Cure of Alzheimer’s Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells
Abstract
:1. Introduction and Background
1.1. Changed Functions of Brain Cell-Types Initiate Impaired Cognition; if Counter-Reactions to Those Changes Are Inadequate, Cognitive Loss May Worsen to the Point of Alzheimer’s Dementia (AD). Therefore, in Order to Cure AD, Inadequate Counter-Reactions Need Augmentation
1.2. The Benefit of Augmenting a Counter-Reaction
1.3. Brain Insulin and the Counter-Reactionary Responses to Reduced Cerebral Glucose Levels
1.4. Intranasal Insulin, Cognition, and AD
1.5. Insulin and Astrocytes
1.6. Insulin and Oligodendrocytes
1.7. Insulin and Synapses/Neurons
1.8. Insulin and Endothelial Cells; Blood Flow
1.9. Insulin, Endothelial Cells and the Dilemma of Nitric Oxide (NO)
1.10. Insulin and Microglia
1.11. Beneficial Effect of Insulin in AD as Shown at the Level of Genes
1.12. Insulin also Benefits AD by Affecting the Extracellular Matrix (ECM)
1.13. Edaravone Affects the Response to Free Radicals
1.14. Edaravone and Oligodendrocytes
1.15. Edaravone, Endothelial Cells/Pericytes, and Endothelin-1: Another Dilemma
1.16. Edaravone and Microglia
1.17. Explanation for a Deleterious Counter-Reaction to Elevated NO
2. Discussion
3. Conclusions and Summary
- The goal of treatment for Alzheimer’s dementia (AD) is a cure, i.e., the restoration of normal cognition;
- Curing AD may be achieved by augmenting the body’s natural counter-reactions to the changed functions of brain cell-types that produced the dementia;
- Intranasal insulin plus edaravone would augment most of the counter-reactions to the changed functions of brain cell-types that cause Alzheimer’s dementia, potentially curing many cases;
- The addition of one or two drugs from among pioglitazone, fluoxetine, and lithium would address the affected brain cell-types and fortify the efficacy of intranasal insulin plus edaravone;
- The suggested regimen is likely to be curative for many individuals afflicted by AD, although no single therapeutic formula is likely to cure all cases because the clinical manifestations of AD have several underlying causes.
Funding
Data Availability Statement
Conflicts of Interest
References
- Fessel, J. Cure of Alzheimer’s Dementia Requires Addressing All of the Affected Brain Cell Types. J. Clin. Med. 2023, 12, 2049. [Google Scholar] [CrossRef]
- Roncarolo, M.G.; Gregori, S.; Bacchetta, R.; Battaglia, M. Tr1 cells and the counter-regulation of immunity: Natural mechanisms and therapeutic applications. In Interleukin-10 in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2014; pp. 39–68. [Google Scholar]
- Prakken, B.J.; Kamphuis, S.; Albani, S. Heat-shock protein 60 as a tool for novel therapeutic strategies that target the induction of regulatory T cells in human arthritis. Expert Opin. Biol. Ther. 2006, 6, 579–589. [Google Scholar] [CrossRef]
- Bacchetta, R.; Lucarelli, B.; Sartirana, C.; Gregori, S.; Lupo Stanghellini, M.T.; Miqueu, P.; Tomiuk, S.; Hernandez-Fuentes, M.; Gianolini, M.E.; Greco, R.; et al. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front. Immunol. 2014, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Desreumaux, P.; Foussat, A.; Allez, M.; Beaugerie, L.; Hébuterne, X.; Bouhnik, Y.; Nachury, M.; Brun, V.; Bastian, H.; Belmonte, N.; et al. Safety and Efficacy of Antigen-Specific Regulatory T-Cell Therapy for Patients with Refractory Crohn’s Disease. Gastroenterology 2012, 5, 1207–1217.e2. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.; Kok, W.L.; Cowan, K.; Hefford, M.; Anichtchik, O. Accumulation of beta-synuclein in cortical neurons is associated with autophagy attenuation in the brains of dementia with Lewy body patients. Brain Res. 2018, 1681, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Beyer, K.; Domingo-Sàbat, M.; Santos, C.; Tolosa, E.; Ferrer, I.; Ariza, A. The decrease of β-synuclein in cortical brain areas defines a molecular subgroup of dementia with Lewy bodies. Brain 2010, 133, 3724–3733. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Kuwahara, T.; Watanabe, K.; Watanabe, K. Antioxidant activity of 3-methyl-1-phenyl-2-pyrazolin-5-one. Redox Rep. 1996, 2, 333–338. [Google Scholar] [CrossRef]
- Jiao, S.-S.; Yao, X.-Q.; Liu, Y.-H.; Wang, Q.-H.; Zeng, F.; Lu, J.-J.; Liu, J.; Zhu, C.; Shen, L.L.; Liu, C.H.; et al. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proc. Natl. Acad. Sci. USA 2015, 112, 5225–5230. [Google Scholar] [CrossRef]
- Borg, M.A.; Sherwin, R.S.; Borg, W.P.; Tamborlane, W.V.; Shulman, G.I. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Investig. 1997, 99, 361–365. [Google Scholar] [CrossRef]
- De Feo, P.; Gallai, V.; Mazzotta, G.; Crispino, G.; Torlone, E.; Perriello, G.; Ventura, M.M.; Santeusanio, F.; Brunetti, P.; Bolli, G.B. Modest decrements in plasma glucose concentration cause early impairment in cognitive function and later activation of glucose counterregulation in the absence of hypoglycemic symptoms in normal man. J. Clin. Investig. 1988, 82, 436–444. [Google Scholar] [CrossRef]
- Gruetter, R.; Ugurbil, K.; Seaquist, E.R. Steady-state cerebral glucose concentrations and transport in the human brain. J. Neurochem. 1998, 70, 397–408. [Google Scholar] [CrossRef]
- Duran, J.; Gruart, A.; García-Rocha, M.; Delgado-García, J.M.; Guinovart, J.J. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet. 2014, 23, 3147–3156. [Google Scholar] [CrossRef]
- Oe, Y.; Baba, O.; Ashida, H.; Nakamura, K.C.; Hirase, H. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 2016, 64, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Ekonomou, A.; Savva, G.; Brayne, C.; Forster, G.; Francis, P.; Johnson, M.; Perry, E.K.; Attems, J.; Somani, A.; Minger, S.L.; et al. Stage-specific changes in neurogenic and glial markers in Alzheimer s disease. Biol. Psychiatry 2015, 77, 711–719. [Google Scholar] [CrossRef]
- Rogers, R.C.; Burke, S.J.; Collier, J.J.; Ritter, S.; Hermann, G.E. Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 318, R38–R48. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.C.; Hermann, G.E. Hindbrain astrocytes and glucose counter-regulation. Physiol. Behav. 2019, 204, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.; Moheet, A.; Seaquist, E.R. Central mechanisms of glucose sensing and counterregulation in defense of hypoglycemia. Endocr. Rev. 2019, 40, 768–788. [Google Scholar] [CrossRef] [PubMed]
- Ritter, S.; Li, A.-J.; Wang, Q. Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla. Physiol Behav. 2019, 208, 112568. [Google Scholar] [CrossRef]
- Milstein, J.L.; Ferris, H.A. The brain as an insulin-sensitive metabolic organ. Mol. Metab. 2021, 52, 101234. [Google Scholar] [CrossRef]
- Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 2011, 68, 51–57. [Google Scholar] [CrossRef]
- Friedland, R.; Jagust, W.; Huesman, R.; Koss, E.; Knittel, B.; Mathis, C. Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology 1989, 39, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, L.; Pupi, A.; De Leon, M.J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2008, 1147, 180–195. [Google Scholar] [CrossRef]
- Ma, H.R.; Sheng, L.Q.; Pan, P.L.; Wang, G.D.; Luo, R.; Shi, H.C.; Dai, Z.Y.; Zhong, J.G. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: A meta-analysis. Transl. Neurodegener. 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Diggs-Andrews, K.A.; Zhang, X.; Song, Z.; Daphna-Iken, D.; Routh, V.H.; Fisher, S.J. Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia. Diabetes 2010, 59, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol. 2012, 69, 29–38. [Google Scholar] [CrossRef]
- Shemesh, E.; Rudich, A.; Harman-Boehm, I.; Cukierman-Yaffe, T. Effect of intranasal insulin on cognitive function: A systematic review. J. Clin. Endocrinol. Metab. 2012, 97, 366–376. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Kalaitzidis, G.; Malli, A.; Kalaitzoglou, D.; Myserlis, P.G.; Lioutas, V.-A. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: A systematic review. J. Neurol. 2018, 265, 1497–1510. [Google Scholar] [CrossRef]
- Suh, S.W.; Gum, E.T.; Hamby, A.M.; Chan, P.H.; Swanson, R.A. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J. Clin. Investig. 2007, 117, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Villar-Delfino, P.H.; Gomes, N.A.O.; Christo, P.P.; Nogueira-Machado, J.A.; Volpe, C.M.O. Edaravone Inhibits the Production of Reactive Oxygen Species in Phagocytosis-and PKC-Stimulated Granulocytes from Multiple Sclerosis Patients Edaravone Modulate Oxidative Stress in Multiple Sclerosis. J. Cent. Nerv. Syst. Dis. 2022, 14, 11795735221092524. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Xue, C.; Sakaguchi, M.; Konishi, M.; Shirazian, A.; Ferris, H.A.; Li, M.E.; Yu, R.; Kleinridders, A.; Pothos, E.N.; et al. Insulin regulates astrocyte gliotransmission and modulates behavior. J. Clin. Investig. 2018, 128, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- Heni, M.; Hennige, A.M.; Peter, A.; Siegel-Axel, D.; Ordelheide, A.-M.; Krebs, N.; Machicao, F.; Fritsche, A.; Häring, H.-U.; Staiger, H. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS ONE 2011, 6, e21594. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.; Christie, I.N.; Korsak, A.; Doronin, M.; Brazhe, A.; Hosford, P.S.; Wells, J.A.; Sheikhbahaei, S.; Humoud, I.; Paton, J.F.R.; et al. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kapogiannis, D.; Mattson, M.P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 2011, 10, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-L.; Zou, S.; Chen, J.-J.; Zhao, J.; Li, S. The neuroprotective effect of the association of aquaporin-4/glutamate transporter-1 against Alzheimer’s disease. Neural Plast. 2016, 2016, 4626593. [Google Scholar] [CrossRef]
- McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W. Insulin-like growth factor I/somatomedin C: A potent inducer of oligodendrocyte development. Proc. Natl. Acad. Sci. USA 1986, 83, 822–826. [Google Scholar] [CrossRef] [PubMed]
- De Meyts, P.; Wallach, B.; Christoffersen, C.T.; Ursø, B.; Grønskov, K.; Latus, L.-J.; Yakushiji, F.; Ilondo, M.M.; Shymko, R.M. The insulin-like growth factor-I receptor. Horm. Res. Paediatr. 1994, 42, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Pinelis, V.; Krasilnikova, I.; Bakaeva, Z.; Surin, A.; Boyarkin, D.; Fisenko, A.; Krasilnikova, O.; Pomytkin, I. Insulin Diminishes Superoxide Increase in Cytosol and Mitochondria of Cultured Cortical Neurons Treated with Toxic Glutamate. Int. J. Mol. Sci. 2022, 23, 12593. [Google Scholar] [CrossRef]
- Mahmood, A.H.; Uddin, M.; Ibrahim, M.; Mandal, S.; Alhamami, H.; Briski, K. Sex differences in forebrain estrogen receptor regulation of hypoglycemic patterns of counter-regulatory hormone secretion and ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and astrocyte glycogen metabolic enzyme expression. Neuropeptides 2018, 72, 65–74. [Google Scholar] [CrossRef]
- Kuboki, K.; Jiang, Z.Y.; Takahara, N.; Ha, S.W.; Igarashi, M.; Yamauchi, T.; Feener, E.P.; Herbert, T.P.; Rhodes, C.J.; King, G.L. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: A specific vascular action of insulin. Circulation 2000, 101, 676–681. [Google Scholar] [CrossRef]
- Chiu, S.-L.; Chen, C.-M.; Cline, H.T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008, 58, 708–719. [Google Scholar] [CrossRef]
- Yki-Jarvinen, H.; Utriainen, T. Insulin-induced vasodilatation: Physiology or pharmacology? Diabetologia 1998, 41, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Cranston, I.; Marsden, P.; Matyka, K.; Evans, M.; Lomas, J.; Sonksen, P.; Maisey, M.; Amiel, S.A. Regional differences in cerebral blood flow and glucose utilization in diabetic man: The effect of insulin. J. Cereb. Blood Flow Metab. 1998, 18, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Akintola, A.A.; van Opstal, A.M.; Westendorp, R.G.; Postmus, I.; van der Grond, J.; van Heemst, D. Effect of intranasally administered insulin on cerebral blood flow and perfusion; a randomized experiment in young and older adults. Aging (Albany N Y) 2017, 9, 790. [Google Scholar] [CrossRef]
- Novak, V.; Milberg, W.; Hao, Y.; Munshi, M.; Novak, P.; Galica, A.; Manor, B.; Roberson, P.; Craft, S.; Abduljalil, A. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes. Diabetes Care 2014, 37, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Scatena, R.; Bottoni, P.; Pontoglio, A.; Giardina, B. Pharmacological modulation of nitric oxide release: New pharmacological perspectives, potential benefits and risks. Curr. Med. Chem. 2010, 17, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Brabazon, F.; Bermudez, S.; Shaughness, M.; Khayrullina, G.; Byrnes, K.R. The effects of insulin on the inflammatory activity of BV2 microglia. PLoS ONE 2018, 13, e0201878. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, D.; Rong, T.; Chen, M. The effect of edaravone on subcortical cerebral infarction patients and the risk of neurological deterioration. Int. J. Clin. Exp. Med. 2020, 13, 8990–8997. [Google Scholar]
- Haas, C.B.; de Carvalho, A.K.; Muller, A.P.; Eggen, B.J.; Portela, L.V. Insulin activates microglia and increases COX-2/IL-1β expression in young but not in aged hippocampus. Brain Res. 2020, 1741, 146884. [Google Scholar] [CrossRef]
- Ravetti, M.G.; Rosso, O.A.; Berretta, R.; Moscato, P. Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease. PLoS ONE 2010, 5, e10153. [Google Scholar]
- Jolles, J.; Bothmer, J.; Markerink, M.; Ravid, R. Phosphatidylinositol kinase is reduced in Alzheimer’s disease. J. Neurochem. 1992, 58, 2326–2329. [Google Scholar] [CrossRef]
- Hallschmid, M. Intranasal insulin. J. Neuroendocrinol. 2021, 33, e12934. [Google Scholar] [CrossRef] [PubMed]
- Maffucci, T.; Brancaccio, A.; Piccolo, E.; Stein, R.C.; Falasca, M. Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J. 2003, 22, 4178–4189. [Google Scholar] [CrossRef]
- Reinhard, S.M.; Razak, K.; Ethell, I.M. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell. Neurosci. 2015, 9, 280. [Google Scholar] [CrossRef]
- Fischoeder, A.; Meyborg, H.; Stibenz, D.; Fleck, E.; Graf, K.; Stawowy, P. Insulin augments matrix metalloproteinase-9 expression in monocytes. Cardiovasc. Res. 2007, 73, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Begum, R.; Thota, S.; Abdulkadir, A.; Kaur, G.; Bagam, P.; Batra, S. NADPH oxidase family proteins: Signaling dynamics to disease management. Cell. Mol. Immunol. 2022, 19, 660–686. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Bayraktutan, U. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-βI and prooxidant enzyme NADPH oxidase. Redox Biol. 2014, 2, 694–701. [Google Scholar] [CrossRef]
- Moriya, M.; Nakatsuji, Y.; Miyamoto, K.; Okuno, T.; Kinoshita, M.; Kumanogoh, A.; Kusunoki, S.; Sakoda, S. Edaravone, a free radical scavenger, ameliorates experimental autoimmune encephalomyelitis. Neurosci. Lett. 2008, 3, 323–326. [Google Scholar] [CrossRef]
- Agresti, C.; Mechelli, R.; Olla, S.; Veroni, C.; Eleuteri, C.; Ristori, G.; Salvetti, M. Oxidative status in multiple sclerosis and off-targets of antioxidants: The case of edaravone. Curr. Med. Chem. 2020, 27, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- Takase, H.; Liang, A.C.; Miyamoto, N.; Hamanaka, G.; Ohtomo, R.; Maki, T.; Pham, L.-D.D.; Lok, J.; Lo, E.H.; Arai, K. Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci. Lett. 2018, 668, 120–125. [Google Scholar] [CrossRef]
- Takase, H.; Lok, J.; Arai, K. A radical scavenger edaravone and oligodendrocyte protection/regeneration. Neural Regen. Res. 2018, 13, 1550. [Google Scholar]
- Li, X.; Lu, F.; Li, W.; Qin, L.; Yao, Y.; Ge, X.; Yu, Q.; Liang, X.; Zhao, D.; Li, X.; et al. Edaravone injection reverses learning and memory deficits in a rat model of vascular dementia. Acta Biochim. Biophys. Sin. 2017, 49, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Nortley, R.; Korte, N.; Izquierdo, P.; Hirunpattarasilp, C.; Mishra, A.; Jaunmuktane, Z.; Kyrargyri, V.; Pfeiffer, T.; Khennouf, L.; Madry, C.; et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 2019, 365, eaav9518. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Chang, H.; Wang, D.; Li, H.; Yin, A. Fuzzy C-means clustering algorithm-based magnetic resonance imaging image segmentation for analyzing the effect of edaravone on the vascular endothelial function in patients with acute cerebral infarction. Contrast Media Mol. Imaging 2021, 2021, 4080305. [Google Scholar] [CrossRef]
- Li, H. The influence of edaravone on serum ET, slCAM-1, MCP-1 and neurological function in acute cerebral infarction. Chin. J. Prim. Med. Pharm. 2012, 12, 3562–3563. [Google Scholar]
- Ishibashi, A.; Yoshitake, Y.; Adachi, H. Investigation of effect of edaravone on ischemic stroke. Kurume Med. J. 2013, 60, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dai, X.; Zhou, L.; Li, X.; Pan, D. Edaravone plays protective effects on LPS-induced microglia by switching M1/M2 phenotypes and regulating NLRP3 inflammasome activation. Front. Pharmacol. 2021, 12, 691773. [Google Scholar] [CrossRef]
- Laurent, M.; Lepoivre, M.; Tenu, J.-P. Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem. J. 1996, 314, 109–113. [Google Scholar] [CrossRef]
- Kawasaki, H.; Ito, Y.; Kitabayashi, C.; Tanaka, A.; Nishioka, R.; Yamazato, M.; Ishizawa, K.; Nagai, T.; Hirayama, M.; Takahashi, K.; et al. Effects of edaravone on nitric oxide, hydroxyl radicals and neuronal nitric oxide synthase during cerebral ischemia and reperfusion in mice. J. Stroke Cerebrovasc. Dis. 2020, 29, 104531. [Google Scholar] [CrossRef]
- Otani, H.; Togashi, H.; Jesmin, S.; Sakuma, I.; Yamaguchi, T.; Matsumoto, M.; Kakehata, H.; Yoshioka, M. Temporal effects of edaravone, a free radical scavenger, on transient ischemia-induced neuronal dysfunction in the rat hippocampus. Eur. J. Pharmacol. 2005, 512, 129–137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fessel, J. Cure of Alzheimer’s Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells. J. Clin. Med. 2023, 12, 3151. https://doi.org/10.3390/jcm12093151
Fessel J. Cure of Alzheimer’s Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells. Journal of Clinical Medicine. 2023; 12(9):3151. https://doi.org/10.3390/jcm12093151
Chicago/Turabian StyleFessel, Jeffrey. 2023. "Cure of Alzheimer’s Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells" Journal of Clinical Medicine 12, no. 9: 3151. https://doi.org/10.3390/jcm12093151
APA StyleFessel, J. (2023). Cure of Alzheimer’s Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells. Journal of Clinical Medicine, 12(9), 3151. https://doi.org/10.3390/jcm12093151