Breath Prints for Diagnosing Asthma in Children
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Internal Validation
3.2. External Validation
3.3. Breath Prints’ Reproducibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of Asthma in Children and Adults. Front. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, G.; La Grutta, S. The Burden of Pediatric Asthma. Front. Pediatr. 2018, 6, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.; Townshend, J.; Brodlie, M. Diagnosis and Management of Asthma in Children. BMJ Paediatr. Open 2022, 6, e001277. [Google Scholar] [CrossRef] [PubMed]
- Trikamjee, T.; Comberiati, P.; Peter, J. Pediatric Asthma in Developing Countries: Challenges and Future Directions. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 80–85. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention 2022; Global Initiative for Asthma: Fontana, WI, USA, 2022. [Google Scholar]
- 2018 Exceptional Surveillance of Asthma: Diagnosis, Monitoring and Chronic Asthma Management (NICE Guideline NG80) [Internet]; National Institute for Health and Care Excellence (NICE): London, UK, 2018. Available online: https://pubmed.ncbi.nlm.nih.gov/32091686/ (accessed on 24 May 2022).
- Fuglsbjerg, M.G.; Rasmussen, M.A.; Hansen, K.S.; Smolinska, A.; Dallinga, J.W.; van Schooten, F.J.; Stokholm, J.; Bønnelykke, K.; Bisgaard, H.; Chawes, B.L. Limited Clinical Value of Exhaled Volatile Organic Compound Measurements in Childhood Asthma. ERJ Open Res. 2018, 4, 00026-2018. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, A.; Klaassen, E.M.M.; Dallinga, J.W.; Van De Kant, K.D.G.; Jobsis, Q.; Moonen, E.J.C.; Van Schayck, O.C.P.; Dompeling, E.; Van Schooten, F.J. Profiling of Volatile Organic Compounds in Exhaled Breath as a Strategy to Find Early Predictive Signatures of Asthma in Children. PLoS ONE 2014, 9, e95668. [Google Scholar] [CrossRef] [Green Version]
- Dragonieri, S.; Quaranta, V.N.; Carratu, P.; Ranieri, T.; Resta, O. Exhaled Breath Profiling by Electronic Nose Enabled Discrimination of Allergic Rhinitis and Extrinsic Asthma. Biomarkers 2019, 24, 70–75. [Google Scholar] [CrossRef]
- Bannier, M.A.G.E.; van de Kant, K.D.G.; Jöbsis, Q.; Dompeling, E. Feasibility and Diagnostic Accuracy of an Electronic Nose in Children with Asthma and Cystic Fibrosis. J. Breath Res. 2019, 13, 036009. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.I.; Brinkman, P.; Vijverberg, S.J.H.; Neerincx, A.H.; de Vries, R.; Dagelet, Y.W.F.; Riley, J.H.; Hashimoto, S.; Montuschi, P.; Chung, K.F.; et al. ENose Breath Prints as a Surrogate Biomarker for Classifying Patients with Asthma by Atopy. J. Allergy Clin. Immunol. 2020, 146, 1045–1055. [Google Scholar] [CrossRef]
- Fasola, S.; Ferrante, G.; Sabatini, A.; Santonico, M.; Zompanti, A.; Grasso, S.; Antonelli Incalzi, R.; La Grutta, S. Repeatability of Exhaled Breath Fingerprint Collected by a Modern Sampling System in Asthmatic and Healthy Children. J. Breath Res. 2019, 13, 036007. [Google Scholar] [CrossRef]
- Brinkman, P.; Wagener, A.H.; Hekking, P.P.; Bansal, A.T.; Maitland-van der Zee, A.H.; Wang, Y.; Weda, H.; Knobel, H.H.; Vink, T.J.; Rattray, N.J.; et al. Identification and Prospective Stability of Electronic Nose (ENose)-Derived Inflammatory Phenotypes in Patients with Severe Asthma. J. Allergy Clin. Immunol. 2019, 143, 1811–1820.e7. [Google Scholar] [CrossRef] [Green Version]
- Tenero, L.; Sandri, M.; Piazza, M.; Paiola, G.; Zaffanello, M.; Piacentini, G. Electronic Nose in Discrimination of Children with Uncontrolled Asthma. J. Breath Res. 2020, 14, 046003. [Google Scholar] [CrossRef] [PubMed]
- Rutjes, N.; Van den Bongaardt, I.; Hashimoto, S.; Sterk, P.; Van Aalderen, W.; Terheggen-Lagro, S.; Brinkman, P.; Maitland-van der Zee, A.H.; Van der Schee, M.; Haarman, E. Prediction of Asthma in Early Preschool Wheezing by Electronic Nose Analysis. Pediatr. Allergy Immunol. 2022, 33, e13612. [Google Scholar] [CrossRef]
- Dragonieri, S.; Pennazza, G.; Carratu, P.; Resta, O. Electronic Nose Technology in Respiratory Diseases. Lung 2017, 195, 157–165. [Google Scholar] [CrossRef]
- Dragonieri, S.; Schot, R.; Mertens, B.J.A.; Le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F.; et al. An Electronic Nose in the Discrimination of Patients with Asthma and Controls. J. Allergy Clin. Immunol. 2007, 120, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Dragonieri, S.; Annema, J.T.; Schot, R.; van der Schee, M.P.C.; Spanevello, A.; Carratú, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An Electronic Nose in the Discrimination of Patients with Non-Small Cell Lung Cancer and COPD. Lung Cancer 2009, 64, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.A.; Thomas, P.S.; Stone, E.; Lewis, C.; Yates, D.H. A Breath Test for Malignant Mesothelioma Using an Electronic Nose. Eur. Respir. J. 2012, 40, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamote, K.; Brinkman, P.; Vandermeersch, L.; Vynck, M.; Sterk, P.J.; Van Langenhove, H.; Thas, O.; Van Cleemput, J.; Nackaerts, K.; van Meerbeeck, J.P. Breath Analysis by Gas Chromatography-Mass Spectrometry and Electronic Nose to Screen for Pleural Mesothelioma: A Cross-Sectional Case-Control Study. Oncotarget 2017, 8, 91593–91602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetola, N.M.; Modongo, C.; Matsiri, O.; Tamuhla, T.; Mbongwe, B.; Matlhagela, K.; Sepako, E.; Catini, A.; Sirugo, G.; Martinelli, E.; et al. Diagnosis of Pulmonary Tuberculosis and Assessment of Treatment Response through Analyses of Volatile Compound Patterns in Exhaled Breath Samples. J. Infect. 2017, 74, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronel Teixeira, R.; Rodríguez, M.; Jiménez de Romero, N.; Bruins, M.; Gómez, R.; Yntema, J.B.; Chaparro Abente, G.; Gerritsen, J.W.; Wiegerinck, W.; Pérez Bejerano, D.; et al. The Potential of a Portable, Point-of-Care Electronic Nose to Diagnose Tuberculosis. J. Infect. 2017, 75, 441–447. [Google Scholar] [CrossRef]
- Saktiawati, A.M.I.; Stienstra, Y.; Subronto, Y.W.; Rintiswati, N.; Sumardi; Gerritsen, J.W.; Oord, H.; Akkerman, O.W.; Van Der Werf, T.S. Sensitivity and Specificity of an Electronic Nose in Diagnosing Pulmonary Tuberculosis among Patients with Suspected Tuberculosis. PLoS ONE 2019, 14, e0217963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fens, N.; Roldaan, A.C.; van der Schee, M.P.; Boksem, R.J.; Zwinderman, A.H.; Bel, E.H.; Sterk, P.J. External Validation of Exhaled Breath Profiling Using an Electronic Nose in the Discrimination of Asthma with Fixed Airways Obstruction and Chronic Obstructive Pulmonary Disease. Clin. Exp. Allergy 2011, 41, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Krauss, E.; Haberer, J.; Maurer, O.; Barreto, G.; Drakopanagiotakis, F.; Degen, M.; Seeger, W.; Guenther, A. Exploring the Ability of Electronic Nose Technology to Recognize Interstitial Lung Diseases (ILD) by Non-Invasive Breath Screening of Exhaled Volatile Compounds (VOC): A Pilot Study from the European IPF Registry (EurIPFreg) and Biobank. J. Clin. Med. 2019, 8, 1698. [Google Scholar] [CrossRef]
- Paff, T.; van der Schee, M.P.; Daniels, J.M.A.; Pals, G.; Postmus, P.E.; Sterk, P.J.; Haarman, E.G. Exhaled Molecular Profiles in the Assessment of Cystic Fibrosis and Primary Ciliary Dyskinesia. J. Cyst. Fibros. 2013, 12, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedek, P.; Lázár, Z.; Bikov, A.; Kunos, L.; Katona, G.; Horváth, I. Exhaled Biomarker Pattern Is Altered in Children with Obstructive Sleep Apnoea Syndrome. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 1244–1247. [Google Scholar] [CrossRef]
- Lazar, Z.; Fens, N.; van der Maten, J.; van der Schee, M.P.; Wagener, A.H.; de Nijs, S.B.; Dijkers, E.; Sterk, P.J. Electronic Nose Breathprints Are Independent of Acute Changes in Airway Caliber in Asthma. Sensors 2010, 10, 9127–9138. [Google Scholar] [CrossRef] [PubMed]
- Dan Wilson, I.A. Future Applications of Electronic-Nose Technologies in Healthcare and Biomedicine. In Wide Spectra of Quality Control; IntechOpen: Rijeka, Croatia, 2011; pp. 267–290. [Google Scholar]
- Dragonieri, S.; Quaranta, V.N.; Carratu, P.; Ranieri, T.; Resta, O. Influence of Age and Gender on the Profile of Exhaled Volatile Organic Compounds Analyzed by an Electronic Nose. J. Bras. Pneumol. 2016, 42, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Principe, S.; van Bragt, J.J.M.H.; Longo, C.; de Vries, R.; Sterk, P.J.; Scichilone, N.; Vijverberg, S.J.H.; van der Zee, A.H.M. The Influence of Smoking Status on Exhaled Breath Profiles in Asthma and COPD Patients. Molecules 2021, 26, 1357. [Google Scholar] [CrossRef]
- Leopold, J.H.; Bos, L.D.J.; Sterk, P.J.; Schultz, M.J.; Fens, N.; Horvath, I.; Bikov, A.; Montuschi, P.; Di Natale, C.; Yates, D.H.; et al. Comparison of Classification Methods in Breath Analysis by Electronic Nose. J. Breath Res. 2015, 9, 046002. [Google Scholar] [CrossRef]
- Farraia, M.; Cavaleiro Rufo, J.; Paciência, I.; Castro Mendes, F.; Rodolfo, A.; Rama, T.; Rocha, S.M.; Delgado, L.; Brinkman, P.; Moreira, A. Human Volatilome Analysis Using ENose to Assess Uncontrolled Asthma in a Clinical Setting. Allergy 2020, 75, 1630–1639. [Google Scholar] [CrossRef]
- Bikov, A.; Lázár, Z.; Horvath, I. Established Methodological Issues in Electronic Nose Research: How Far Are We from Using These Instruments in Clinical Settings of Breath Analysis? J. Breath Res. 2015, 9, 034001. [Google Scholar] [CrossRef] [PubMed]
- Van Der Schee, M.P.; Hashimoto, S.; Schuurman, A.C.; Van Driel, J.S.R.; Adriaens, N.; Van Amelsfoort, R.M.; Snoeren, T.; Regenboog, M.; Sprikkelman, A.B.; Haarman, E.G.; et al. Altered Exhaled Biomarker Profiles in Children during and after Rhinovirus-Induced Wheeze. Eur. Respir. J. 2015, 45, 440–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Asthma | Control | p-Value | ||
---|---|---|---|---|
Training model A | ||||
| 6 (55) | 5 (45) | - | |
| 8.16 ± 3.48 | 14 ± 2.23 | 0.01 | |
| M-number (%) | 3 (50) | 2 (40) | 0.43 |
F-number (%) | 3 (50) | 3 (60) | ||
| U-number (%) | 6 (100) | 2 (40) | 0.06 |
R-number (%) | 0 | 3 (60) | ||
Training model B | ||||
| 5 (42) | 7 (58) | - | |
| 10 ± 2.54 | 12.85 ± 3.53 | 0.15 | |
| M-number (%) | 3 (60) | 4 (57) | 0.44 |
F-number (%) | 2 (40) | 3 (43) | ||
| U-number (%) | 5 (100) | 3 (43) | 0.07 |
R-number (%) | 0 | 4 (57) | ||
External validation set | ||||
| 9 (53) | 8 (47) | - | |
| 10.6 ± 5.01 | 12.25 ± 4.39 | 0.65 | |
| M-number (%) | 6 (66) | 7 (87.5) | 0.28 |
F-number (%) | 3 (34) | 1 (12.5) | ||
| U-number (%) | 7 (78) | 3 (37.5) | 0.16 |
R-number (%) | 2 (22) | 5 (62.5) |
Model A | Model B | External Validation Set | |
---|---|---|---|
Family history of asthma (%) | 50 | 40 | 70 |
History of respiratory infections (%) | 66 | 20 | 80 |
Atopy (%) | 66 | 100 | 90 |
History of bronchiolitis (%) | 83 | 40 | 70 |
Symptoms onset (age in years) a | 3.8 ± 2.6 | 7.4 ± 2.7 | 6.7 ± 4.1 |
Medication | |||
| 1 | 1 | 1 |
| 2 | 3 | 4 |
| 1 | 0 | 2 |
| 2 | 1 | 2 |
Asthma severity (O/C/PC/UC) | 1/0/5/0 | 1/1/3/0 | 0/3/3/3 |
Eo/Μl a | 580 ± 286 | 1048 ± 490 | 607 ± 452 |
Total IgE (IU/mL) a | 471 ± 519 | 404.6 ± 420 | 361 ± 448 |
Positive specific IgE for airborne allergens (%) | 66 | 60 | 60 |
FEV1 a (% from estimated value) | 83.8 ± 13 | 95.1 ± 10.3 | 90.2 ± 15 |
FEV1/FVC a | 82.4 ± 7.1 | 93.3 ± 8.4 | 90.1 ± 12 |
Model A | Model B | |
---|---|---|
Online CVV 1 (%) | 72.72 | 100 |
Offline CVA 2 (%) | 63.63 | 90 |
Number of PC | 4 | 4 |
M-distance | 3.13 | 5.55 |
Model A | Model B | |
---|---|---|
Accuracy (%) (IC) | 64 (42–87.4) | 58 (35.4–82.2) |
Sensitivity (%) (IC) | 77 (44.1–94.3) | 66 (35.1–88) |
Specificity (%) (IC) | 50 (21.7–78.3) | 50 (21.7–78.3) |
PPV (%) (IC) | 63 (35.2–92.1) | 60 (29.6–90.4) |
NPV (%) (IC) | 66 (28.9–100) | 57 (20.5–93.8) |
Subject | r | p-Value |
---|---|---|
Control 1 | 0.65 | <0.01 |
Control 2 | 0.80 | <0.01 |
Control 3 | 0.82 | <0.01 |
Control 4 | 0.72 | <0.01 |
Control 5 | 0.86 | <0.01 |
Asthmatic1 | 0.84 | <0.01 |
Asthmatic 2 | 0.83 | <0.01 |
Asthmatic 3 | 0.91 | <0.01 |
Asthmatic 4 | 0.80 | <0.01 |
Asthmatic 5 | 0.89 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sas, V.; Cherecheș-Panța, P.; Borcau, D.; Schnell, C.-N.; Ichim, E.-G.; Iacob, D.; Coblișan, A.-P.; Drugan, T.; Man, S.-C. Breath Prints for Diagnosing Asthma in Children. J. Clin. Med. 2023, 12, 2831. https://doi.org/10.3390/jcm12082831
Sas V, Cherecheș-Panța P, Borcau D, Schnell C-N, Ichim E-G, Iacob D, Coblișan A-P, Drugan T, Man S-C. Breath Prints for Diagnosing Asthma in Children. Journal of Clinical Medicine. 2023; 12(8):2831. https://doi.org/10.3390/jcm12082831
Chicago/Turabian StyleSas, Valentina, Paraschiva Cherecheș-Panța, Diana Borcau, Cristina-Nicoleta Schnell, Edita-Gabriela Ichim, Daniela Iacob, Alina-Petronela Coblișan, Tudor Drugan, and Sorin-Claudiu Man. 2023. "Breath Prints for Diagnosing Asthma in Children" Journal of Clinical Medicine 12, no. 8: 2831. https://doi.org/10.3390/jcm12082831
APA StyleSas, V., Cherecheș-Panța, P., Borcau, D., Schnell, C.-N., Ichim, E.-G., Iacob, D., Coblișan, A.-P., Drugan, T., & Man, S.-C. (2023). Breath Prints for Diagnosing Asthma in Children. Journal of Clinical Medicine, 12(8), 2831. https://doi.org/10.3390/jcm12082831