Guideline-Optimised Treatment in Heart Failure—Do Higher Doses Reduce Systemic Inflammation More Significantly?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Hypothesis
2.2. Study Design
- -
- patients who received a new anti-remodelling agent according to the ESC (European Society of Cardiology) guideline for HF or
- -
- patients who were subject to an up-titration of an already existing anti-remodeling medication according to the ESC guideline for HF. Up-titration was attempted to the maximum tolerated dose.
2.3. Study Patients
- patients diagnosed with chronic heart failure who were admitted to hospital for acute decompensated heart failure
- patients with chronic HF that came for the regular medical evaluation.
- age below 18 years old
- patients with ongoing anti-inflammatory treatment, patients with active systemic inflammatory diseases
- an eGFR < 10 mL/min/1.73 m2
- patients receiving anti-inflammatory drugs (non-steroidal or steroidal anti-inflammators, immunosuppressive agents or other medication with established anti-inflammatory effect) for other comorbidities
2.4. Ethics Approval and Consent to Participate
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Analytic Statistics
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paraskevaidis, I.; Farmakis, D.; Papingiotis, G.; Tsougos, E. Inflammation and Heart Failure: Searching for the Enemy-Reaching the Entelechy. J. Cardiovasc. Dev. Dis. 2023, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Adamo, L.; Rocha-Resende, C.; Prabhu, S.D.; Mann, D.L. Reappraising the Role of Inflammation in Heart Failure. Nat. Rev. Cardiol. 2020, 17, 269–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Bauersachs, J.; Langer, H.F. Immune Mechanisms in Heart Failure. Eur. J. Heart Fail. 2017, 19, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Reina-Couto, M.; Pereira-Terra, P.; Quelhas-Santos, J.; Silva-Pereira, C.; Albino-Teixeira, A.; Sousa, T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front. Physiol. 2021, 12, 746494. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Castiglione, V.; Borrelli, C.; Saccaro, L.F.; Franzini, M.; Masi, S.; Emdin, M.; Giannoni, A. Oxidative Stress and Inflammation in the Evolution of Heart Failure: From Pathophysiology to Therapeutic Strategies. Eur. J. Prev. Cardiol. 2020, 27, 494–510. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Yoon, M.; Cho, H.W.; Cho, H.J.; Kim, K.H.; Yang, D.H.; Yoo, B.S.; Kang, S.M.; Baek, S.H.; Jeon, E.S.; et al. C-Reactive Protein and Statins in Heart Failure with Reduced and Preserved Ejection Fraction. Front. Cardiovasc. Med. 2022, 9, 1064967. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Latini, R.; Florea, V.G.; Kuskowski, M.A.; Rector, T.; Masson, S.; Signorini, S.; Mocarelli, P.; Hester, A.; Glazer, R.; et al. C-Reactive Protein in Heart Failure: Prognostic Value and the Effect of Valsartan. Circulation 2005, 112, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Zhang, J.; Cuthbert, J.; Urbinati, A.; Shah, P.; Kazmi, S.; Clark, A.L.; Cleland, J.G.F. High-Sensitivity C-Reactive Protein in Chronic Heart Failure: Patient Characteristics, Phenotypes, and Mode of Death. Cardiovasc. Res. 2020, 116, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Januzzi, J.L.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. High-Sensitivity Troponin T, NT-ProBNP and Glomerular Filtration Rate: A Multimarker Strategy for Risk Stratification in Chronic Heart Failure. Int. J. Cardiol. 2019, 277, 166–172. [Google Scholar] [CrossRef]
- Montalescot, G.; Collet, J.P.; Choussat, R.; Thomas, D. Fibrinogen as a Risk Factor for Coronary Heart Disease. Eur. Heart J. 1998, 19 (Suppl. H), H11–H17. [Google Scholar]
- Kannel, W.B.; Wolf, P.A.; Castelli, W.P.; D’agostino, R.B. Fibrinogen and Risk of Cardiovascular Disease: The Framingham Study. JAMA 1987, 258, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Stec, J.J.; Silbershatz, H.; Tofler, G.H.; Matheney, T.H.; Sutherland, P.; Lipinska, I.; Massaro, J.M.; Wilson, P.F.W.; Muller, J.E.; D’Agostino, R.B. Association of Fibrinogen with Cardiovascular Risk Factors and Cardiovascular Disease in the Framingham Offspring Population. Circulation 2000, 102, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Zhao, Y.; He, Y. Fibrinogen Level Predicts Outcomes in Critically Ill Patients with Acute Exacerbation of Chronic Heart Failure. Dis. Markers 2021, 2021, 6639393. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Jiang, P.; Zhu, P.; Jia, S.; Zhang, C.; Liu, Y.; Liu, R.; Xu, J.; Tang, X.; Zhao, X.; et al. Prognostic Value of Fibrinogen in Patients with Coronary Artery Disease and Prediabetes or Diabetes Following Percutaneous Coronary Intervention: 5-Year Findings from a Large Cohort Study. Cardiovasc. Diabetol. 2021, 20, 143. [Google Scholar] [CrossRef] [PubMed]
- Haber, H.L.; Leavy, J.A.; Kessler, P.D.; Kukin, M.L.; Gottlieb, S.S.; Packer, M. The Erythrocyte Sedimentation Rate in Congestive Heart Failure. N. Engl. J. Med. 2010, 324, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ingelsson, E.; Ärnlöv, J.; Sundström, J.; Lind, L. Inflammation, as Measured by the Erythrocyte Sedimentation Rate, Is an Independent Predictor for the Development of Heart Failure. J. Am. Coll. Cardiol. 2005, 45, 1802–1806. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Rauchhaus, M.; Ponikowski, P.P.; Varney, S.; Poole-Wilson, P.A.; Mann, D.L.; Coats, A.J.S.; Anker, S.D. The Relationship of the Erythrocyte Sedimentation Rate to Inflammatory Cytokines and Survival in Patients with Chronic Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors. J. Am. Coll. Cardiol. 2000, 36, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Erikssen, G.; Liestøl, K.; Bjørnholt, J.V.; Stormorken, H.; Thaulow, E.; Erikssen, J. Erythrocyte Sedimentation Rate: A Possible Marker of Atherosclerosis and a Strong Predictor of Coronary Heart Disease Mortality. Eur. Heart J. 2000, 21, 1614–1620. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Tardif, J.C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-Treatment Initiation of Colchicine and Cardiovascular Outcomes after Myocardial Infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
- Awad, K.; Zaki, M.M.; Mohammed, M.; Lewek, J.; Lavie, C.J.; Banach, M. Effect of the Renin-Angiotensin System Inhibitors on Inflammatory Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mayo Clin. Proc. 2022, 97, 1808–1823. [Google Scholar] [CrossRef]
- Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and Inflammation: The Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockade. J. Hum. Hypertens. 2007, 21, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, M.; Papa, F. Angiotensin-Converting Enzyme Inhibitor Use Is Associated with Reduced Plasma Concentration of C-Reactive Protein in Patients with First-Ever Ischemic Stroke. Stroke 2003, 34, 2922–2929. [Google Scholar] [CrossRef]
- Brull, D.J.; Sanders, J.; Rumley, A.; Lowe, G.D.; Humphries, S.E.; Montgomery, H.E. Impact of Angiotensin Converting Enzyme Inhibition on Post-Coronary Artery Bypass Interleukin 6 Release. Heart 2002, 87, 252. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Hamada, M.; Hiasa, G.; Sasaki, O.; Suzuki, M.; Hara, Y.; Shigematsu, Y.; Hiwada, K. Effect of Beta-Blockers on Circulating Levels of Inflammatory and Anti-Inflammatory Cytokines in Patients with Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2001, 37, 412–417. [Google Scholar] [CrossRef]
- Anzai, T.; Yoshikawa, T.; Takahashi, T.; Maekawa, Y.; Okabe, T.; Asakura, Y.; Satoh, T.; Mitamura, H.; Ogawa, S. Early Use of Beta-Blockers Is Associated with Attenuation of Serum C-Reactive Protein Elevation and Favorable Short-Term Prognosis after Acute Myocardial Infarction. Cardiology 2003, 99, 47–53. [Google Scholar] [CrossRef]
- Toyoda, S.; Haruyama, A.; Inami, S.; Arikawa, T.; Saito, F.; Watanabe, R.; Sakuma, M.; Abe, S.; Nakajima, T.; Tanaka, A.; et al. Effects of Carvedilol vs Bisoprolol on Inflammation and Oxidative Stress in Patients with Chronic Heart Failure. J. Cardiol. 2020, 75, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, Y.; Yoshikawa, T.; Kohno, T.; Yoshizawa, A.; Anzai, T.; Meguro, T.; Satoh, T.; Ogawa, S. Effects of Beta-Blocker Therapy on High Sensitivity c-Reactive Protein, Oxidative Stress, and Cardiac Function in Patients with Congestive Heart Failure. J. Card. Fail. 2007, 13, 365–371. [Google Scholar] [CrossRef]
- Jenkins, N.P.; Keevil, B.G.; Hutchinson, I.V.; Brooks, N.H. Beta-Blockers Are Associated with Lower C-Reactive Protein Concentrations in Patients with Coronary Artery Disease. Am. J. Med. 2002, 112, 269–274. [Google Scholar] [CrossRef]
- Miura, R.; Nakamura, K.; Miura, D.; Miura, A.; Hisamatsu, K.; Kajiya, M.; Nagase, S.; Morita, H.; Kengo, F.K.; Ohe, T.; et al. Anti-Inflammatory Effect of Spironolactone on Human Peripheral Blood Mononuclear Cells. J. Pharmacol. Sci. 2006, 101, 256–259. [Google Scholar] [CrossRef]
- Yamaji, M.; Tsutamoto, T.; Kawahara, C.; Nishiyama, K.; Yamamoto, T.; Fujii, M.; Horie, M. Effect of Eplerenone versus Spironolactone on Cortisol and Hemoglobin A1c Levels in Patients with Chronic Heart Failure. Am. Heart J. 2010, 160, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, V.; Farquharson, C.A.J.; Macdonald, J.E.; Yee, K.M.; Struthers, A.D. Effect of Spironolactone on C-Reactive Protein Levels in Patients with Heart Disease. Int. J. Cardiol. 2007, 117, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Claggett, B.L.; Liu, J.; Sharma, A.; Desai, A.S.; Anand, I.S.; O’Meara, E.; Rouleau, J.L.; De Denus, S.; Pitt, B.; et al. High-Sensitivity C-Reactive Protein in Heart Failure with Preserved Ejection Fraction: Findings from TOPCAT. Int. J. Cardiol. 2024, 402, 131818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, G.; Zhou, W.; Zhang, W.; Wang, K.; Zhang, J. Neprilysin Inhibitor–Angiotensin II Receptor Blocker Combination Therapy (Sacubitril/Valsartan) Suppresses Atherosclerotic Plaque Formation and Inhibits Inflammation in Apolipoprotein E- Deficient Mice. Sci. Rep. 2019, 9, 6509. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.N.; Cheng, W.H.; Chang, Y.T.; Hsiao, Y.W.; Chang, T.Y.; Hsieh, Y.C.; Lin, Y.J.; Lo, L.W.; Chao, T.F.; Kuo, M.J.; et al. Mechanism of Angiotensin Receptor-Neprilysin Inhibitor in Suppression of Ventricular Arrhythmia. J. Cardiol. 2021, 78, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, A.V.; Pereira-da-Silva, T.; Galrinho, A.; Rio, P.; Branco, L.M.; Soares, R.; Moreira, R.I.; Ferreira, R.C. C-Reactive Protein Reduction with Sacubitril-Valsartan Treatment in Heart Failure Patients. Am. J. Cardiovasc. Dis. 2020, 10, 174. [Google Scholar]
- Scisciola, L.; Cataldo, V.; Taktaz, F.; Fontanella, R.A.; Pesapane, A.; Ghosh, P.; Franzese, M.; Puocci, A.; De Angelis, A.; Sportiello, L.; et al. Anti-Inflammatory Role of SGLT2 Inhibitors as Part of Their Anti-Atherosclerotic Activity: Data from Basic Science and Clinical Trials. Front. Cardiovasc. Med. 2022, 9, 1008922. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Falguera, D.; Monguio-Tortajada, M.; Ferrer Curriu, G.; Aranyo, J.; Teis, A.; Fadeuilhe, E.; Rodriguez-Leor, O.; Diaz-Guemez, I.; Courageux, Y.; Roura, S.; et al. Effect of Sacubitril/Valsartan and Empagliflozin on Systemic Inflammation and Scar Remodeling in a Swine Model of Myocardial Infarction. Eur. Heart J. 2022, 43, ehac544-2920. [Google Scholar] [CrossRef]
- Li, Z.; Agrawal, V.; Ramratnam, M.; Sharma, R.K.; D’Auria, S.; Sincoular, A.; Jakubiak, M.; Music, M.L.; Kutschke, W.J.; Huang, X.N.; et al. Cardiac Sodium-Dependent Glucose Cotransporter 1 Is a Novel Mediator of Ischaemia/Reperfusion Injury. Cardiovasc. Res. 2019, 115, 1646–1658. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.M.; Chang, N.C.; Lin, S.Z. Dapagliflozin, a Selective SGLT2 Inhibitor, Attenuated Cardiac Fibrosis by Regulating the Macrophage Polarization via STAT3 Signaling in Infarcted Rat Hearts. Free Radic. Biol. Med. 2017, 104, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Verma, S.; Teng, G.; Belke, D.; Svystonyuk, D.; Guzzardi, D.; Park, D.; Turnbull, J.; Malik, G.; Fedak, P. Direct effects of empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: Novel translational clues to EMPA-REG outcome. Can. J. Cardiol. 2017, 33, S169. [Google Scholar] [CrossRef]
- Jigheh, Z.A.; Haghjo, A.G.; Argani, H.; Roshangar, L.; Rashtchizadeh, N.; Sanajou, D.; Ahmad, S.N.S.; Rashedi, J.; Dastmalchi, S.; Abbasi, M.M. Empagliflozin Alleviates Renal Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Rats Partly by Repressing HMGB1-TLR4 Receptor Axis. Iran. J. Basic. Med. Sci. 2019, 22, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. The Impact of SGLT2 Inhibitors on Inflammation: A Systematic Review and Meta-Analysis of Studies in Rodents. Int. Immunopharmacol. 2022, 111, 109080. [Google Scholar] [CrossRef] [PubMed]
- La Grotta, R.; de Candia, P.; Olivieri, F.; Matacchione, G.; Giuliani, A.; Rippo, M.R.; Tagliabue, E.; Mancino, M.; Rispoli, F.; Ferroni, S.; et al. Anti-Inflammatory Effect of SGLT-2 Inhibitors via Uric Acid and Insulin. Cell. Mol. Life Sci. 2022, 79, 1–13. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Zhong, L.; Li, S.; Zhou, L.; Zhang, Q.; Li, M.; Xiao, X. The Effect of Sodium-Glucose Cotransporter 2 Inhibitors on Biomarkers of Inflammation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2022, 13, 1045235. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Baumbach, A.; Böhm, M.; Burri, H.; Čelutkiene, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Heart Failure: A 70 Year Odyssey. Eur. Heart J. 2022, 43, 1697–1699. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Arvunescu, A.M.; Ionescu, R.F.; Cretoiu, S.M.; Dumitrescu, S.I.; Zaharia, O.; Nanea, I.T. Inflammation in Heart Failure—Future Perspectives. J. Clin. Med. 2023, 12, 7738. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
HFrEF (N = 111) | HFmrEF (N = 23) | HFpEF (N = 86) | |
---|---|---|---|
Descriptives | |||
Gender | |||
Male | 72 | 15 | 25 |
Female | 39 | 8 | 61 |
Age (mean/min-max) | 68.2 (28–92) | 69.83 (47–91) | 74.62 (41–92) |
Comorbidities | |||
Blood Pressure (mean) | |||
Systolic | 130.40 (90–230) | 140.00 (100–180) | 135.87 (80–190) |
Diastolic | 78.53 (50–134) | 81.91 (60–100) | 76.35 (50–105) |
Chronic coronary syndrome | 92 (82.9%) | 11 (47.8%) | 59 (68.6%) |
Acute coronary syndrome | 52 (46.8%) | 4 (17.4%) | 12 (14.0%) |
Acute myocardial infarction | 53 (47.7%) | 5 (21.7%) | 10 (11.6%) |
Dilated cardiomyopathy | 53 (47.7%) | 3 (13.0%) | 3 (3.5%) |
Hypertrophic cardiomyopathy | 3 (2.7%) | 1 (4.3%) | 12 (14.0%) |
Restrictive cardiomyopathy | 6 (5.4%) | -- | 1 (1.2%) |
Atrial fibrillation | 50 (45.0%) | 17 (73.9%) | 45 (52.3%) |
Atrioventricular block | |||
Grade 1 | 101 (91.0%) | 21 (91.3%) | 82 (95.3%) |
Grade 2 | 9 (8.1%) | 1 (4.3%) | 3 (3.5%) |
Grade 3 | 1 (0.9%) | 1 (4.3%) | -- |
Diabetes mellitus | 51 (45.9%) | 13 (56.5%) | 32 (37.2%) |
Dyslipidemia | 96 (86.5%) | 17 (73.9%) | 79 (91.9%) |
Atheromatosis | 67 (60.4%) | 8 (34.8%) | 43 (50.0%) |
Cerebrovascular events | 5 (4.5%) | -- | 10 (11.6%) |
Acute peripheral ischemia | 11 (9.9%) | -- | 2 (2.3%) |
Chronic Obstructive Pulmonary Disorder | 25 (22.5%) | 3 (13.0%) | 10 (11.6%) |
Chronic kidney disease | 77 (69.4%) | 17 (73.9%) | 47 (54.7%) |
Symptoms | |||
Dyspnea (class) | |||
NYHA 1 | 3 (3.7%) | 1 (4.3%) | 8 (9.3%) |
NYHA 2 | 34 (30.6%) | 12 (52.2%) | 54 (62.8%) |
NYHA 3 | 58 (52.3%) | 10 (43.5%) | 21 (24.4%) |
NYHA 4 | 16 (14.4%) | -- | 3 (3.5%) |
Cough | 26 (23.4%) | 2 (8.7%) | 14 (16.3%) |
Astheny/fatigability | 92 (82.9%) | 16 (69.6%) | 65 (75.6%) |
Angina | 62 (55.9%) | 7 (30.4%) | 45 (52.3%) |
Palpitations | 88 (79.3%) | 15 (65.2%) | 64 (74.4%) |
Syncope | 7 (6.3%) | 1 (4.3%) | 11 (12.8%) |
Jugular vein distension | 42 (37.8%) | 4 (17.4%) | 10 (11.6%) |
Ventricular gallop (III sound) | 16 (17.2%) | 4 (17.4%) | 6 (7.4%) |
Oedema | 61 (55.0%) | 6 (26.1%) | 24 (27.9%) |
Anasarca | 15 (13.5%) | -- | 1 (1.2%) |
Medication | N | % from Total N (207) | T0-T1 (Mean Scores) | ||
---|---|---|---|---|---|
CRP mg/L | ESR mm/h | Fibrinogen mg/dL | |||
Beta-blockers | |||||
Metoprolol (dose per day) | 115 | 55.6% | −1.07 | −1.12 | −20.47 |
50 mg | 41 | 19.8% | −2.74 | −4.46 | −21.31 |
100 mg | 49 | 23.7% | −0.12 | 2.78 | −19.00 |
150 mg | 10 | 4.8% | −3.56 | −1.83 | 2.80 |
200 mg | 15 | 7.2% | 2.03 | −3.16 | −48.20 |
Bisoprolol (dose per day) | 18 | 8.7% | −1.48 | −0.61 | −7.10 |
2.5 mg | 4 | 1.9% | 1.98 | 8.25 | 61.33 |
5 mg | 11 | 5.3% | −3.54 | −1.50 | −39.16 |
10 mg | 3 | 1.4% | 1.45 | −29.00 | −20.00 |
Carvedilol (bi daily) | 37 | 17.87% | −0.54 | 2.18 | 23.90 |
6.25 mg | 7 | 3.4% | 5.70 | −5.25 | 52.66 |
12.5 mg | 16 | 7.7% | −8.14 | −7.30 | −13.00 |
25 mg | 14 | 6.8% | 5.031 | 11.21 | 38.25 |
ACE-I | |||||
Perindopril (dose per day) | 54 | 26.1% | −0.49 | 1.43 | −1.35 |
2.5 mg | 2 | 1.0% | 0.66 | 0.00 | −2.00 |
5 mg | 29 | 14.0% | −3.76 | −1.72 | −13.07 |
10 mg | 23 | 11.1% | 3.86 | 5.60 | 25.66 |
Ramipril (bi daily) | 37 | 17.4% | −3.32 | 2.00 | −15.11 |
2.5 mg | 11 | 5.3% | −8.07 | −7.66 | −3.50 |
5 mg | 15 | 7.2% | −1.36 | 5.54 | 12.85 |
10 mg | 11 | 5.3% | −1.09 | 5.30 | −68.20 |
Enalapril (bi daily) | |||||
10 mg | 5 | 2.4% | −9.39 | −11.66 | −35.50 |
ARB (total dose per day) | |||||
Candesartan | 34 | 16.4% | 4.05 | −2.23 | −0.13 |
4 mg | 0 | 0% | - | - | - |
8 mg | 13 | 6.3% | 4.64 | −5.37 | −52.00 |
16 mg | 10 | 4.8% | 6.07 | −4.62 | −36.00 |
32 mg | 11 | 5.3% | 1.51 | 3.00 | −8.00 |
MRA (total dose per day) | |||||
Spironolactone | 104 | 50.2% | −1.15 | −1.67 | −1.41 |
25 mg | 78 | 37.7% | −0.69 | 3.52 | 7.68 |
50 mg | 24 | 11.6% | −2.60 | −7.18 | −45.00 |
ARNI (bi daily dose) | |||||
Sacubitril/valsartan | 30 | 14.4% | −5.63 | −1.76 | 14.00 |
24/26 mg | 6 | 2.9% | 1.89 | −13.00 | −44.00 |
49/51 mg | 17 | 8.2% | −4.31 | 0.81 | 4.75 |
97/103 mg | 7 | 3.4% | −20.31 | −4.20 | −9.00 |
SGLT2i (once daily) | |||||
Dapagliflozin 10 mg | 31 | 15.0% | −4.91 | −0.61 | −32.47 |
Empagliflozin 10 mg | 2 | 1.0% | −0.58 | −0.10 | −4.37 |
Effect | F | Hypothesis df | Error df | Sig. | Partial Eta Squared |
---|---|---|---|---|---|
ESR T0–T1 | 1.469 | 1.000 | 144.000 | 0.228 | 0.010 |
ESR T0–T1 * Carvedilol dose | 2.682 | 3.000 | 144.000 | 0.049 | 0.053 |
ESR T0–T1 * Metoprolol dose | 0.823 | 4.000 | 144.000 | 0.513 | 0.022 |
ESR T0–T1 * Bisoprolol dose | 1.407 | 3.000 | 144.000 | 0.243 | 0.028 |
CRP T0-T1 | 0.120 | 1.000 | 196.000 | 0.729 | 0.001 |
CRP T0–T1 * Carvedilol dose | 2.240 | 3.000 | 196.000 | 0.085 | 0.033 |
CRP T0–T1 * Metoprolol dose | 0.486 | 4.000 | 196.000 | 0.746 | 0.010 |
CRP T0–T1 * Bisoprolol dose | 0.240 | 3.000 | 196.000 | 0.868 | 0.004 |
Fibrinogen T0-T1 | 0.521 | 1.000 | 85.000 | 0.472 | 0.006 |
Fibrinogen T0–T1 * Carvedilol dose | 0.465 | 3.000 | 85.000 | 0.707 | 0.016 |
Fibrinogen T0–T1 * Metoprolol dose | 0.717 | 4.000 | 85.000 | 0.583 | 0.033 |
Fibrinogen T0–T1 * Bisoprolol dose | 0.760 | 3.000 | 85.000 | 0.520 | 0.026 |
Carvedilol Dose | ESR T0–T1 | Mean | Std. Error | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Without Carvedilol | T0 | 22.746 | 6.582 | 9.735 | 35.756 |
T1 | 15.910 | 6.409 | 3.242 | 28.578 | |
6.25 mg | T0 | 33.709 | 12.447 | 9.107 | 58.311 |
T1 | 18.394 | 12.119 | −5.561 | 42.348 | |
12.5 mg | T0 | 22.583 | 10.362 | 2.101 | 43.065 |
T1 | 7.598 | 10.089 | −12.345 | 27.540 | |
25 mg | T0 | 16.783 | 9.787 | −2.561 | 36.127 |
T1 | 20.312 | 9.529 | 1.477 | 39.147 |
Effect | F | Hypothesis df | Error df | Sig. | Partial Eta Squared |
---|---|---|---|---|---|
CRP T0–T1 | 0.449 | 1.000 | 200.000 | 0.503 | 0.002 |
CRP T0–T1 * perindopril dose | 1.020 | 3.000 | 200.000 | 0.385 | 0.015 |
CRP T0–T1 * ramipril dose | 0.894 | 3.000 | 200.000 | 0.445 | 0.013 |
ESR T0-T1 | 0.365 | 1.000 | 148.000 | 0.547 | 0.002 |
ESR T0–T1 * perindopril dose | 0.986 | 3.000 | 148.000 | 0.401 | 0.020 |
ESR T0–T1 * ramipril dose | 1.268 | 3.000 | 148.000 | 0.287 | 0.025 |
Fibrinogen T0–T1 | 0.125 | 1.000 | 89.000 | 0.725 | 0.001 |
Fibrinogen T0–T1 * perindopril dose | 0.274 | 3.000 | 89.000 | 0.844 | 0.009 |
Fibrinogen T0–T1 * ramipril dose | 0.695 | 3.000 | 89.000 | 0.557 | 0.023 |
Effect | Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared |
---|---|---|---|---|---|---|
CRP T0–T1 | 0.992 | 1.687 | 1.000 | 203.000 | 0.196 | 0.008 |
CRP T0–T1 * candesartan dose | 0.980 | 1.402 | 3.000 | 203.000 | 0.243 | 0.020 |
ESR T0–T1 | 0.998 | 0.367 | 1.000 | 151.000 | 0.545 | 0.002 |
ESR T0–T1 * candesartan dose | 0.010 | 0.521 | 3.000 | 151.000 | 0.668 | 0.010 |
Fibrinogen T0–T1 | 0.987 | 1.192 | 1.000 | 92.000 | 0.278 | 0.013 |
Fibrinogen T0–T1 * candesartan dose | 0.984 | 0.511 | 3.000 | 92.000 | 0.676 | 0.016 |
Effect | F | Hypothesis df | Error df | Sig. | Partial Eta Squared |
---|---|---|---|---|---|
CRP T0–T1 | 0.786 | 1.000 | 204.000 | 0.376 | 0.004 |
CRP T0–T1 * spironolactone dose | 0.221 | 2.000 | 204.000 | 0.802 | 0.002 |
ESR T0–T1 | 0.764 | 1.000 | 152.000 | 0.383 | 0.005 |
ESR T0–T1 * spironolactone dose | 2.499 | 2.000 | 152.000 | 0.086 | 0.032 |
Fibrinogen T0–T1 | 1.250 | 1.000 | 93.000 | 0.266 | 0.013 |
Fibrinogen T0–T1 * spironolactone dose | 1.418 | 2.000 | 93.000 | 0.247 | 0.030 |
Effect | F | Hypothesis df | Error df | Sig. | Partial Eta Squared |
---|---|---|---|---|---|
CRP T0–T1 | 5.249 | 1.000 | 203.000 | 0.023 | 0.025 |
CRP T0–T1 * sacubitril/valsartan dose | 4.488 | 3.000 | 203.000 | 0.004 | 0.062 |
ESR T0–T1 | 1.492 | 1.000 | 151.000 | 0.224 | 0.010 |
ESR T0–T1 * sacubitril/valsartan dose | 0.848 | 3.000 | 151.000 | 0.470 | 0.017 |
Fibrinogen T0–T1 | 0.340 | 1.000 | 92.000 | 0.561 | 0.004 |
Fibrinogen T0–T1 * sacubitril/valsartan dose | 0.183 | 3.000 | 92.000 | 0.908 | 0.006 |
Sacubitril/Valsartan Dose | CRP_T0T1 | Mean | Std. Error | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Without sacubitril/valsartan | T0 | 7.869 | 0.946 | 6.003 | 9.735 |
T1 | 8.233 | 0.821 | 6.614 | 9.853 | |
24/26 mg bi daily | T0 | 4.454 | 5.647 | −6.680 | 15.588 |
T1 | 6.352 | 4.901 | −3.311 | 16.015 | |
49/51 mg bi daily | T0 | 12.960 | 3.063 | 6.922 | 18.998 |
T1 | 8.645 | 2.658 | 3.404 | 13.885 | |
97/103 mg bi daily | T0 | 24.121 | 4.773 | 14.711 | 33.532 |
T1 | 3.809 | 4.142 | −4.358 | 11.975 |
Effect | F | Hypothesis df | Error df | Sig. | Partial Eta Squared |
---|---|---|---|---|---|
CRP T0–T1 | 1.871 | 1.000 | 204.000 | 0.173 | 0.009 |
CRP T0–T1 * dapagliflozin 10 mg | 2.805 | 1.000 | 204.000 | 0.096 | 0.014 |
CRP T0–T1 * empagliflozin 10 mg | 0.956 | 1.000 | 204.000 | 0.329 | 0.005 |
VSH T0–T1 | 0.124 | 1.000 | 152.000 | 0.726 | 0.001 |
VSH T0–T1 * dapagliflozin 10 mg | 0.021 | 1.000 | 152.000 | 0.886 | 0.000 |
VSH T0–T1 * empagliflozin 10 mg | 0.156 | 1.000 | 152.000 | 0.694 | 0.001 |
Fibrinogen T0–T1 | 1.356 | 1.000 | 94.000 | 0.247 | 0.014 |
Fibrinogen T0–T1 * dapagliflozin 10 mg | 2.088 | 1.000 | 94.000 | 0.152 | 0.022 |
Fibrinogen T0–T1 * empagliflozin 10 mg | 0.000 | 94.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvunescu, A.M.; Ionescu, R.F.; Dumitrescu, S.I.; Zaharia, O.; Nanea, T.I. Guideline-Optimised Treatment in Heart Failure—Do Higher Doses Reduce Systemic Inflammation More Significantly? J. Clin. Med. 2024, 13, 3056. https://doi.org/10.3390/jcm13113056
Arvunescu AM, Ionescu RF, Dumitrescu SI, Zaharia O, Nanea TI. Guideline-Optimised Treatment in Heart Failure—Do Higher Doses Reduce Systemic Inflammation More Significantly? Journal of Clinical Medicine. 2024; 13(11):3056. https://doi.org/10.3390/jcm13113056
Chicago/Turabian StyleArvunescu, Alexandru Mircea, Ruxandra Florentina Ionescu, Silviu Ionel Dumitrescu, Ondin Zaharia, and Tiberiu Ioan Nanea. 2024. "Guideline-Optimised Treatment in Heart Failure—Do Higher Doses Reduce Systemic Inflammation More Significantly?" Journal of Clinical Medicine 13, no. 11: 3056. https://doi.org/10.3390/jcm13113056
APA StyleArvunescu, A. M., Ionescu, R. F., Dumitrescu, S. I., Zaharia, O., & Nanea, T. I. (2024). Guideline-Optimised Treatment in Heart Failure—Do Higher Doses Reduce Systemic Inflammation More Significantly? Journal of Clinical Medicine, 13(11), 3056. https://doi.org/10.3390/jcm13113056