantification of RV Fat
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparison between ARVC Patients and Controls
3.3. Correlates of RV Fat in ARVC Patients
3.4. Correlates of RV Fat in Controls
3.5. Ventricular Arrhythmias
4. Discussion
4.1. Fat Quantification for ARVC Diagnosis
4.2. Fat Distribution in the RV
4.3. Fat Quantification and Ventricular Arrhythmias
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerull, B.; Brodehl, A. Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy. Curr. Heart Fail. Rep. 2021, 18, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Thiene, G.; McKenna, W.J.; Davies, M.J.; Fontaliran, F.; Nava, A.; Silvestri, F.; Blomstrom-Lundqvist, C.; Wlodarska, E.K.; et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: A multicenter study. J. Am. Coll. Cardiol. 1997, 30, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Krahn, A.D.; Wilde, A.A.; Calkins, H.; La Gerche, A.; Cadrin-Tourigny, J.; Roberts, J.D.; Han, H.C. Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin. Electrophysiol. 2022, 8, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, G.; Papadakis, M.; Robertus, J.L.; Dhutia, H.; Steriotis, A.K.; Tome, M.; Mellor, G.; Merghani, A.; Malhotra, A.; Behr, E.; et al. Etiology of Sudden Death in Sports: Insights From a United Kingdom Regional Registry. J. Am. Coll. Cardiol. 2016, 67, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [PubMed]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.; Daubert, J.P.; et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed modification of the Task Force Criteria. Eur. Heart J. 2010, 31, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Cadrin-Tourigny, J.; Bosman, L.P.; Nozza, A.; Wang, W.; Tadros, R.; Bhonsale, A.; Bourfiss, M.; Fortier, A.; Lie, Ø.H.; Saguner, A.M.; et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2022, 43, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.M.; Srinivasan, N.T.; Rosmini, S.; Bulluck, H.; Orini, M.; Jenkins, S.; Pantazis, A.; McKenna, W.J.; Moon, J.C.; Lambiase, P.D.; et al. Electrical and structural substrate of arrhythmogenic right ventricular cardiomyopathy determined using noninvasive electrocardiographic imaging and late gadolinium magnetic resonance imaging. Circ. Arrhythm. Electrophysiol. 2017, 10, e005105. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Barison, A.; Todiere, G.; Grigoratos, C.; Ali, L.A.; Di Bella, G.; Emdin, M.; Festa, P. Usefulness of Combined Functional Assessment by Cardiac Magnetic Resonance and Tissue Characterization Versus Task Force Criteria for Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy. Am. J. Cardiol. 2016, 118, 1730–1736. [Google Scholar] [CrossRef]
- Bomma, C.; Rutberg, J.; Tandri, H.; Nasir, K.; Roguin, A.; Tichnell, C.; Rodriguez, R.; James, C.; Kasper, E.; Spevak, P.; et al. Misdiagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Cardiovasc. Electrophysiol. 2004, 15, 300–306. [Google Scholar] [CrossRef]
- Cochet, H.; Denis, A.; Komatsu, Y.; Jadidi, A.S.; Ali, T.A.; Sacher, F.; Derval, N.; Relan, J.; Sermesant, M.; Corneloup, O.; et al. Automated quantification of right ventricular fat at contrast-enhanced cardiac multidetector CT in arrhythmogenic right ventricular cardiomyopathy. Radiology 2015, 275, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Greupner, J.; Zimmermann, E.; Grohmann, A.; Dübel, H.P.; Althoff, T.; Borges, A.C.; Rutsch, W.; Schlattmann, P.; Hamm, B.; Dewey, M. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: Comparison with magnetic resonance imaging as the reference standard. J. Am. Coll. Cardiol. 2012, 59, 1897–1907. [Google Scholar] [PubMed]
- Kim, S.; Lee, G.H.; Lee, S.; Park, S.H.; Pyo, H.B.; Cho, J.S. Body fat measurement in computed tomography image. Biomed. Sci. Instrum. 1999, 35, 303–308. [Google Scholar] [PubMed]
- Notohamiprodjo, S.; Webber, N.; Birnbacher, L.; Willner, M.; Viermetz, M.; Herzen, J.; Marschner, M.; Mayr, D.; Bartsch, H.; Saam, T.; et al. Qualitative and Quantitative Evaluation of Structural Myocardial Alterations by Grating-Based Phase-Contrast Computed Tomography. Investig. Radiol. 2018, 53, 26–34. [Google Scholar] [CrossRef]
- Gupta, M.; Kadakia, J.; Jug, B.; Mao, S.S.; Budoff, M.J. Detection and quantification of myocardial perfusion defects by resting single-phase 64-slice cardiac computed tomography angiography compared with SPECT myocardial perfusion imaging. Coron. Artery Dis. 2013, 24, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Marcus, F.I.; Fontaine, G.H.; Guiraudon, G.; Frank, R.; Laurenceau, J.L.; Malergue, C.; Grosgogeat, Y. Right ventricular dysplasia: A report of 24 adult cases. Circulation 1982, 65, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Tansey, D.K.; Aly, Z.; Sheppard, M.N. Fat in the right ventricle of the normal heart. Histopathology 2005, 46, 98–104. [Google Scholar] [CrossRef]
- Te Riele, A.S.J.M.; Tandri, H.; Sanborn, D.M.; Bluemke, D.A. Noninvasive Multimodality Imaging in ARVD/C. JACC Cardiovasc. Imaging 2015, 8, 597–611. [Google Scholar] [CrossRef]
- Pfluger, H.B.; Phrommintikul, A.; Mariani, J.A.; Cherayath, J.G.; Taylor, A.J. Utility of myocardial fibrosis and fatty infiltration detected by cardiac magnetic resonance imaging in the diagnosis of arrhythmogenic right ventricular dysplasia—A single centre experience. Heart Lung Circ. 2008, 17, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Ustunkaya, T.; Desjardins, B.; Wedan, R.; Chahal, C.A.A.; Zimmerman, S.L.; Saju, N.; Zahid, S.; Sharma, A.; Han, Y.; Trayanova, N.; et al. Epicardial Conduction Speed, Electrogram Abnormality, and Computed Tomography Attenuation Associations in Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin. Electrophysiol. 2019, 5, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Boogerd, C.J.; Lacraz, G.P.A.; Vértesy, Á.; van Kampen, S.J.; Perini, I.; de Ruiter, H.; Versteeg, D.; Brodehl, A.; van der Kraak, P.; Giacca, M.; et al. Spatial transcriptomics unveils ZBTB11 as a regulator of cardiomyocyte degeneration in arrhythmogenic cardiomyopathy. Cardiovasc. Res. 2023, 119, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Foale, R.; Nihoyannopoulos, P.; McKenna, W.; Nadazdin, A.; Rowland, E.; Smith, G.; Klienebenne, A. Echocardiographic measurement of the normal adult right ventricle. Br. Heart J. 1986, 56, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Jordà, P.; Bosman, L.P.; Gasperetti, A.; Mazzanti, A.; Gourraud, J.B.; Davies, B.; Frederiksen, T.C.; Weidmann, Z.M.; Di Marco, A.; Roberts, J.D.; et al. Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: External validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator. Eur. Heart J. 2022, 43, 3041–3052. [Google Scholar] [CrossRef]
- Di Marco, A.; Brown, P.F.; Bradley, J.; Nucifora, G.; Claver, E.; de Frutos, F.; Dallaglio, P.D.; Comin-Colet, J.; Anguera, I.; Miller, C.A.; et al. Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients With Nonischemic Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2021, 77, 2890–2905. [Google Scholar] [CrossRef]
- Di Marco, A.; Anguera, I.; Schmitt, M.; Klem, I.; Neilan, T.G.; White, J.A.; Sramko, M.; Masci, P.G.; Barison, A.; Mckenna, P.; et al. Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis. JACC Heart Fail. 2017, 5, 28–38. [Google Scholar] [CrossRef]
All Patients | Definite Diagnosis (N = 19) | Borderline Diagnosis (N = 4) | p | |
---|---|---|---|---|
Age (years) | 53 (SD 13) | 53 (SD 12) | 56 (SD 17) | 0.65 |
Sex (females) | 8 (35%) | 7 (37%) | 1 (25%) | 1 |
Time from diagnosis to CT (years) | 4 (1–8) | 4.5 (2–10) | 2 (0.3–5) | 0.29 |
Pathogenic or likely pathogenic variants | 10 (43%) | 9 (47%) | 1 (33%) | 1 |
Gene * PKP2 DSG2 | 6 (60%) 4 (40%) | 5 (56%) 4 (44%) | 1 (100%) 0 (0%) | |
ICD | 21 (91%) | 18 (95%) | 3 (75%) | 0.32 |
Primary prevention ICD | 7 (33%) | 5 (28%) | 2 (67%) | 0.25 |
Any sustained VA or aborted SD | 16 (70%) | 15 (79%) | 1 (25%) | 0.07 |
ECG parameters | ||||
QRS duration (ms) | 109 (SD 17) | 107 (SD 10) | 121 (SD 34) | 0.13 |
Number of negative T waves precordial leads | 3.3 (SD 1.8) | 3.7 (SD 1.7) | 1.3 (SD 0.5) | 0.01 |
Epsilon wave | 11 (48%) | 10 (53%) | 1 (25%) | 0.59 |
Terminal QRS activation(ms) | 57 (SD 16) | 57 (SD 13) | 55 (SD 30) | 0.8 |
Imaging | ||||
TAPSE (mm) | 18 (SD 5) | 17 (SD 5) | 21 (SD 2) | 0.17 |
LVEF (%) | 56 (SD 9) | 56 (SD 9) | 54 (SD 9) | 0.62 |
iRVEDV (mL/m2) | 132 (SD 35) | 137 (SD 36) | 108 (SD 22) | 0.13 |
iRVESV (mL/m2) | 85 (SD 33) | 90 (SD 34) | 63 (SD 20) | 0.09 |
RVEF (%) | 37 (SD 10) | 35 (SD 10) | 43 (SD 9) | 0.21 |
RV LGE ƚ | 6 (38%) | 5 (38%) | 1 (33%) | 1 |
ADAS scar parameters | ||||
RV scar area (cm2) | 102 (SD 37) | 108 (SD 35) | 77 (SD 37) | 0.13 |
RV BZ area (cm2) | 42 (SD 14) | 44 (SD14) | 33 (SD 14) | 0.2 |
RV dense scar area (cm2) | 61 (SD28) | 64 (SD 28) | 44 (SD 26) | 0.19 |
Percentage of RV scar | 34% (SD 10) | 36% (SD9) | 27% (SD 10) | 0.11 |
Percentage of RV BZ | 14% (SD 3) | 14% (SD 2) | 12% (SD 4) | 0.13 |
Percentage of RV dense scar | 20% (SD 9) | 22% (SD 9) | 15% (SD8) | 0.2 |
ARVC Patients | Controls | p | |
---|---|---|---|
Age | 53 (SD 13) | 54 (SD 10) | 0.77 |
Sex (females) | 8 (35%) | 8 (35%) | 1 |
RV area (cm2) | 278 (257–314) | 178 (152–215) | <0.001 |
Indexed RV area (cm2/m2) | 153 (135–171) | 96 (83–108) | <0.001 |
RV scar area (cm2) | 102 (SD 37) | 11 (SD 6) | <0.001 |
Indexed RV scar area (cm2/m2) | 54 (SD 18) | 6 (SD 3) | <0.001 |
Percentage of RV scar (%) | 34% (SD 10) | 5.7% (SD 3) | <0.001 |
RV BZ area (cm2) | 42 (SD14) | 8 (SD 5) | <0.001 |
Indexed RV BZ area (cm2/m2) | 22 (SD 7) | 4 (SD 2) | <0.001 |
Percentage of RV BZ (%) | 14% (SD 3) | 4% (SD 2) | <0.001 |
RV dense scar area (cm2) | 61 (SD 28) | 3 (SD 2) | <0.001 |
Indexed RV dense scar area (cm2/m2) | 32 (SD 14) | 2 (SD 1) | <0.001 |
Percentage of RV dense scar (%) | 20% (SD 9) | 1.6% (SD 1) | <0.001 |
RV area Min–Max (cm2) | 191–547 | 127–262 | |
Indexed RV area Min–Max (cm2/m2) | 118–254 | 71–131 | |
RV scar area Min–Max (cm2) | 37–174 | 1.4–24 | |
Indexed RV scar area Min–Max (cm2/m2) | 23–88 | 0.7–13 | |
Percentage of RV scar Min–Max | 17–53% | 0.6–13% | |
RV BZ area Min–Max (cm2) | 20–79 | 1.2–18 | |
Indexed BZ area Min–Max (cm2/m2) | 9–38 | 0.6–10 | |
Percentage of RV BZ Min–Max | 7–20% | 0.5–10% | |
RV dense scar area Min–Max (cm2) | 13–108 | 0.2–8 | |
Indexed RV dense scar Min–Max (cm2/m2) | 8–61 | 0.1–4 | |
Percentage of RV dense scar Min–Max | 6–39% | 0.09–4% |
Cut-Off | Sensitivity % (95% CI) | Specificity % (95% CI) | Efficiency % | AUC (95% CI) | |
---|---|---|---|---|---|
RV area (cm2) | 240.3 | 87 (78–96) | 91 (73–98) | 89 | 0.96 (0.91–1) |
Indexed RV area (cm2/m2) | 116.6 | 100 (86–100) | 91 (73–98) | 96 | 0.987 (0.96–1) |
RV scar area (cm2) | 30.5 | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
Indexed RV scar area (cm2/m2) | 18 | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
Percentage of RV scar (%) | 15% | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
RV BZ area (cm2) | 18.7 | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
Indexed RV BZ area (cm2/m2) | 12.2 | 96 (79–99) | 100 (85.7–100) | 98 | 0.998 (0.99–1) |
Percentage of RV BZ (%) | 10.4% | 96 (79–99) | 100 (85.7–100) | 98 | 0.996 (0.99–1) |
RV dense scar area (cm2) | 10.5 | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
Indexed RV dense scar area (cm2/m2) | 6.2 | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
Percentage of RV dense scar (%) | 5% | 100 (85.7–100) | 100 (85.7–100) | 100 | 1 (1–1) |
No VA (N = 7) | VA (N = 16) | p | |
---|---|---|---|
Age at diagnosis | 50 (SD 15) | 47 (SD 14) | 0.66 |
Sex (female) | 4 (57%) | 4 (25%) | 0.18 |
Definite diagnosis | 4 (57%) | 15 (94%) | 0.07 |
Pathogenic or likely pathogenic variant | 4 (57%) | 7 (44%) | 0.67 |
Epsilon wave | 4 (57%) | 7 (44%) | 0.67 |
Number of negative T waves in precordial leads | 2.7 (SD 1.5) | 3.5 (SD 2) | 0.36 |
LVEF (%) | 62 (SD 7) | 59 (SD 10) | 0.44 |
RVEF (%) | 36 (SD 12) | 37 (SD 10) | 0.82 |
iRVEDV (mL/m2) | 126 (SD 46) | 136 (SD 30) | 0.57 |
iRVESV (mL/m2) | 83 (SD 46) | 87 (SD 28) | 0.77 |
RV scar area (cm2) | 83 (SD 45) | 111 (SD 30) | 0.09 |
Indexed RV scar area (cm2/m2) | 44 (SD 20) | 59 (SD 15) | 0.06 |
Percent of RV scar | 28% (SD 9) | 37% (SD 9) | 0.05 |
Border zone area (cm2) | 40 (SD 22) | 42 (SD 10) | 0.76 |
Indexed border zone area (cm2/m2) | 21 (SD 10) | 23 (SD 5) | 0.66 |
Percent of border zone | 14% (SD 4) | 14% (SD 2) | 0.83 |
Dense scar area (cm2) | 43 (SD 26) | 69 (SD 25) | 0.03 |
Indexed dense scar area (cm2/m2) | 22 (SD 13) | 36 (SD 13) | 0.03 |
Percent of dense scar | 15% (SD 7) | 23% (SD 9) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faga, V.; Ruiz Cueto, M.; Viladés Medel, D.; Moreno-Weidmann, Z.; Dallaglio, P.D.; Diez Lopez, C.; Roura, G.; Guerra, J.M.; Leta Petracca, R.; Gomez-Hospital, J.A.; et al. Diagnostic and Prognostic Value of Right Ventricular Fat Quantification from Computed Tomography in Arrhythmogenic Right Ventricular Cardiomyopathy. J. Clin. Med. 2024, 13, 3674. https://doi.org/10.3390/jcm13133674
Faga V, Ruiz Cueto M, Viladés Medel D, Moreno-Weidmann Z, Dallaglio PD, Diez Lopez C, Roura G, Guerra JM, Leta Petracca R, Gomez-Hospital JA, et al. Diagnostic and Prognostic Value of Right Ventricular Fat Quantification from Computed Tomography in Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of Clinical Medicine. 2024; 13(13):3674. https://doi.org/10.3390/jcm13133674
Chicago/Turabian StyleFaga, Valentina, María Ruiz Cueto, David Viladés Medel, Zoraida Moreno-Weidmann, Paolo D. Dallaglio, Carles Diez Lopez, Gerard Roura, Jose M. Guerra, Rubén Leta Petracca, Joan Antoni Gomez-Hospital, and et al. 2024. "Diagnostic and Prognostic Value of Right Ventricular Fat Quantification from Computed Tomography in Arrhythmogenic Right Ventricular Cardiomyopathy" Journal of Clinical Medicine 13, no. 13: 3674. https://doi.org/10.3390/jcm13133674
APA StyleFaga, V., Ruiz Cueto, M., Viladés Medel, D., Moreno-Weidmann, Z., Dallaglio, P. D., Diez Lopez, C., Roura, G., Guerra, J. M., Leta Petracca, R., Gomez-Hospital, J. A., Comin Colet, J., Anguera, I., & Di Marco, A. (2024). Diagnostic and Prognostic Value of Right Ventricular Fat Quantification from Computed Tomography in Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of Clinical Medicine, 13(13), 3674. https://doi.org/10.3390/jcm13133674