Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. One Repetition Maximum (1RM)
2.3. Resistance Training Program
2.4. Assessment of Body Composition
2.5. Blood Collection and Measurements
Items | Day | Program |
---|---|---|
Warm-up (15 min) | Working and stretching | |
Main exercise (25 min) | Monday | Seated chest press |
Lying dumbbell fly | ||
Cable cross over fly | ||
Pec deck fly machine | ||
Crunch | ||
Tuesday | Stated leg press | |
Leg extension machine | ||
Leg curl machine | ||
Standing calf raise machine | ||
Reverse crunch | ||
Thursday | Chinning assistant machine | |
Let pull down machine | ||
One arm dumbbell row | ||
Seated cable row machine | ||
Crunch | ||
Friday | Barbell curl machine | |
Hammer curl | ||
Lying triceps barbell extension | ||
Cable triceps pull down | ||
Reverse crunch | ||
Saturday | Seated shoulder press machine | |
Side lateral raise machine | ||
Dumbbell front raise | ||
Back lateral raise machine | ||
Crunch | ||
Cooldown (20 min) | Data | Walking and stretching |
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, E.; Hill, K.D.; Codde, J.; Jacques, A.; Ng, Y.L.; Hill, A.-M. Encouraging Adults Aged 65 and over to Participate in Resistance Training by Linking Them with a Peer: A Pilot Study. Int. J. Environ. Res. Public Health 2023, 20, 3248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, D.; He, J.; Liang, X.; Li, D.; Song, W.; Ding, S.; Shu, J.; Sun, X.; Sun, J. Effects of Velocity-Based versus Percentage-Based Resistance Training on Explosive Neuromuscular Adaptations and Anaerobic Power in Sport-College Female Basketball Players. Healthcare 2023, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martínez, P.; Ramirez-Campillo, R.; Alix-Fages, C.; Gene-Morales, J.; García-Ramos, A.; Colado, J.C. Chronic Resistance Training Effects on Serum Adipokines in Type 2 Diabetes Mellitus: A Systematic Review. Healthcare 2023, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Seki, S.; Hwang, I. Effects of resistance training on bone mineral density and resting serum hormones in female collegiate distance runners: A randomized controlled pilot trial. J. Sport. Med. Phys. Fit. 2023. [Google Scholar] [CrossRef]
- Oh, D.-H.; Lee, J.-K. Effect of Different Intensities of Aerobic Exercise Combined with Resistance Exercise on Body Fat, Lipid Profiles, and Adipokines in Middle-Aged Women with Obesity. Int. J. Environ. Res. Public Health 2023, 20, 3991. [Google Scholar] [CrossRef]
- Pru, J.K. Low-serum anti-Müllerian hormone in middle-aged women associates with obesity markers. Menopause 2023, 30, 237–238. [Google Scholar] [CrossRef]
- Laine, C.; Wee, C.C. Overweight and Obesity: Current Clinical Challenges. Ann. Intern. Med. 2023. [Google Scholar] [CrossRef]
- Bernardi, L.A.; Carnethon, M.R.; de Chavez, P.J.; Ikhena, D.E.; Neff, L.M.; Baird, D.D.; Marsh, E.E. Relationship between obesity and anti-Müllerian hormone in reproductive-aged African American women. Obesity 2017, 25, 229–235. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Micangeli, G.; Lucarelli, M.; Tarani, L.; Ceccanti, M.; Spaziani, M.; D’orazi, V.; Petrella, C.; Fiore, M. NGF and BDNF in pediatrics syndromes. Neurosci. Biobehav. Rev. 2023, 145, 105015. [Google Scholar] [CrossRef]
- Sahay, A.S.; Jadhav, A.T.; Sundrani, D.P.; Wagh, G.N.; Joshi, S.R. Differential Expression of Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in Different Regions of Normal and Preeclampsia Placentae. Clin. Exp. Hypertens. 2020, 42, 360–364. [Google Scholar] [CrossRef]
- Ye, Y.; Wu, P.; Wang, Y.; Yang, X.; Ye, Y.; Yuan, J.; Liu, Y.; Song, X.; Yan, S.; Wen, Y.; et al. Adiponectin, leptin, and leptin/adiponectin ratio with risk of gestational diabetes mellitus: A prospective nested case-control study among Chinese women. Diabetes Res. Clin. Pract. 2022, 191, 110039. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Melo, S.R.; Santos, L.R.D.; Morais, J.B.S.; Cru, K.J.C.; de Oliveira, A.R.S.; da Silva, N.C.; de Sousa, G.S.; Payolla, T.B.; Murata, G.; Bordin, S.; et al. Leptin and its relationship with magnesium biomarkers in women with obesity. Biometals 2022, 35, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Palacios, S. Obesity in women’s life: Role of GLP-1 agonists. Gynecol. Endocrinol. 2022, 38, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Egan, A.D.; Winchester, J.B.; Foster, C.; McGuigan, M.R. Using Session RPE to Monitor Different Methods of Resistance Exercise. J. Sport. Sci. Med. 2006, 5, 289–295. [Google Scholar]
- Im, J.Y.; Bang, H.S.; Seo, D.Y. The Effects of 12 Weeks of a Combined Exercise Program on Physical Function and Hormonal Status in Elderly Korean Women. Int. J. Environ. Res. Public Health 2019, 16, 4196. [Google Scholar] [CrossRef]
- Martins, C.; Gower, B.; Hunter, G.R. Metabolic adaptation after combined resistance and aerobic exercise training in older women. Obesity 2022, 30, 1453–1461. [Google Scholar] [CrossRef]
- Kim, S.-W.; Park, H.-Y.; Jung, W.-S.; Lim, K. Effects of Twenty-Four Weeks of Resistance Exercise Training on Body Composition, Bone Mineral Density, Functional Fitness and Isokinetic Muscle Strength in Obese Older Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14554. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Lu, J.; Ma, Q.; Shi, Y.; Liu, J.; Xin, S.; Su, H. Effects of Different Resistance Exercise Forms on Body Composition and Muscle Strength in Overweight and/or Obese Individuals: A Systematic Review and Meta-Analysis. Front. Physiol. 2022, 12, 791999. [Google Scholar] [CrossRef]
- Kim, W.; Hur, M.-H. Effect of Resistance Exercise Program for Middle-Aged Women with Myofascial Pain Syndrome on Shoulder Pain, Angle of Shoulder Range of Motion, and Body Composition Randomized Controlled Trial, RCT. J. Korean Acad. Nurs. 2020, 50, 286–297. [Google Scholar] [CrossRef]
- Nicoletti, V.G.; Pajer, K.; Calcagno, D.; Pajenda, G.; Nógrádi, A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022, 12, 1015. [Google Scholar] [CrossRef]
- Turkmen, B.A.; Yazici, E.; Erdogan, D.G.; Suda, M.A.; Yazici, A.B. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry 2021, 21, 562. [Google Scholar] [CrossRef] [PubMed]
- Babiarz, M.; Laskowski, R.; Grzywacz, T. Effects of Strength Training on BDNF in Healthy Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 13795. [Google Scholar] [CrossRef] [PubMed]
- Schmolesky, M.T.; Webb, D.L.; Hansen, R.A. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sport. Sci. Med. 2013, 12, 502–511. [Google Scholar] [CrossRef]
- Rentería, I.; García-Suárez, P.C.; Martínez-Corona, D.O.; Moncada-Jiménez, J.; Plaisance, E.P.; Jiménez-Maldonado, A. Short-term high-Intensity interval training increases systemic brain-derived neurotrophic factor (BDNF) in healthy women. Eur. J. Sport Sci. 2020, 20, 516–524. [Google Scholar] [CrossRef]
- Cho, J.-K.; Kim, S.-U.; Hong, H.-R.; Yoon, J.-H.; Kang, H.-S. Exercise Training Improves Whole Body Insulin Resistance via Adiponectin Receptor 1. Int. J. Sports Med. 2015, 36, e24–e30. [Google Scholar] [CrossRef]
- Ward, L.J.; Nilsson, S.; Hammar, M.; Lindh-Åstrand, L.; Berin, E.; Lindblom, H.; Holm, A.-C.S.; Rubér, M.; Li, W. Resistance training decreases plasma levels of adipokines in postmenopausal women. Sci. Rep. 2020, 10, 19837. [Google Scholar] [CrossRef]
- Martelli, D.; Brooks, V.L. Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic–Pituitary–Thyroid Axis. Int. J. Mol. Sci. 2023, 24, 2684. [Google Scholar] [CrossRef]
- Grover, A.; Quaye, E.; Brychta, R.J.; Christensen, J.; Startzell, M.S.; Meehan, C.A.; Valencia, A.; Marshall, B.; Chen, K.Y.; Brown, R.J. Leptin Decreases Energy Expenditure Despite Increased Thyroid Hormone in Patients with Lipodystrophy. J. Clin. Endocrinol. Metab. 2021, 106, e4163–e4178. [Google Scholar] [CrossRef]
- Prestes, J.; Nascimento, D.D.C.; Neto, I.V.D.S.; Tibana, R.A.; Shiguemoto, G.E.; Perez, S.E.D.A.; Botero, J.P.; Schoenfeld, B.J.; Pereira, G.B. The Effects of Muscle Strength Responsiveness to Periodized Resistance Training on Resistin, Leptin, and Cytokine in Elderly Postmenopausal Women. J. Strength Cond. Res. 2018, 32, 113–120. [Google Scholar] [CrossRef]
- Bjersing, J.L.; Larsson, A.; Palstam, A.; Ernberg, M.; Bileviciute-Ljungar, I.; Löfgren, M.; Gerdle, B.; Kosek, E.; Mannerkorpi, K. Benefits of resistance exercise in lean women with fibromyalgia: Involvement of IGF-1 and leptin. BMC Musculoskelet. Disord. 2017, 18, 106. [Google Scholar] [CrossRef]
- Rios, I.N.M.S.; Lamarca, F.; Vieira, F.T.; de Melo, H.A.B.; Magalhães, K.G.; de Carvalho, K.M.B.; Pizato, N. The Positive Impact of Resistance Training on Muscle Mass and Serum Leptin Levels in Patients 2–7 Years Post-Roux-en-Y Gastric Bypass: A Controlled Clinical Trial. Obes. Surg. 2021, 31, 3758–3767. [Google Scholar] [CrossRef] [PubMed]
- Sandsdal, R.M.; Juhl, C.R.; Jensen, S.B.K.; Lundgren, J.R.; Janus, C.; Blond, M.B.; Rosenkilde, M.; Bogh, A.F.; Gliemann, L.; Jensen, J.-E.B.; et al. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: A randomized controlled trial. Cardiovasc. Diabetol. 2023, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, M.; Xie, Y.; Lang, H.; Li, T.; Yi, L.; Zhang, Q.; Mi, M. Dihydromyricetin Enhances Exercise-Induced GLP-1 Elevation through Stimulating cAMP and Inhibiting DPP-4. Nutrients 2022, 14, 4583. [Google Scholar] [CrossRef]
- Park, S.H.; Yoon, J.H.; Seo, D.Y.; Kim, T.N.; Ko, J.R.; Han, J. Resistance Exercise Training Attenuates the Loss of Endogenous GLP-1 Receptor in the Hypothalamus of Type 2 Diabetic Rats. Int. J. Environ. Res. Public Health 2019, 16, 830. [Google Scholar] [CrossRef] [PubMed]
Groups 1 | Years | Hight (cm) | Weight (kg) | BMI (kg/m2) | Fat (%) |
---|---|---|---|---|---|
CON | 60.62 ± 2.77 | 157.37 ± 6.32 | 66.62 ± 5.47 | 27.38 ± 1.90 | 36.87 ± 4.61 |
Drop | 60.00 ± 2.97 | 158.37 ± 5.42 | 70.25 ± 5.23 | 27.98 ± 0.81 | 38.12 ± 3.64 |
Descend | 59.42 ± 2.57 | 156.85 ± 4.81 | 68.42 ± 4.79 | 27.82 ± 1.74 | 37.85 ± 2.96 |
Ascend | 59.37 ± 3.20 | 155.00 ± 5.20 | 66.62 ± 4.43 | 27.78 ± 2.17 | 38.12 ± 3.39 |
Variables | Drop | Descend | Ascend |
---|---|---|---|
1 set | 40% | 60% | 40% |
2 set | 55% | 55% | 50% |
3 set | 65% | 50% | 55% |
4 set | 45% | 40% | 60% |
Total | 205% | 205% | 20% |
Variables | CON | Drop | Descend | Ascend | Source | F | Post-Hoc | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||||
Weight (kg) | 67.75 ± 5.06 | 67.75 ± 3.91 | 70.25 ± 5.23 | 69.12 ± 3.52 | 68.42 ± 4.79 | 67.57 ± 4.23 | 66.62 ± 4.43 | 66.25 ± 3.88 | T | 3.095 | NS |
G | 0.571 | ||||||||||
T × G | 0.639 | ||||||||||
Fat (%) | 36.87 ± 4.61 | 36.62 ± 4.17 | 36.12 ± 3.64 | 35.37 ± 2.68 | 35.85 ± 2.96 | 34.71 ± 2.42 | 38.12 ± 3.39 | 37.62 ± 2.50 | T | 2.478 | NS |
G | 0.142 | ||||||||||
T × G | 1.889 | ||||||||||
BMI (kg/m2) | 27.38 ± 1.91 | 27.40 ± 1.83 | 27.98 ± 1.84 | 27.56 ± 1.76 | 27.82 ± 1.74 | 27.51 ± 2.26 | 27.77 ± 2.17 | 27.61 ± 1.93 | T | 2.571 | NS |
G | 1.101 | ||||||||||
T × G | 0.671 |
Variables | CON | Drop | Descend | Ascend | Source | F | Post-Hoc | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||||
BDNF (pg/dL) | 179.87 ± 29.21 | 178.37 ± 17.33 | 181.12 ± 31.05 | 227.02 ± 24.35 | 176.42 ± 17.58 | 207.71 ± 34.13 | 171.01 ± 26.15 | 176.42 ± 17.58 | T | 14.640 ** | C > A,D |
G | 2.986 | ||||||||||
T × G | 3.027 * | ||||||||||
NGF (pg/dL) | 35.62 ± 3.73 | 36.25 ± 6.49 | 32.25 ± 5.44 | 47.12 ± 11.28 | 37.00 ± 5.97 | 43.85 ± 5.89 | 35.62 ± 7.57 | 38.12 ± 7.377 | T | 17.436 *** | C > D |
G | 1.065 | ||||||||||
T × G | 4.692 ** |
Variables | CON | Drop | Descend | Ascend | Source | F | Post-Hoc | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||||
Adiponectin (ng/mL) | 279.50 ± 27.74 | 272.62 ± 36.47 | 291.37 ± 26.10 | 311.12 ± 24.70 | 287.28 ± 28.83 | 308.71 ± 38.68 | 286.12 ± 26.90 | 305.50 ± 32.13 | T | 7.033 *** | B,C > D |
G | 1.211 | ||||||||||
T × G | 4.435 * | ||||||||||
Leptin (pg/mL) | 164.62 ± 24.85 | 166.12 ± 26.81 | 159.75 ± 20.35 | 141.62 ± 16.70 | 167.75 ± 28.23 | 152.75 ± 15.38 | 162.07 ± 18.85 | 152.75 ± 31.81 | T | 11.699 ** | NS |
G | 2.107 | ||||||||||
T × G | 0.611 | ||||||||||
GLP-1 (ng/mL) | 1.72 ± 0.51 | 1.77 ± 0.50 | 1.68 ± 0.50 | 1.34 ± 0.34 | 1.74 ± 0.45 | 1.37 ± 0.30 | 1.86 ± 0.44 | 1.53 ± 0.43 | T | 18.256 *** | C > D |
G | 0.558 | ||||||||||
T × G | 3.031 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, H.S. Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity. J. Clin. Med. 2023, 12, 3135. https://doi.org/10.3390/jcm12093135
Bang HS. Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity. Journal of Clinical Medicine. 2023; 12(9):3135. https://doi.org/10.3390/jcm12093135
Chicago/Turabian StyleBang, Hyun Seok. 2023. "Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity" Journal of Clinical Medicine 12, no. 9: 3135. https://doi.org/10.3390/jcm12093135
APA StyleBang, H. S. (2023). Effect of Resistance Training with Different Set Structures on Neurotrophic Factors and Obesity-Related Biomarkers in Middle-Aged Korean Women with Obesity. Journal of Clinical Medicine, 12(9), 3135. https://doi.org/10.3390/jcm12093135