Effect of Lumbar Spinal Stenosis on Treatment of Osteoporosis: Comparison of Three Oral Bisphosphonate Therapies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diagnosis of Lumbar Spinal Stenosis
2.3. Measurement of Bone Mineral Density
2.4. Statistical Analyses
3. Results
3.1. Comparisons between Groups I and II
3.2. Comparison of the Three Oral BPs
3.3. Comparison of the Three Oral BPs within Each Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43, 92–104. [Google Scholar]
- Jang, H.D.; Kim, E.H.; Lee, J.C.; Choi, S.W.; Kim, H.S.; Cha, J.S.; Shin, B.J. Management of Osteoporotic Vertebral Fracture: Review Update 2022. Asian Spine J. 2022, 16, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Ensrud, K.E. Bisphosphonates for Postmenopausal Osteoporosis. JAMA 2021, 325, 96. [Google Scholar] [CrossRef]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atik, O.S.; Gunal, I.; Korkusuz, F. Burden of osteoporosis. Clin. Orthop. Relat. Res. 2006, 443, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.W.; Moon, S.H.; Park, S.Y.; Park, S.J.; Park, S.R.; Suk, K.S.; Kim, H.S.; Lee, B.H. Lumbar Spinal Stenosis: Review Update 2022. Asian Spine J. 2022, 16, 789–798. [Google Scholar] [CrossRef]
- Katz, J.N.; Zimmerman, Z.E.; Mass, H.; Makhni, M.C. Diagnosis and Management of Lumbar Spinal Stenosis: A Review. JAMA 2022, 327, 1688–1699. [Google Scholar] [CrossRef]
- Tomkins-Lane, C.; Melloh, M.; Lurie, J.; Smuck, M.; Battié, M.C.; Freeman, B.; Samartzis, D.; Hu, R.; Barz, T.; Stuber, K.; et al. ISSLS Prize Winner: Consensus on the Clinical Diagnosis of Lumbar Spinal Stenosis: Results of an International Delphi Study. Spine 2016, 41, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Johnsson, K.E. Lumbar spinal stenosis. A retrospective study of 163 cases in southern Sweden. Acta Orthop. Scand. 1995, 66, 403–405. [Google Scholar] [CrossRef]
- Park, H.Y.; Ha, J.Y.; Kim, K.W.; Baek, I.H.; Park, S.B.; Lee, J.S. Effect of lumbar spinal stenosis on bone mineral density in osteoporosis patients treated with ibandronate. BMC Musculoskelet. Disord. 2021, 22, 412. [Google Scholar] [CrossRef]
- Kim, G.-U.; Park, W.T.; Chang, M.C.; Lee, G.W. Diagnostic Technology for Spine Pathology. Asian Spine J. 2022, 16, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Lee, J.W.; Choi, H.S.; Oh, K.J.; Kang, H.S. A new grading system of lumbar central canal stenosis on MRI: An easy and reliable method. Skelet. Radiol. 2011, 40, 1033–1039. [Google Scholar] [CrossRef] [Green Version]
- Wildermuth, S.; Zanetti, M.; Duewell, S.; Schmid, M.R.; Romanowski, B.; Benini, A.; Böni, T.; Hodler, J. Lumbar spine: Quantitative and qualitative assessment of positional (upright flexion and extension) MR imaging and myelography. Radiology 1998, 207, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Steurer, J.; Roner, S.; Gnannt, R.; Hodler, J. Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: A systematic literature review. BMC Musculoskelet. Disord. 2011, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Song, K.S.; Cho, J.H.; Lee, J.H.; Kim, N.H. An Updated Overview of Low Back Pain Management. Asian Spine J. 2022, 16, 968–982. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Park, S.M.; Kim, H.J.; Yeom, J.S. Recent Updates on Minimally Invasive Spine Surgery: Techniques, Technologies, and Indications. Asian Spine J. 2022, 16, 1013–1021. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.P.; Gani, L.U.; Chong, L.R. Dual-energy X-ray absorptiometry bone densitometry and pitfalls in the assessment of osteoporosis: A primer for the practicing clinician. Arch. Osteoporos. 2020, 15, 135. [Google Scholar] [CrossRef]
- Lee, B.H.; Moon, S.H.; Kim, H.J.; Lee, H.M.; Kim, T.H. Osteoporotic profiles in elderly patients with symptomatic lumbar spinal canal stenosis. Indian J. Orthop. 2012, 46, 279–284. [Google Scholar] [CrossRef]
- Shamji, M.F.; Mroz, T.; Hsu, W.; Chutkan, N. Management of Degenerative Lumbar Spinal Stenosis in the Elderly. Neurosurgery 2015, 77 (Suppl. S4), S68–S74. [Google Scholar] [CrossRef]
- Fahrleitner-Pammer, A.; Obernosterer, A.; Pilger, E.; Dobnig, H.; Dimai, H.P.; Leb, G.; Kudlacek, S.; Obermayer-Pietsch, B.M. Hypovitaminosis D, impaired bone turnover and low bone mass are common in patients with peripheral arterial disease. Osteoporos. Int. 2005, 16, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.D.; Epstein, S.; Sedarati, F.; Reginster, J.Y. Once-monthly oral ibandronate compared with weekly oral alendronate in postmenopausal osteoporosis: Results from the head-to-head MOTION study. Curr. Med. Res. Opin. 2008, 24, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Song, G.G. Efficacy and safety of monthly 150 mg oral ibandronate in women with postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Korean J. Intern. Med. 2011, 26, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.; Drake, J.; Brankin, E. Treatment persistence with once-monthly ibandronate and patient support vs. once-weekly alendronate: Results from the PERSIST study. Int. J. Clin. Pract. 2006, 60, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paggiosi, M.A.; Peel, N.; McCloskey, E.; Walsh, J.S.; Eastell, R. Comparison of the effects of three oral bisphosphonate therapies on the peripheral skeleton in postmenopausal osteoporosis: The TRIO study. Osteoporos. Int. 2014, 25, 2729–2741. [Google Scholar] [CrossRef]
- Lee, D.R.; Lee, J. Comparison of the efficacy between once-monthly oral ibandronate and risedronate among Korean women with osteoporosis: A nationwide population-based study. Osteoporos. Int. 2019, 30, 659–666. [Google Scholar] [CrossRef]
- Chung, Y.S.; Lim, S.K.; Chung, H.Y.; Lee, I.K.; Park, I.H.; Kim, G.S.; Min, Y.K.; Kang, M.I.; Chung, D.J.; Kim, Y.K.; et al. Comparison of monthly ibandronate versus weekly risedronate in preference, convenience, and bone turnover markers in Korean postmenopausal osteoporotic women. Calcif. Tissue Int. 2009, 85, 389–397. [Google Scholar] [CrossRef] [Green Version]
Parameters | Group I (Osteoporosis) | Group II (Osteoporosis + LSS) | p-Value |
---|---|---|---|
Patient number | 178 | 168 | |
Female:male | 178:0 | 168:0 | 1.000 |
Age (years) | 74.8 ± 7.9 | 74.6 ± 8.3 | 0.834 |
BMI (kg/m2) | 23.7 ± 3.1 | 23.2 ± 3.0 | 0.401 |
Ibandronate:alendronate:risedronate | 76:49:53 | 66:55:47 | 0.571 |
BMD T-score | |||
Initial | −3.62 ± 0.50 | −3.60 ± 0.63 | 0.620 |
1-year F/U | −3.34 ± 0.47 | −3.40 ± 0.49 | 0.248 |
2-year F/U | −3.17 ± 0.66 | −3.36 ± 0.61 | 0.006 |
3-year F/U | −3.09 ± 0.49 | −3.31 ± 0.62 | <0.001 |
Annual change in BMD | |||
1-year F/U | 0.29 ± 0.32 | 0.19 ± 0.33 | 0.007 |
2-year F/U | 0.13 ± 0.29 | 0.06 ± 0.36 | 0.028 |
3-year F/U | 0.11 ± 0.28 | 0.04 ± 0.33 | 0.026 |
Total change in BMD | 0.53 ± 0.47 | 0.28 ± 0.45 | <0.001 |
Ibandronate (I) | Alendronate (A) | Risedronate (R) | p-Value Post hoc Test | |
---|---|---|---|---|
Patient number | 142 | 104 | 100 | |
Female:male | 142:0 | 104:0 | 100:0 | 1.000 |
Age (years) | 74.6 ± 8.5 | 75.1 ± 8.4 | 74.6 ± 7.2 | 0.829 |
BMI (kg/m2) | 23.3 ± 2.8 | 23.4 ± 3.2 | 23.6 ± 3.2 | 0.885 |
BMD T-score | ||||
Initial | −3.67 ± 0.54 | −3.64 ± 0.58 | −3.48 ± 0.57 | 0.022 I vs. R = 0.025 |
1-year F/U | −3.38 ± 0.48 | −3.36 ± 0.55 | −3.36 ± 0.0.57 | 0.913 |
2-year F/U | −3.30 ± 0.54 | −3.25 ± 0.56 | −3.22 ± 0.83 | 0.668 |
3-year F/U | −3.19 ± 0.55 | −3.19 ± 0.57 | −3.23 ± 0.57 | 0.858 |
Annual change in BMD | ||||
1-year F/U | 0.29 ± 0.31 | 0.29 ± 0.33 | 0.12 ± 0.33 | <0.001 I vs. R < 0.001 A vs. R = 0.001 |
2-year F/U | 0.10 ± 0.38 | 0.10 ± 0.33 | 0.08 ± 0.24 | 0.832 |
3-year F/U | 0.09 ± 0.34 | 0.06 ± 0.32 | 0.06 ± 0.24 | 0.588 |
Total change in BMD | 0.49 ± 0.46 | 0.45 ± 0.51 | 0.25 ± 0.43 | <0.001 I vs. R < 0.001 A vs. R = 0.004 |
Parameters | Group I (Osteoporosis, n = 178) | Group II (Osteoporosis + LSS, n = 168) | ||||||
---|---|---|---|---|---|---|---|---|
Ibandronate (I) | Alendronate (A) | Risedronate (R) | p-Value Post hoc Test | Ibandronate (I) | Alendronate (A) | Risedronate (R) | p-Value Post hoc Test | |
Patient number | 76 | 49 | 53 | 66 | 55 | 47 | ||
Female:male | 76:0 | 49:0 | 53:0 | 1.000 | 66:0 | 55:0 | 47:0 | 1.000 |
Age (years) | 75.0 ± 8.4 | 74.7 ± 8.4 | 74.6 ± 6.9 | 0.958 | 74.0 ± 8.7 | 75.5 ± 8.4 | 74.5 ± 7.6 | 0.606 |
BMI (kg/m2) | 23.7 ± 3.3 | 23.9 ± 2.9 | 23.6 ± 3.3 | 0.944 | 23.1 ± 2.7 | 22.8 ± 3.5 | 23.9 ± 3.3 | 0.683 |
BMD T-score | ||||||||
Initial | −3.70 ± 0.46 | −3.63 ± 0.51 | −3.51 ± 0.53 | 0.099 | −3.64 ± 0.62 | −3.66 ± 0.64 | −3.44 ± 0.61 | 0.170 |
1-year F/U | −3.36 ± 0.40 | −3.29 ± 0.50 | −3.35 ± 0.52 | 0.694 | −3.41 ± 0.56 | −3.42 ± 0.60 | −3.37 ± 0.63 | 0.921 |
2-year F/U | −3.25 ± 0.46 | −3.09 ± 0.42 | −3.12 ± 0.99 | 0.338 | −3.34 ± 0.62 | −3.40 ± 0.63 | −3.33 ± 0.59 | 0.860 |
3-year F/U | −3.11 ± 0.43 | −3.01 ± 0.51 | −3.16 ± 0.55 | 0.286 | −3.33 ± 0.65 | −3.35 ± 0.63 | −3.30 ± 0.58 | 0.820 |
Annual change in BMD | ||||||||
1-year F/U | 0.34 ± 0.28 | 0.34 ± 0.32 | 0.16 ± 0.35 | 0.002 I vs. R = 0.004 A vs. R = 0.009 | 0.23 ± 0.33 | 0.24 ± 0.33 | 0.07 ± 0.31 | 0.017 I vs. R = 0.031 A vs. R = 0.031 |
2-year F/U | 0.11 ± 0.28 | 0.20 ± 0.35 | 0.12 ± 0.24 | 0.205 | 0.10 ± 0.46 | 0.02 ± 0.28 | 0.04 ± 0.24 | 0.476 |
3-year F/U | 0.15 ± 0.25 | 0.09 ± 0.35 | 0.08 ± 0.26 | 0.311 | 0.03 ± 0.41 | 0.04 ± 0.30 | 0.03 ± 0.22 | 0.983 |
Total change in BMD | 0.59 ± 0.40 | 0.62 ± 0.53 | 0.35 ± 0.46 | 0.003 I vs. R = 0.007 A vs. R = 0.015 | 0.36 ± 0.49 | 0.30 ± 0.45 | 0.13 ± 0.38 | 0.021 I vs. R = 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-Y.; Kim, K.-W.; Ryu, J.-H.; Kim, G.-U.; Jung, H.-Y.; Jung, Y.-S.; Lee, J.-S. Effect of Lumbar Spinal Stenosis on Treatment of Osteoporosis: Comparison of Three Oral Bisphosphonate Therapies. J. Clin. Med. 2023, 12, 2027. https://doi.org/10.3390/jcm12052027
Park H-Y, Kim K-W, Ryu J-H, Kim G-U, Jung H-Y, Jung Y-S, Lee J-S. Effect of Lumbar Spinal Stenosis on Treatment of Osteoporosis: Comparison of Three Oral Bisphosphonate Therapies. Journal of Clinical Medicine. 2023; 12(5):2027. https://doi.org/10.3390/jcm12052027
Chicago/Turabian StylePark, Hyung-Youl, Ki-Won Kim, Ji-Hyun Ryu, Geon-U Kim, Ho-Young Jung, Youn-Sung Jung, and Jun-Seok Lee. 2023. "Effect of Lumbar Spinal Stenosis on Treatment of Osteoporosis: Comparison of Three Oral Bisphosphonate Therapies" Journal of Clinical Medicine 12, no. 5: 2027. https://doi.org/10.3390/jcm12052027
APA StylePark, H.-Y., Kim, K.-W., Ryu, J.-H., Kim, G.-U., Jung, H.-Y., Jung, Y.-S., & Lee, J.-S. (2023). Effect of Lumbar Spinal Stenosis on Treatment of Osteoporosis: Comparison of Three Oral Bisphosphonate Therapies. Journal of Clinical Medicine, 12(5), 2027. https://doi.org/10.3390/jcm12052027