Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. One Repetition Maximum (1RM)
2.3. Resistance Training Program
2.4. Assessment of Body Composition
2.5. Blood Collection and Measurements
Items | Day | Program |
---|---|---|
Warm-up (15 min) | Working and stretching | |
Main exercise (25 min) | Monday | Seated chest press |
Lying dumbbell fly | ||
Cable cross over fly | ||
Pec deck fly machine | ||
Crunch | ||
Tuesday | Stated leg press | |
Leg extension machine | ||
Leg curl machine | ||
Standing calf raise machine | ||
Reverse crunch | ||
Thursday | Chinning assistant machine | |
Let pull down machine | ||
One arm dumbbell row | ||
Seated cable row machine | ||
Crunch | ||
Friday | Barbell curl machine | |
Hammer curl | ||
Lying triceps barbell extension | ||
Cable triceps pull down | ||
Reverse crunch | ||
Saturday | Seated shoulder press machine | |
Side lateral raise machine | ||
Dumbbell front raise | ||
Back lateral raise machine | ||
Crunch | ||
Cooldown (20 min) | Data | Walking and stretching |
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, E.; Hill, K.D.; Codde, J.; Jacques, A.; Ng, Y.L.; Hill, A.-M. Encouraging Adults Aged 65 and over to Participate in Resistance Training by Linking Them with a Peer: A Pilot Study. Int. J. Environ. Res. Public Health 2023, 20, 3248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, D.; He, J.; Liang, X.; Li, D.; Song, W.; Ding, S.; Shu, J.; Sun, X.; Sun, J. Effects of Velocity-Based versus Percentage-Based Resistance Training on Explosive Neuromuscular Adaptations and Anaerobic Power in Sport-College Female Basketball Players. Healthcare 2023, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martínez, P.; Ramirez-Campillo, R.; Alix-Fages, C.; Gene-Morales, J.; García-Ramos, A.; Colado, J.C. Chronic Resistance Training Effects on Serum Adipokines in Type 2 Diabetes Mellitus: A Systematic Review. Healthcare 2023, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Seki, S.; Hwang, I. Effects of resistance training on bone mineral density and resting serum hormones in female collegiate distance runners: A randomized controlled pilot trial. J. Sport. Med. Phys. Fit. 2023. [Google Scholar] [CrossRef]
- Oh, D.-H.; Lee, J.-K. Effect of Different Intensities of Aerobic Exercise Combined with Resistance Exercise on Body Fat, Lipid Profiles, and Adipokines in Middle-Aged Women with Obesity. Int. J. Environ. Res. Public Health 2023, 20, 3991. [Google Scholar] [CrossRef]
- Pru, J.K. Low-serum anti-Müllerian hormone in middle-aged women associates with obesity markers. Menopause 2023, 30, 237–238. [Google Scholar] [CrossRef]
- Laine, C.; Wee, C.C. Overweight and Obesity: Current Clinical Challenges. Ann. Intern. Med. 2023. [Google Scholar] [CrossRef]
- Bernardi, L.A.; Carnethon, M.R.; de Chavez, P.J.; Ikhena, D.E.; Neff, L.M.; Baird, D.D.; Marsh, E.E. Relationship between obesity and anti-Müllerian hormone in reproductive-aged African American women. Obesity 2017, 25, 229–235. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Micangeli, G.; Lucarelli, M.; Tarani, L.; Ceccanti, M.; Spaziani, M.; D’orazi, V.; Petrella, C.; Fiore, M. NGF and BDNF in pediatrics syndromes. Neurosci. Biobehav. Rev. 2023, 145, 105015. [Google Scholar] [CrossRef]
- Sahay, A.S.; Jadhav, A.T.; Sundrani, D.P.; Wagh, G.N.; Joshi, S.R. Differential Expression of Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in Different Regions of Normal and Preeclampsia Placentae. Clin. Exp. Hypertens. 2020, 42, 360–364. [Google Scholar] [CrossRef]
- Ye, Y.; Wu, P.; Wang, Y.; Yang, X.; Ye, Y.; Yuan, J.; Liu, Y.; Song, X.; Yan, S.; Wen, Y.; et al. Adiponectin, leptin, and leptin/adiponectin ratio with risk of gestational diabetes mellitus: A prospective nested case-control study among Chinese women. Diabetes Res. Clin. Pract. 2022, 191, 110039. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Melo, S.R.; Santos, L.R.D.; Morais, J.B.S.; Cru, K.J.C.; de Oliveira, A.R.S.; da Silva, N.C.; de Sousa, G.S.; Payolla, T.B.; Murata, G.; Bordin, S.; et al. Leptin and its relationship with magnesium biomarkers in women with obesity. Biometals 2022, 35, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Palacios, S. Obesity in women’s life: Role of GLP-1 agonists. Gynecol. Endocrinol. 2022, 38, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Egan, A.D.; Winchester, J.B.; Foster, C.; McGuigan, M.R. Using Session RPE to Monitor Different Methods of Resistance Exercise. J. Sport. Sci. Med. 2006, 5, 289–295. [Google Scholar]
- Im, J.Y.; Bang, H.S.; Seo, D.Y. The Effects of 12 Weeks of a Combined Exercise Program on Physical Function and Hormonal Status in Elderly Korean Women. Int. J. Environ. Res. Public Health 2019, 16, 4196. [Google Scholar] [CrossRef]
- Martins, C.; Gower, B.; Hunter, G.R. Metabolic adaptation after combined resistance and aerobic exercise training in older women. Obesity 2022, 30, 1453–1461. [Google Scholar] [CrossRef]
- Kim, S.-W.; Park, H.-Y.; Jung, W.-S.; Lim, K. Effects of Twenty-Four Weeks of Resistance Exercise Training on Body Composition, Bone Mineral Density, Functional Fitness and Isokinetic Muscle Strength in Obese Older Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14554. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Lu, J.; Ma, Q.; Shi, Y.; Liu, J.; Xin, S.; Su, H. Effects of Different Resistance Exercise Forms on Body Composition and Muscle Strength in Overweight and/or Obese Individuals: A Systematic Review and Meta-Analysis. Front. Physiol. 2022, 12, 791999. [Google Scholar] [CrossRef]
- Kim, W.; Hur, M.-H. Effect of Resistance Exercise Program for Middle-Aged Women with Myofascial Pain Syndrome on Shoulder Pain, Angle of Shoulder Range of Motion, and Body Composition Randomized Controlled Trial, RCT. J. Korean Acad. Nurs. 2020, 50, 286–297. [Google Scholar] [CrossRef]
- Nicoletti, V.G.; Pajer, K.; Calcagno, D.; Pajenda, G.; Nógrádi, A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022, 12, 1015. [Google Scholar] [CrossRef]
- Turkmen, B.A.; Yazici, E.; Erdogan, D.G.; Suda, M.A.; Yazici, A.B. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry 2021, 21, 562. [Google Scholar] [CrossRef] [PubMed]
- Babiarz, M.; Laskowski, R.; Grzywacz, T. Effects of Strength Training on BDNF in Healthy Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 13795. [Google Scholar] [CrossRef] [PubMed]
- Schmolesky, M.T.; Webb, D.L.; Hansen, R.A. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sport. Sci. Med. 2013, 12, 502–511. [Google Scholar] [CrossRef]
- Rentería, I.; García-Suárez, P.C.; Martínez-Corona, D.O.; Moncada-Jiménez, J.; Plaisance, E.P.; Jiménez-Maldonado, A. Short-term high-Intensity interval training increases systemic brain-derived neurotrophic factor (BDNF) in healthy women. Eur. J. Sport Sci. 2020, 20, 516–524. [Google Scholar] [CrossRef]
- Cho, J.-K.; Kim, S.-U.; Hong, H.-R.; Yoon, J.-H.; Kang, H.-S. Exercise Training Improves Whole Body Insulin Resistance via Adiponectin Receptor 1. Int. J. Sports Med. 2015, 36, e24–e30. [Google Scholar] [CrossRef]
- Ward, L.J.; Nilsson, S.; Hammar, M.; Lindh-Åstrand, L.; Berin, E.; Lindblom, H.; Holm, A.-C.S.; Rubér, M.; Li, W. Resistance training decreases plasma levels of adipokines in postmenopausal women. Sci. Rep. 2020, 10, 19837. [Google Scholar] [CrossRef]
- Martelli, D.; Brooks, V.L. Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic–Pituitary–Thyroid Axis. Int. J. Mol. Sci. 2023, 24, 2684. [Google Scholar] [CrossRef]
- Grover, A.; Quaye, E.; Brychta, R.J.; Christensen, J.; Startzell, M.S.; Meehan, C.A.; Valencia, A.; Marshall, B.; Chen, K.Y.; Brown, R.J. Leptin Decreases Energy Expenditure Despite Increased Thyroid Hormone in Patients with Lipodystrophy. J. Clin. Endocrinol. Metab. 2021, 106, e4163–e4178. [Google Scholar] [CrossRef]
- Prestes, J.; Nascimento, D.D.C.; Neto, I.V.D.S.; Tibana, R.A.; Shiguemoto, G.E.; Perez, S.E.D.A.; Botero, J.P.; Schoenfeld, B.J.; Pereira, G.B. The Effects of Muscle Strength Responsiveness to Periodized Resistance Training on Resistin, Leptin, and Cytokine in Elderly Postmenopausal Women. J. Strength Cond. Res. 2018, 32, 113–120. [Google Scholar] [CrossRef]
- Bjersing, J.L.; Larsson, A.; Palstam, A.; Ernberg, M.; Bileviciute-Ljungar, I.; Löfgren, M.; Gerdle, B.; Kosek, E.; Mannerkorpi, K. Benefits of resistance exercise in lean women with fibromyalgia: Involvement of IGF-1 and leptin. BMC Musculoskelet. Disord. 2017, 18, 106. [Google Scholar] [CrossRef]
- Rios, I.N.M.S.; Lamarca, F.; Vieira, F.T.; de Melo, H.A.B.; Magalhães, K.G.; de Carvalho, K.M.B.; Pizato, N. The Positive Impact of Resistance Training on Muscle Mass and Serum Leptin Levels in Patients 2–7 Years Post-Roux-en-Y Gastric Bypass: A Controlled Clinical Trial. Obes. Surg. 2021, 31, 3758–3767. [Google Scholar] [CrossRef] [PubMed]
- Sandsdal, R.M.; Juhl, C.R.; Jensen, S.B.K.; Lundgren, J.R.; Janus, C.; Blond, M.B.; Rosenkilde, M.; Bogh, A.F.; Gliemann, L.; Jensen, J.-E.B.; et al. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: A randomized controlled trial. Cardiovasc. Diabetol. 2023, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, M.; Xie, Y.; Lang, H.; Li, T.; Yi, L.; Zhang, Q.; Mi, M. Dihydromyricetin Enhances Exercise-Induced GLP-1 Elevation through Stimulating cAMP and Inhibiting DPP-4. Nutrients 2022, 14, 4583. [Google Scholar] [CrossRef]
- Park, S.H.; Yoon, J.H.; Seo, D.Y.; Kim, T.N.; Ko, J.R.; Han, J. Resistance Exercise Training Attenuates the Loss of Endogenous GLP-1 Receptor in the Hypothalamus of Type 2 Diabetic Rats. Int. J. Environ. Res. Public Health 2019, 16, 830. [Google Scholar] [CrossRef] [PubMed]
Groups 1 | Years | Hight (cm) | Weight (kg) | BMI (kg/m2) | Fat (%) |
---|---|---|---|---|---|
CON | 60.62 ± 2.77 | 157.37 ± 6.32 | 66.62 ± 5.47 | 27.38 ± 1.90 | 36.87 ± 4.61 |
Drop | 60.00 ± 2.97 | 158.37 ± 5.42 | 70.25 ± 5.23 | 27.98 ± 0.81 | 38.12 ± 3.64 |
Descend | 59.42 ± 2.57 | 156.85 ± 4.81 | 68.42 ± 4.79 | 27.82 ± 1.74 | 37.85 ± 2.96 |
Ascend | 59.37 ± 3.20 | 155.00 ± 5.20 | 66.62 ± 4.43 | 27.78 ± 2.17 | 38.12 ± 3.39 |
Variables | Drop | Descend | Ascend |
---|---|---|---|
1 set | 40% | 60% | 40% |
2 set | 55% | 55% | 50% |
3 set | 65% | 50% | 55% |
4 set | 45% | 40% | 60% |
Total | 205% | 205% | 20% |
Variables | CON | Drop | Descend | Ascend | Source | F | Post-Hoc | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||||
Weight (kg) | 67.75 ± 5.06 | 67.75 ± 3.91 | 70.25 ± 5.23 | 69.12 ± 3.52 | 68.42 ± 4.79 | 67.57 ± 4.23 | 66.62 ± 4.43 | 66.25 ± 3.88 | T | 3.095 | NS |
G | 0.571 | ||||||||||
T × G | 0.639 | ||||||||||
Fat (%) | 36.87 ± 4.61 | 36.62 ± 4.17 | 36.12 ± 3.64 | 35.37 ± 2.68 | 35.85 ± 2.96 | 34.71 ± 2.42 | 38.12 ± 3.39 | 37.62 ± 2.50 | T | 2.478 | NS |
G | 0.142 | ||||||||||
T × G | 1.889 | ||||||||||
BMI (kg/m2) | 27.38 ± 1.91 | 27.40 ± 1.83 | 27.98 ± 1.84 | 27.56 ± 1.76 | 27.82 ± 1.74 | 27.51 ± 2.26 | 27.77 ± 2.17 | 27.61 ± 1.93 | T | 2.571 | NS |
G | 1.101 | ||||||||||
T × G | 0.671 |
Variables | CON | Drop | Descend | Ascend | Source | F | Post-Hoc | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||||
BDNF (pg/dL) | 179.87 ± 29.21 | 178.37 ± 17.33 | 181.12 ± 31.05 | 227.02 ± 24.35 | 176.42 ± 17.58 | 207.71 ± 34.13 | 171.01 ± 26.15 | 176.42 ± 17.58 | T | 14.640 ** | C > A,D |
G | 2.986 | ||||||||||
T × G | 3.027 * | ||||||||||
NGF (pg/dL) | 35.62 ± 3.73 | 36.25 ± 6.49 | 32.25 ± 5.44 | 47.12 ± 11.28 | 37.00 ± 5.97 | 43.85 ± 5.89 | 35.62 ± 7.57 | 38.12 ± 7.377 | T | 17.436 *** | C > D |
G | 1.065 | ||||||||||
T × G | 4.692 ** |
Variables | CON | Drop | Descend | Ascend | Source | F | Post-Hoc | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||||
Adiponectin (ng/mL) | 279.50 ± 27.74 | 272.62 ± 36.47 | 291.37 ± 26.10 | 311.12 ± 24.70 | 287.28 ± 28.83 | 308.71 ± 38.68 | 286.12 ± 26.90 | 305.50 ± 32.13 | T | 7.033 *** | B,C > D |
G | 1.211 | ||||||||||
T × G | 4.435 * | ||||||||||
Leptin (pg/mL) | 164.62 ± 24.85 | 166.12 ± 26.81 | 159.75 ± 20.35 | 141.62 ± 16.70 | 167.75 ± 28.23 | 152.75 ± 15.38 | 162.07 ± 18.85 | 152.75 ± 31.81 | T | 11.699 ** | NS |
G | 2.107 | ||||||||||
T × G | 0.611 | ||||||||||
GLP-1 (ng/mL) | 1.72 ± 0.51 | 1.77 ± 0.50 | 1.68 ± 0.50 | 1.34 ± 0.34 | 1.74 ± 0.45 | 1.37 ± 0.30 | 1.86 ± 0.44 | 1.53 ± 0.43 | T | 18.256 *** | C > D |
G | 0.558 | ||||||||||
T × G | 3.031 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, H.S. Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity. J. Clin. Med. 2023, 12, 3135. https://doi.org/10.3390/jcm12093135
Bang HS. Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity. Journal of Clinical Medicine. 2023; 12(9):3135. https://doi.org/10.3390/jcm12093135
Chicago/Turabian StyleBang, Hyun Seok. 2023. "Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity" Journal of Clinical Medicine 12, no. 9: 3135. https://doi.org/10.3390/jcm12093135
APA StyleBang, H. S. (2023). Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity. Journal of Clinical Medicine, 12(9), 3135. https://doi.org/10.3390/jcm12093135