Relationships among Postprandial Plasma Active GLP-1 and GIP Excursions, Skeletal Muscle Mass, and Body Fat Mass in Patients with Type 2 Diabetes Treated with Either Miglitol, Sitagliptin, or Their Combination: A Secondary Analysis of the MASTER Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements of Body Composition
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics and Physiological and Biochemical Parameters
3.2. Changes in SMI and TBFMI
3.3. Rates of SMI, TBFMI, aGLP-1-iAUC, aGIP-iAUC, Glucose-iAUC, and IRI-iAUC Changes
3.4. Correlation between Rates of aGLP-1-iAUC or aGIP-iAUC and SMI Changes
3.5. Correlation between Rates of aGLP-1-iAUC or aGIP-iAUC and TBFMI Changes
3.6. Correlation between Rates of TBFMI and SMI Changes
3.7. Correlation between Rates of IRI-iAUC and SMI or TBFMI Changes
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Iwasaki, K.; Murata, Y.; Harada, N.; Yamane, S.; Hamasaki, A.; Shibue, K.; Joo, E.; Sankoda, A.; Fujiwara, Y.; et al. Distribution and hormonal characterization of primary murine L cells throughout the gastrointestinal tract. J. Diabetes Investig. 2018, 9, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, P.L. The glucagon-like peptides: Pleiotropic regulators of nutrient homeostasis. Ann. N. Y. Acad. Sci. 2006, 1070, 10–26. [Google Scholar] [CrossRef]
- Vollmer, K.; Holst, J.J.; Baller, B.; Ellrichmann, M.; Nauck, M.A.; Schmidt, W.E.; Meier, J.J. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008, 57, 678–687. [Google Scholar] [CrossRef]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Omar, B.; Ahren, B. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes 2014, 63, 2196–2202. [Google Scholar] [CrossRef]
- Baggio, L.L.; Varin, E.M.; Koehler, J.A.; Cao, X.; Lokhnygina, Y.; Stevens, S.R.; Holman, R.R.; Drucker, D.J. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat. Commun. 2020, 11, 3766. [Google Scholar] [CrossRef]
- Joshi, S.R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R. Therapeutic potential of alpha-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin. Pharmacother. 2015, 16, 1959–1981. [Google Scholar] [CrossRef]
- Narita, T.; Katsuura, Y.; Sato, T.; Hosoba, M.; Fujita, H.; Morii, T.; Yamada, Y. Miglitol induces prolonged and enhanced glucagon-like peptide-1 and reduced gastric inhibitory polypeptide responses after ingestion of a mixed meal in Japanese Type 2 diabetic patients. Diabet. Med. 2009, 26, 187–188. [Google Scholar] [CrossRef]
- Narita, T.; Yokoyama, H.; Yamashita, R.; Sato, T.; Hosoba, M.; Morii, T.; Fujita, H.; Tsukiyama, K.; Yamada, Y. Comparisons of the effects of 12-week administration of miglitol and voglibose on the responses of plasma incretins after a mixed meal in Japanese type 2 diabetic patients. Diabetes Obes. Metab. 2012, 14, 283–287. [Google Scholar] [CrossRef]
- Aoki, K.; Miyazaki, T.; Nagakura, J.; Orime, K.; Togashi, Y.; Terauchi, Y. Effects of pre-meal versus post-meal administration of miglitol on plasma glucagon-like peptide-1 and glucosedependent insulinotropic polypeptide levels in healthy men. Endocr. J. 2010, 57, 673–677. [Google Scholar] [CrossRef]
- Masuda, K.; Aoki, K.; Terauchi, Y. Effects of miglitol taken just before or after breakfast on plasma glucose, serum insulin, glucagon and incretin levels after lunch in men with normal glucose tolerance, impaired fasting glucose or impaired glucose tolerance. J. Diabetes Investig. 2011, 2, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Spencer, C.M. Miglitol: A review of its therapeutic potential in type 2 diabetes mellitus. Drugs 2000, 59, 521–549. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Tsukiyama, K.; Sato, T.; Shimizu, T.; Fujita, H.; Narita, T. Novel extrapancreatic effects of incretin. J. Diabetes Investig. 2016, 7, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Yabe, D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J. Diabetes Investig. 2013, 4, 108–130. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Morii, T.; Fujishima, H.; Sato, T.; Shimizu, T.; Hosoba, M.; Tsukiyama, K.; Narita, T.; Takahashi, T.; Drucker, D.J.; et al. The protective roles of GLP-1R signaling in diabetic nephropathy: Possible mechanism and therapeutic potential. Kidney Int. 2014, 85, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Shimizu, T.; Fujita, H.; Imai, Y.; Drucker, D.J.; Seino, Y.; Yamada, Y. GLP-1 Receptor Signaling Differentially Modifies the Outcomes of Sterile vs. Viral Pulmonary Inflammation in Male Mice. Endocrinology 2020, 161, bqaa201. [Google Scholar] [CrossRef]
- Mikada, A.; Narita, T.; Yokoyama, H.; Yamashita, R.; Horikawa, Y.; Tsukiyama, K.; Yamada, Y. Effects of miglitol, sitagliptin, and initial combination therapy with both on plasma incretin responses to a mixed meal and visceral fat in over-weight Japanese patients with type 2 diabetes. “The MASTER randomized, controlled trial”. Diabetes Res. Clin. Pract. 2014, 106, 538–547. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Abdulla, H.; Phillips, B.E.; Wilkinson, D.J.; Limb, M.; Jandova, T.; Bass, J.J.; Rankin, D.; Cegielski, J.; Sayda, M.; Crossland, H.; et al. Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell 2020, 19, e13202. [Google Scholar] [CrossRef]
- Yamada, S.; Ogura, Y.; Inoue, K.; Tanabe, J.; Sugaya, T.; Ohata, K.; Nagai, Y.; Natsuki, Y.; Hoshino, S.; Watanabe, S.; et al. Effect of GLP-1 receptor agonist, liraglutide, on muscle in spontaneously diabetic torii fatty rats. Mol. Cell. Endocrinol. 2022, 539, 111472. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, J.H.; Jeong, K.W.; Choi, C.S.; Jun, H.S. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J. Cachexia Sarcopenia Muscle 2019, 10, 903–918. [Google Scholar] [CrossRef]
- Holst, J.J.; Deacon, C.F.; Vilsboll, T.; Krarup, T.; Madsbad, S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol. Med. 2008, 14, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Degn, K.B.; Juhl, C.B.; Sturis, J.; Jakobsen, G.; Brock, B.; Chandramouli, V.; Rungby, J.; Landau, B.R.; Schmitz, O. One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004, 53, 1187–1194. [Google Scholar] [CrossRef]
- Bouchi, R.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Dipeptidyl peptidase 4 inhibitors attenuates the decline of skeletal muscle mass in patients with type 2 diabetes. Diabetes/Metab. Res. Rev. 2018, 34, e2957. [Google Scholar] [CrossRef]
- Miyawaki, K.; Yamada, Y.; Ban, N.; Ihara, Y.; Tsukiyama, K.; Zhou, H.; Fujimoto, S.; Oku, A.; Tsuda, K.; Toyokuni, S.; et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 2002, 8, 738–742. [Google Scholar] [CrossRef]
- Zhu, S.; Tian, Z.; Torigoe, D.; Zhao, J.; Xie, P.; Sugizaki, T.; Sato, M.; Horiguchi, H.; Terada, K.; Kadomatsu, T.; et al. Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy. PLoS ONE 2019, 14, e0221366. [Google Scholar] [CrossRef] [PubMed]
- Biltz, N.K.; Collins, K.H.; Shen, K.C.; Schwartz, K.; Harris, C.A.; Meyer, G.A. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J. Physiol. 2020, 598, 2669–2683. [Google Scholar] [CrossRef]
- Page, M.M.; Johnson, J.D. Mild Suppression of Hyperinsulinemia to Treat Obesity and Insulin Resistance. Trends Endocrinol. Metab. 2018, 29, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Templeman, N.M.; Skovso, S.; Page, M.M.; Lim, G.E.; Johnson, J.D. A causal role for hyperinsulinemia in obesity. J. Endocrinol. 2017, 232, R173–R183. [Google Scholar] [CrossRef] [PubMed]
- Bahne, E.; Sun, E.W.L.; Young, R.L.; Hansen, M.; Sonne, D.P.; Hansen, J.S.; Rohde, U.; Liou, A.P.; Jackson, M.L.; de Fontgalland, D.; et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight 2018, 3, e93936. [Google Scholar] [CrossRef] [PubMed]
Treatment Duration | Miglitol Group | Sitagliptin Group | Miglitol Plus Sitagliptin Group | |
---|---|---|---|---|
n (male/female) | 11 (9/2) | 13 (10/3) | 11 (6/5) | |
Age (years) | 59.6 ± 7.5 | 60.5 ± 11.1 | 62.1 ± 11.4 | |
Body weight (kg) | Baseline 24 weeks | 80.7 ± 11.8 79.5 ± 12.4 | 75.7 ± 11.1 75.8 ± 11.8 | 72.0 ± 5.5 70.8 ± 6.4 |
Body mass index (kg/m2) | Baseline 24 weeks | 28.9 ± 6.0 28.5 ± 6.2 | 28.7 ± 2.6 28.7 ± 2.6 | 28.2 ± 2.2 27.7 ± 2.6 |
Systolic blood pressure (mmHg) | Baseline 24 weeks | 131 ± 18 124 ± 16 | 134 ± 19 127 ± 18 | 124 ± 7 122 ± 12 |
Diastolic blood pressure (mmHg) | Baseline 24 weeks | 73 ± 11 72 ± 9 | 76 ± 12 76 ± 11 | 124 ± 7 122 ± 12 |
Fasting plasma glucose (mmol/L) | Baseline 24 weeks | 7.4 ± 1.3 7.3 ± 1.4 | 7.6 ± 1.2 7.1 ± 1.1 | 7.9 ± 1.3 6.7 ± 1.1 * |
Fasting serum IRI (pmol/L) | Baseline 24 weeks | 34 ± 22 43 ± 25 | 58 ± 28 65 ± 34 | 60 ± 71 70 ± 105 |
HbA1c (%) | Baseline 24 weeks | 6.9 ± 0.5 6.6 ± 0.6 | 7.4 ± 1.0 6.8 ± 0.6 ** | 7.1 ± 0.6 6.5 ± 0.4 * |
LDL-cholesterol (mmol/L) | Baseline 24 weeks | 3.22 ± 0.61 3.09 ± 0.62 | 3.26 ± 0.59 3.11 ± 0.62 | 3.46 ± 0.65 3.34 ± 0.81 |
HDL-cholesterol (mmol/L) | Baseline 24 weeks | 1.47 ± 0.42 1.44 ± 0.33 | 1.31 ± 0.34 1.25 ± 0.28 | 1.38 ± 0.24 1.41 ± 0.29 |
Triglyceride (mmol/L) | Baseline 24 weeks | 1.98 ± 1.23 1.70 ± 0.55 | 2.55 ± 1.58 2.37 ± 1.78 | 2.25 ± 2.09 1.61 ± 0.54 |
Fasting plasma active GLP-1 (pmol/L) | Baseline 24 weeks | 1.56 ± 0.86 1.57 ± 0.72 | 1.78 ± 0.56 4.31 ± 2.95 * | 1.42 ± 0.48 3.74 ± 2.86 ** |
Fasting plasma active GIP (pmol/L) | Baseline 24 weeks | 7.6 ± 12.2 12.5 ± 8.0 | 12.2 ± 9.0 25.5 ± 18.7 ** | 6.3 ± 6.6 20.0 ± 14.9 * |
Use of metformin (n [%]) | 6 (54.5) | 4 (30.8) | 4 (36.4) | |
Use of sulfonylurea (n [%]) | 2 (18.2) | 1 (7.7) | 3 (27.3) | |
Use of antihypertensive agents (n [%]) | 3 (27.3) | 6 (46.2) | 6 (54.5) | |
Use of lipid-lowering agents (n [%]) | 1 (9.1) | 3 (23.1) | 2 (18.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, M.; Fujita, H.; Yokoyama, H.; Mikada, A.; Horikawa, Y.; Takahashi, Y.; Yamada, Y.; Waki, H.; Narita, T. Relationships among Postprandial Plasma Active GLP-1 and GIP Excursions, Skeletal Muscle Mass, and Body Fat Mass in Patients with Type 2 Diabetes Treated with Either Miglitol, Sitagliptin, or Their Combination: A Secondary Analysis of the MASTER Study. J. Clin. Med. 2023, 12, 3104. https://doi.org/10.3390/jcm12093104
Sato M, Fujita H, Yokoyama H, Mikada A, Horikawa Y, Takahashi Y, Yamada Y, Waki H, Narita T. Relationships among Postprandial Plasma Active GLP-1 and GIP Excursions, Skeletal Muscle Mass, and Body Fat Mass in Patients with Type 2 Diabetes Treated with Either Miglitol, Sitagliptin, or Their Combination: A Secondary Analysis of the MASTER Study. Journal of Clinical Medicine. 2023; 12(9):3104. https://doi.org/10.3390/jcm12093104
Chicago/Turabian StyleSato, Masahiro, Hiroki Fujita, Hiroki Yokoyama, Atsushi Mikada, Yohei Horikawa, Yuya Takahashi, Yuichiro Yamada, Hironori Waki, and Takuma Narita. 2023. "Relationships among Postprandial Plasma Active GLP-1 and GIP Excursions, Skeletal Muscle Mass, and Body Fat Mass in Patients with Type 2 Diabetes Treated with Either Miglitol, Sitagliptin, or Their Combination: A Secondary Analysis of the MASTER Study" Journal of Clinical Medicine 12, no. 9: 3104. https://doi.org/10.3390/jcm12093104
APA StyleSato, M., Fujita, H., Yokoyama, H., Mikada, A., Horikawa, Y., Takahashi, Y., Yamada, Y., Waki, H., & Narita, T. (2023). Relationships among Postprandial Plasma Active GLP-1 and GIP Excursions, Skeletal Muscle Mass, and Body Fat Mass in Patients with Type 2 Diabetes Treated with Either Miglitol, Sitagliptin, or Their Combination: A Secondary Analysis of the MASTER Study. Journal of Clinical Medicine, 12(9), 3104. https://doi.org/10.3390/jcm12093104