A Longer Tpeak-Tend Interval Is Associated with a Higher Risk of Death: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Search Strategy
2.2. Study Selection Process
2.3. Data Extraction and Management
2.4. Risk of Bias Assessment
2.5. Assessment of Heterogeneity and Data Synthesis
3. Results
3.1. Description of Studies
3.2. Association of Tpeak-Tend Interval with Mortality
The Tpeak-Tend Interval in Comparison between Survivors and Non-Survivors
3.3. Unadjusted Odds of Death in Patients with Longer vs. Shorter Tpeak-Tend Intervals
3.4. Predicting Death with Tpeak-Tend Interval
3.5. Secondary Endpoints
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur. Heart J. 2016, 37, 3232–3245. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Rosamond, W.D.; Chambless, L.E.; Folsom, A.R.; Cooper, L.S.; Conwill, D.E.; Clegg, L.; Wang, C.-H.; Heiss, G. Trends in the Incidence of Myocardial Infarction and in Mortality Due to Coronary Heart Disease, 1987 to 1994. N. Engl. J. Med. 1998, 339, 861–867. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American heart association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Ford, E.S.; Ajani, U.A.; Croft, J.B.; Critchley, J.A.; Labarthe, D.R.; Kottke, T.E.; Giles, W.H.; Capewell, S. Explaining the Decrease in U.S. Deaths from Coronary Disease, 1980–2000. N. Engl. J. Med. 2007, 356, 2388–2398. [Google Scholar] [CrossRef]
- Surawicz, B. The Qt Interval and Cardiac Arrhythmias. Annu. Rev. Med. 1987, 38, 81–90. [Google Scholar] [CrossRef]
- Elming, H.; Holm, E.A.; Jun, L.; Torp-Pedersen, C.; Køber, L.; Kircshoff, M.; Malik, M.; Camm, J. The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens. Eur. Heart J. 1998, 19, 1391–1400. [Google Scholar] [CrossRef]
- Tse, G.; Yan, B.P. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. EP Eur. 2017, 19, 712–721. [Google Scholar] [CrossRef]
- Arteyeva, N.V.; Goshka, S.L.; Sedova, K.A.; Bernikova, O.G.; Azarov, J.E. What does the Tpeak-Tend interval reflect? An experimental and model study. J. Electrocardiol. 2013, 46, 296.e1–296.e8. [Google Scholar] [CrossRef]
- Tse, G.; Gong, M.; Wong, W.T.J.; Georgopoulos, S.; Letsas, K.P.; Vassiliou, V.; Chan, Y.S.; Yan, B.P.; Wong, S.H.; Wu, W.K.; et al. The T peak—T end interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Heart Rhythm. 2017, 14, 1131–1137. [Google Scholar] [CrossRef]
- Malik, M.; Huikuri, H.; Lombardi, F.; Schmidt, G.; Zabel, M.; on behalf of e-Rhythm Study Group of EHRA. Conundrum of the Tpeak-Tend interval. J. Cardiovasc. Electrophysiol. 2018, 29, 767–770. [Google Scholar] [CrossRef]
- Malik, M.; Huikuri, H.V.; Lombardi, F.; Schmidt, G.; Verrier, R.L.; Zabel, M. Is the Tpeak-Tend interval as a measure of repolarization heterogeneity dead or just seriously wounded? Heart Rhythm 2019, 16, 952–953. [Google Scholar] [CrossRef] [Green Version]
- Akilli, N.B.; Akinci, E.; Akilli, H.; Dundar, Z.D.; Koylu, R.; Polat, M.; Cander, B. A new marker for myocardial injury in carbon monoxide poisoning: T peak–T end. Am. J. Emerg. Med. 2013, 31, 1651–1655. [Google Scholar] [CrossRef]
- Ozyurt, A.; Karpuz, D.; Yucel, A.; Tosun, M.D.; Kibar, A.E.; Hallioglu, O. Effects of Acute Carbon Monoxide Poisoning on ECG and Echocardiographic Parameters in Children. Cardiovasc. Toxicol. 2017, 17, 326–334. [Google Scholar] [CrossRef]
- Azarov, J.E.; Demidova, M.M.; Koul, S.; van der Pals, J.; Erlinge, D.; Platonov, P.G. Progressive increase of the Tpeak-Tend interval is associated with ischaemia-induced ventricular fibrillation in a porcine myocardial infarction model. Europace 2018, 20, 880–886. [Google Scholar] [CrossRef]
- Demidova, M.; Carlson, J.; Erlinge, D.; Azarov, J.; Platonov, P. Prolonged Tpeak-Tend interval is associated with ventricular fibrillation during reperfusion in ST-elevation myocardial infarction. Int. J. Cardiol. 2019, 280, 80–83. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Gao, C.; Zhu, J.; Yang, X. Tpeak-Tend/QT interval predicts ST-segment resolution and major adverse cardiac events in acute ST-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention. Medicine 2018, 97, e12943. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Higgins, J.P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; John Wiley and Sons, Ltd.: Chichester, UK, 2019; pp. 143–176. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Needleman, I.G. A guide to systematic reviews. J. Clin. Periodontol. 2002, 29, 6–9. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analysis. Available online: https://web.archive.org/web/20210716121605id_/http://www3.med.unipmn.it/dispense_ebm/2009-2010/Corso%20Perfezionamento%20EBM_Faggiano/NOS_oxford.pdf (accessed on 11 December 2022).
- Herzog, R.; Álvarez-Pasquin, M.J.; Díaz, C.; Del Barrio, J.L.; Estrada, J.M.; Gil, Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013, 13, 154. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, G. Meta: An R Package for Meta-Analysis. R News 2007, 7, 40–45. [Google Scholar]
- Aksu, E. Relationship of fragmented qrs with mortality in hemodialysis patients. Anatol. J. Cardiol. 2019, 22, 32–33. [Google Scholar]
- Aoki, S.; Sakakibara, M.; Yamagichi, S.; Iwakawa, N.; Takeuchi, S.; Kitagawa, K.; Ito, T.; Jinno, Y.; Okumura, T.; Murohara, T. Prognostic value of Tpeak-Tend interval in patients with acute heart failure syndrome. Eur. Heart J. 2014, 35, 678. [Google Scholar] [CrossRef]
- Schlatzer, C.; Schwarz, E.I.; Sievi, N.A.; Clarenbach, C.F.; Gaisl, T.; Haegeli, L.M.; Duru, F.; Stradling, J.R.; Kohler, M. Intrathoracic pressure swings induced by simulated obstructive sleep apnoea promote arrhythmias in paroxysmal atrial fibrillation. Europace 2016, 18, 64–70. [Google Scholar] [CrossRef]
- Bombelli, M.; Maloberti, A.; Raina, L.; Facchetti, R.; Boggioni, I.; Pizzala, D.P.; Cuspidi, C.; Mancia, G.; Grassi, G. Prognostic relevance of electrocardiographic Tpeak-Tend interval in the general and in the hypertensive population: Data from the Pressioni Arteriose Monitorate E Loro Associazioni study. J. Hypertens. 2016, 34, 1823–1830. [Google Scholar] [CrossRef]
- Braschi, A.; Frasheri, A.; Lombardo, R.M.; Abrignani, M.G.; Lo Presti, R.; Vinci, D.; Traina, M. Association between Tpeak-Tend/QT and major adverse cardiovascular events in patients with Takotsubo syndrome. Acta Cardiol. 2021, 76, 732–738. [Google Scholar] [CrossRef]
- Cekirdekci, E.I.; Bugan, B. Can abnormal dispersion of ventricular repolarization be a predictor of mortality in arrhythmogenic right ventricular cardiomyopathy: The importance of Tp-e interval. Ann. Noninvasive Electrocardiol. 2019, 24, e12619. [Google Scholar] [CrossRef] [Green Version]
- Erikssen, G.; Liestøl, K.; Gullestad, L.; Haugaa, K.H.; Bendz, B.; Amlie, J.P. The terminal part of the QT interval (T peak to T end): A predictor of mortality after acute myocardial infarction. Ann. Noninvasive Electrocardiol. 2012, 17, 85–94. [Google Scholar] [CrossRef]
- Haarmark, C.; Hansen, P.R.; Vedel-Larsen, E.; Pedersen, S.H.; Graff, C.; Andersen, M.P.; Toft, E.; Wang, F.; Struijk, J.J.; Kanters, J.K. The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J. Electrocardiol. 2009, 42, 555–560. [Google Scholar] [CrossRef]
- Icli, A.; Kayrak, M.; Akilli, H.; Aribas, A.; Coskun, M.; Ozer, S.F.; Ozdemir, K. Prognostic value of Tpeak-Tend interval in patients with acute pulmonary embolism. BMC Cardiovasc. Disord. 2015, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, B.; Hajizadeh, R.; Ranjbar, A.; Sohrabi, B.; Vaezi, H. Evaluation of Tpeak to end/QT and Tpeak to end/QTc ratios in patients with STEMI undergoing percutaneous intervention vs. thrombolytic therapy. J. Electrocardiol. 2020, 58, 160–164. [Google Scholar] [CrossRef]
- Li, J.; Wyrsch, D.; Heg, D.; Stoller, M.; Zanchin, T.; Perrin, T.; Windecker, S.; Räber, L.; Roten, L. Electrocardiographic predictors of mortality in patients after percutaneous coronary interventions–a nested case–control study. Acta Cardiol. 2019, 74, 341–349. [Google Scholar] [CrossRef]
- Morin, D.P.; Saad, M.N.; Shams, O.F.; Owen, J.S.; Xue, J.Q.; Abi-Samra, F.M.; Khatib, S.; Nelson-Twakor, O.S.; Milani, R.V. Relationships between the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic dysfunction. Europace 2012, 14, 1172–1179. [Google Scholar] [CrossRef]
- Okudan, Y.E.; Bagci, A.; Isik, I.B.; Aksoy, F.; Ozturk, F.; Varol, E. Relationship between Tp-E, Tp-E/QT and mortality/morbidity in patients presenting with acute anterior myocardial infarction. Anatol. J. Cardiol. 2018, 20, 123–124. [Google Scholar]
- O’Neal, W.T.; Singleton, M.J.; Roberts, J.D.; Tereshchenko, L.G.; Sotoodehnia, N.; Chen, L.Y.; Marcus, G.M.; Soliman, E.Z. Association between QT-Interval Components and Sudden Cardiac Death: The ARIC Study (Atherosclerosis Risk in Communities). Circ. Arrhythm. Electrophysiol. 2017, 10, e005485. [Google Scholar] [CrossRef]
- Panikkath, R.; Teodorescu, C.; Reinier, K.; Uy-Evanado, A.; Navarro, J.; Chugh, H.; Mariani, R.; Gunson, K.; Jui, J.; Chugh, S. When the qt interval fails due to intraventricular conduction delay, prolonged tpeak-tend interval predicts risk of sudden death. Heart Rhythm 2011, 8, S348. [Google Scholar] [CrossRef]
- Panikkath, R.; Teodorescu, C.; Reinier, K.; Uy-Evanado, A.; Navarro, J.; Chugh, H.; Mariani, R.; Gunson, K.; Jui, J.; Chugh, S.S. Prolonged tpeak to tend interval, novel predictor of sudden death is unaffected by QT prolonging drugs. Heart Rhythm 2011, 8, S269. [Google Scholar] [CrossRef]
- Piccirillo, G.; Moscucci, F.; Mastropietri, F.; Di Iorio, C.; Mariani, M.V.; Fabietti, M.; Stricchiola, G.M.; Parrotta, I.; Sardella, G.; Mancone, M.; et al. Possible predictive role of electrical risk score on transcatheter aortic valve replacement outcomes in older patients: Preliminary data. Clin. Interv. Aging 2018, 13, 1657–1667. [Google Scholar] [CrossRef] [Green Version]
- Piccirillo, G.; Moscucci, F.; Fabietti, M.; Di Iorio, C.; Mastropietri, F.; Sabatino, T.; Crapanzano, D.; Bertani, G.; Zaccagnini, G.; Lospinuso, I.; et al. Age, gender and drug therapy influences on Tpeak-tend interval and on electrical risk score. J. Electrocardiol. 2020, 59, 88–92. [Google Scholar] [CrossRef]
- Piccirillo, G.; Moscucci, F.; Mariani, M.V.; Di Iorio, C.; Fabietti, M.; Mastropietri, F.; Crapanzano, D.; Bertani, G.; Sabatino, T.; Zaccagnini, G.; et al. Hospital mortality in decompensated heart failure. A pilot study. J. Electrocardiol. 2020, 61, 147–152. [Google Scholar] [CrossRef]
- Piccirillo, G.; Moscucci, F.; Bertani, G.; Lospinuso, I.; Mastropietri, F.; Fabietti, M.; Sabatino, T.; Zaccagnini, G.; Crapanzano, D.; Di Diego, I.; et al. Short-Period Temporal Dispersion Repolarization Markers Predict 30-Days Mortality in Decompensated Heart Failure. J. Clin. Med. 2020, 9, 1879. [Google Scholar] [CrossRef]
- Rosenthal, T.M.; Stahls, P.F.; Abi Samra, F.M.; Bernard, M.L.; Khatib, S.; Polin, G.M.; Xue, J.Q.; Morin, D.P. T-peak to T-end interval for prediction of ventricular tachyarrhythmia and mortality in a primary prevention population with systolic cardiomyopathy. Heart Rhythm 2015, 12, 1789–1797. [Google Scholar] [CrossRef]
- Salgado, A.A.; Barbosa, P.R.B.; Ferreira, A.G.; de Souza, C.A.; Reis, S.; Terra, C. Prognostic value of a new marker of ventricular repolarization in cirrhotic patients. Arq. Bras. Cardiol. 2016, 107, 523–531. [Google Scholar] [CrossRef]
- Saour, B.M.; Wang, J.H.; Lavelle, M.P.; Mathew, R.O.; Sidhu, M.S.; Boden, W.E.; Sacco, J.D.; Costanzo, E.J.; Hossain, M.A.; Vachharanji, T.; et al. TpTe and TpTe/QT: Novel markers to predict sudden cardiac death in ESRD? Braz. J. Nephrol. 2019, 41, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Sen, O.; Yilmaz, S.; Sen, F.; Balci, K.G.; Akboga, M.K.; Yayla, C.; Özeke, O. T-peak to T-end Interval Predicts Appropriate Shocks in Patients with Heart Failure Undergoing Implantable Cardioverter Defibrillator Implantation for Primary Prophylaxis. Ann. Noninvasive Electrocardiol. 2016. [Google Scholar] [CrossRef]
- Smetana, P.; Schmidt, A.; Zabel, M.; Hnatkova, K.; Franz, M.; Huber, K.; Malik, M. Assessment of repolarization heterogeneity for prediction of mortality in cardiovascular disease: Peak to the end of the T wave interval and nondipolar repolarization components. J. Electrocardiol. 2011, 44, 301–308. [Google Scholar] [CrossRef]
- Szydlo, K.; Wita, K.; Trusz-Gluza, M. Early and late repolarization duration and variability in patients after anterior myocardial infarction with malignant ventricular arrhythmias: The interlead differences in Holter recordings. Europace 2011, 13, i24. [Google Scholar] [CrossRef]
- Tatlisu, M.A.; Özcan, K.S.; Güngör, B.; Ekmekçi, A.; Çekirdekçi, E.I.; Aruǧarslan, E.; Çinar, T.; Zengin, A.; Karaca, M.; Eren, M.; et al. Can the T-peak to T-end interval be a predictor of mortality in patients with ST-elevation myocardial infarction? Coron. Artery Dis. 2014, 25, 399–404. [Google Scholar] [CrossRef]
- Vehmeijer, J.T.; Koyak, Z.; Mulder, B.; De Groot, J.R. The peak-to-end interval of the T-wave: A risk factor for sudden cardiac death in adults with congenital heart disease. Heart Rhythm 2018, 15, S50. [Google Scholar]
- Vehmeijer, J.T.; Koyak, Z.; Vink, A.S.; Budts, W.; Harris, L.; Silversides, C.K.; Oechslin, E.N.; Zwinderman, A.H.; Mulder, B.J.M.; de Groot, J.R. Prolonged Tpeak-Tend interval is a risk factor for sudden cardiac death in adults with congenital heart disease. Congenit. Heart Dis. 2019, 14, 952–957. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Hua, W.; Cai, C.; Ding, L.G.; Niu, H.X.; Fan, X.H.; Liu, Z.M.; Gu, M.; Zhao, Y.Z.; Zhang, S. Predictive value of Tpeak-Tend interval for ventricular arrhythmia and mortality in heart failure patients with an implantable cardioverter-defibrillator: A cohort study. Medicine 2019, 98, e18080. [Google Scholar] [CrossRef]
- Li, K.H.C.; Lee, S.; Yin, C.; Liu, T.; Ngarmukos, T.; Conte, G.; Yan, G.-X.; Sy, R.W.; Letsas, K.P.; Tse, G. Brugada syndrome: A comprehensive review of pathophysiological mechanisms and risk stratification strategies. IJC Heart Vasc. 2020, 26, 100468. [Google Scholar] [CrossRef]
- Wilde, A.A.; Postema, P.G.; Di Diego, J.M.; Viskin, S.; Morita, H.; Fish, J.M.; Antzelevitch, C. The pathophysiological mechanism underlying Brugada syndrome: Depolarization versus repolarization. J. Mol. Cell. Cardiol. 2010, 49, 543–553. [Google Scholar] [CrossRef]
- Brugada, J.; Brugada, R.; Antzelevitch, C.; Towbin, J.; Nademanee, K.; Brugada, P. Long-Term Follow-Up of Individuals with the Electrocardiographic Pattern of Right Bundle-Branch Block and ST-Segment Elevation in Precordial Leads V1 to V3. Circulation 2002, 105, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, L.; Probst, V.; Smits, J.P.P.; Bahr, E.S.; Wolpert, C.; Schimpf, R.; Wichter, T.; Boisseau, P.; Heinecke, A.; Breithardt, G.; et al. Long-Term Prognosis of Individuals with Right Precordial ST-Segment–Elevation Brugada Syndrome. Circulation 2005, 111, 257–263. [Google Scholar] [CrossRef]
- Okamura, H.; Kamakura, T.; Morita, H.; Tokioka, K.; Nakajima, I.; Wada, M.; Ishibashi, K.; Miyamoto, K.; Noda, T.; Aiba, T.; et al. Risk Stratification in Patients with Brugada Syndrome Without Previous Cardiac Arrest. Circ. J. 2015, 79, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Charbit, B.; Samain, E.; Merckx, P.; Funck-Brentano, C. QT interval measurement: Evaluation of automatic QTc measurement and new simple method to calculate and interpret corrected QT interval. Anesthesiology 2006, 104, 255–260. [Google Scholar] [CrossRef]
- Salles, G.F.; Cardoso, C.R.; Leocadio, S.M.; Muxfeldt, E.S. Recent Ventricular Repolarization Markers in Resistant Hypertension: Are They Different from the Traditional QT Interval? Am. J. Hypertens. 2008, 21, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, T.M.; Masvidal, D.; Samra, F.M.A.; Bernard, M.L.; Khatib, S.; Polin, G.M.; Rogers, P.A.; Xue, J.Q.; Morin, D.P. Optimal method of measuring the T-peak to T-end interval for risk stratification in primary prevention. Europace 2018, 20, 698–705. [Google Scholar] [CrossRef]
- Davey, P. How to correct the QT interval for the effects of heart rate in clinical studies. J. Pharmacol. Toxicol. Methods 2002, 48, 3–9. [Google Scholar] [CrossRef]
- Hnatkova, K.; Johannesen, L.; Vicente, J.; Malik, M. Heart rate dependency of JT interval sections. J. Electrocardiol. 2017, 50, 814–824. [Google Scholar] [CrossRef]
- Andersen, M.P.; Xue, J.Q.; Graff, C.; Kanters, J.; Toft, E.; Struijk, J. New descriptors of T-wave morphology are independent of heart rate. J. Electrocardiol. 2008, 41, 557–561. [Google Scholar] [CrossRef]
- Bazett, H.C. An Analysis of the Time-Relations of Electrocardiograms. Ann. Noninvasive Electrocardiol. 1997, 2, 177–194. [Google Scholar] [CrossRef]
- Fridericia, L.S. The Duration of Systole in an Electrocardiogram in Normal Humans and in Patients with Heart Disease. Ann. Noninvasive Electrocardiol. 2003, 8, 343–351. [Google Scholar] [CrossRef]
- Vandenberk, B.; Vandael, E.; Robyns, T.; Vandenberghe, J.; Garweg, C.; Foulon, V.; Ector, J.; Willems, R. Which QT Correction Formulae to Use for QT Monitoring? J. Am. Heart Assoc. 2016, 5, e003264. [Google Scholar] [CrossRef]
- Aytemir, K.; Maarouf, N.; Gallagher, M.M.; Yap, Y.G.; Waktare, J.E.; Malik, M. Comparison of formulae for heart rate correction of QT interval in exercise electrocardiograms. Pacing Clin. Electrophysiol. 1999, 22, 1397–1401. [Google Scholar] [CrossRef]
- Davey, P. A new physiological method for heart rate correction of the QT interval. Heart 1999, 82, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.; Färbom, P.; Batchvarov, V.; Hnatkova, K.; Camm, A.J. Relation between QT and RR intervals is highly individual among healthy subjects: Implications for heart rate correction of the QT interval. Heart 2002, 87, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Baumert, M.; Porta, A.; Vos, M.A.; Malik, M.; Couderc, J.-P.; Laguna, P.; Piccirillo, G.; Smith, G.L.; Tereshchenko, L.G.; Volders, P.G. QT interval variability in body surface ECG: Measurement, physiological basis, and clinical value: Position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace 2016, 18, 925–944. [Google Scholar] [CrossRef]
- Haigney, M.C.; Zareba, W.; Gentlesk, P.J.; Goldstein, R.E.; Illovsky, M.; McNitt, S.; Andrews, M.L.; Moss, A.J.; the MADIT II Investigators. QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J. Am. Coll. Cardiol. 2004, 44, 1481–1487. [Google Scholar] [CrossRef] [Green Version]
- Talbot, S. QT interval in right and left bundle-branch block. Br. Heart J. 1973, 35, 288–291. [Google Scholar] [CrossRef]
First Author Year | Location | Study Design | Pathology | Sample Size (n) | Women (n, [%]) | Age (Years) | Leads for Measuring Tpeak-Tend Interval | Method for Measuring Tpeak-Tend Interval | Heart-Rate Correction of Tpeak-Tend Interval? | Follow-Up Duration (Months) | Endpoint |
---|---|---|---|---|---|---|---|---|---|---|---|
Aksu, E. 2019 [25] | Turkey | Retrospective cohort study * | Chronic hemodialysis patients | 74 | 37 (50) | n/a | n/a | n/a | Uncorrected | 12–15 | Cardiac death |
Aoki, S. 2014 [26] | Japan | Prospective cohort study * | Acute heart failure syndrome | 201 | 115 (57.2) | 78.4 ± n/a | n/a | n/a | Uncorrected | 161 ± n/a | Cardiac death |
Aro, A. L. 2017 [27] | USA, Finland | Case control study | SCD | 1258 | 409 (32.5) | 65.6 ± 12.8 a | V5 | Tangent method | Uncorrected | n/a | SCD |
Bombelli, M. 2016 [28] | Italy | Cross-sectional study | New onset hypertension | 1853 | 928 (50) | 50.4 ± 13.5 | V5 | Tail method | Heart-rate- corrected | 192 ± n/a | All-cause mortality + cardiovascular mortality |
Braschi, A. 2020 [29] | Italy | Retrospective cohort study | Patients with Takotsubo syndome | 50 | n/a | 66.2 ± 9.9 | Precordial lead with the longest Tpeak-Tend interval | n/a | Uncorrected | n/a (during hospitalization) | All-cause mortality |
Cekirdecki, E. I. 2019 [30] | Turkey | Retrospective cohort study | Arrhythmo-genic right ventricular cardiomyo-pathy | 40 d | 10 (25) | 34.0 ± 11.53 c | II, V2, V5 (lead with the longest Tpeak-Tend) | Tail method | Heart-rate- corrected + uncorrected | 9.5 ± 30.5 | All-cause mortality |
Erikssen, G. 2012 [31] | Norway | Prospective cohort study | STEMI and NSTEMI patients who underwent PCI | 1359 e | 839 (61.7) | 65.5 ± 12.5 a | Precordial lead with the longest Tpeak-Tend interval | Tail method | Heart-rate- corrected + uncorrected | 15.6 ± n/a | All-cause mortality |
Haarmark, C. 2009 [32] | Denmark | Prospective cohort study | Patients with STEMI undergoing PCI | 101 | 27 (26.7) | 62 ± n/a | Non-infarct-related leads (ST-segment deviations below 0.055 mV at the J-point in the pre-PCI ECG) V5, V4, V6, II, III, and I (in descending order) | GE Healthcare Marquette 12SL | Uncorrected | 22.5 ± 6.9 | All-cause mortality |
Icli, A. 2015 [33] | Turkey | Retrospective cohort study | Acute pulmonary embolism | 272 | 119 (43.8) | 63.1 ± 16.8 | V5 or, if V5 was not suitable, V4 and V6 in that order were used | Tangent method | Corrected | 1.0 ± n/a | All-cause mortality |
Kazemi, B. 2019 [34] | Iran | Prospective cohort study | STEMI patients undergoing primary PCI or thrombo-lytic therapy | 188 | 116 (61.7) | 85.97 ± 9.93 | Leads without ST-segment elevation | n/a | Uncorrected | n/a (hospitalization period) | Cardiac death |
Li, J. 2019 [35] | Switzerland | Nested case control study | Patients after PCI | 644 | 152 (23.6) | 68.5 ± 12.3 | II or V5 when a parameter was not measurable in lead II | Tangent method | Uncorrected | n/a (within 1 year) | All-cause mortality |
Morin, D. P. 2012 [36] | USA | Retrospective cohort study | Patients with an implanted ICD and LVEF ≤ 35% | 327 | 83 (25.4) | 67 ± 11 | V2-V5 | GE Healthcare Marquette 12SL | Heart-rate- corrected + uncorrected | 30 ± 13 | All-cause mortality |
Okudan, Y. E. 2018 [37] | Turkey | Retrospective cohort study * | Patients with acute anterior MI | 146 | n/a | n/a | Precordial leads | BitRule programme | Uncorrected | n/a (first month and first year MACE) | Cardiovascular mortality |
O’Neal, W. T. 2017 [38] | USA | Prospective cohort study | General Population (participants from ARIC study) | 12,241 | 6781 (55.4) | 54 ± 5.7 | Median value of all 12 leads | GE Healthcare Marquette 12SL | Heart-rate-corrected | 273.6 ± 34.8 c | SCD |
Panikkath, R. 2011 [39] | USA | Case control study | SCD from out-of-hospital cardiac arrests | 695 | 116 (16.7) | 66.6 ± 14.4 | V5 or, if this lead was not suitable, leads V4 and V6 in that order were used | Tangent method | Uncorrected | n/a | SCD |
SCD with normal QTc | n/a | n/a | |||||||||
SCD with intraventri-cular conduction delay | 17 (2.4) | 72.3 ± 13.9 | |||||||||
Panikkath, R. 2011 [40] | USA | Nested case-control study * | QT prolonging drugs | 287 | 93 (32.4) | 65.5 ± 13.3 a | V5 | n/a | Uncorrected | n/a | SCD |
Piccirillo, G. 2018 [41] | Italy | Prosepctive cohort study | Transcatheter aortic valve replacement patients | 40 | 17 (42.5) | 81.0 ± 7.0 | n/a | n/a | Uncorrected | 12.0 ± n/a | All-cause mortality + cardiovascular mortality |
Piccirillo, G. 2020 [42] | Italy | Prospective cohort study | Low SCD risk-out-patients with asymp-tomatic and treated car-diovascular risk factors - elderly subgroup (>60 years) | 68 | 40 (58.8) | 73.82 ± 7.26 | n/a | Tangent method | Uncorrected | 27.6 ± 6 | All-cause mortality |
Piccirillo, G. 2020 [43] | Italy | Prospective cohort study | Patients with decompensated CHF | 101 | 47 (46.5) | 83 ± 11 a | n/a | Software by Berger et al. | Uncorrected | n/a (during hospitalization) | All-cause mortality |
Piccirillo, G. f 2020 [44] | Italy | Prospective cohort study | Patients with decompensated CHF | 113 | 54 (47.8) | 82.7 ± 10.3 | n/a | Software by Berger et al. | Uncorrected | 1 ± n/a | All-cause mortality |
Rosenthal, T. M. 2015 [45] | USA | Prospective cohort study | Systolic cardiomyopathy (Patients with an implanted ICD and LVEF ≤ 35%) | 305 | 82 (26.9) | 70 ± 11 | V2-V5 (values of Tpeak are averaged to obtain global Tpeak) | GE Healthcare Marquette 12SL | Heart-rate- corrected + uncorrected | 49 ± 21 | All-cause mortality |
Salgado, A. A. 2016 [46] | Brazil | Prospective cohort study | Liver Cirrhosis | 67 | 32 (47.8) | 54.0 ± 1.9 a | All leads | Tangent method | Uncorrected | 9.7 ± 6.8 c | All-cause mortality |
Saour, B. M. 2019 [47] | USA | Retrospective cohort study | End stage renal disease | 205 | 1 (0.5) | 66.6 ± 12.3 | V5 or, if V5 was not inter-pretable, V4 and then V6 were used | Difference of QT interval and QRS complex | Uncorrected | 42 ± n/a | All-cause mortality + SCD + Non-SCD |
Sen, Ö. 2016 [48] | Turkey | Prospective cohort study | Heart failure patients undergoing ICD implantation | 228 | 56 (24.6) | 59.3 ± 12.3 | Precordial lead with the longest Tpeak-Tend interval | Tail method | Uncorrected | 22.3 ± 7.7 | All-cause mortality |
Smetana, P. 2011 [49] | England, Austria | Retrospective cohort study | Male US veterans with cardio-vascular disease | 681 | 0 (0) | 61.05 ± 10.25 | V4–V6 | GE Healthcare Marquette 12SL | Heart-rate- corrected + uncorrected | 87.6 ± 44.4 | All-cause mortality |
Szydlo, K. 2011 [50] | Poland | Prospective cohort study * | Patients with anterior MI treated with primary PCI | 115 | 28 (24.3) | 58.43 ± 11.21 a | n/a | n/a | Heart-rate-corrected | n/a (within 36 months) | Cardiac death |
Tatlisu, M. A. 2014 [51] | Turkey | Prospective cohort study | STEMI undergoing primary PCI | 488 | 79 (16.2) | 55.6 ± 11.2 a | Leads without ST-segment elevation; the longest Tpeak-Tend interval was chosen | Tail method/ Tangent method | Heart-rate- corrected + uncorrected | 21 ± 10.2 | All-cause mortality |
Vehmeijer, J. T. 2018 [52] | Netherlands | Prospective cohort study * | Adults with congenital heart disease | 448 | 152 (33.9) b | 35.9 ± 16.2 b,c | One T-wave of each ECG lead | n/a | Uncorrected | n/a | SCD |
Vehmeijer, J. T. 2019 [53] | Netherlands | Case control study | Adults with congenital heart disease | 414 | 147 (35.5) | 35.9 ± 15.3 a,c | One T-wave of each ECG lead | Tangent method | Uncorrected | n/a | SCD |
Xue, C. 2019 [54] | China | Prospective cohort study | Heart failure patients with an implantable cardioverter-defibrillator | 318 | 79 (24.8) | 57.59 ± 11.36 | Median value of all 12 leads | n/a | Uncorrected | 32.12 ± 25.07 | All-cause mortality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, C.C.; Zink, M.D.; Gozdowsky, S.; Hoffmann, J.M.; Hochhausen, N.; Röhl, A.B.; Beckers, S.K.; Kork, F. A Longer Tpeak-Tend Interval Is Associated with a Higher Risk of Death: A Meta-Analysis. J. Clin. Med. 2023, 12, 992. https://doi.org/10.3390/jcm12030992
Braun CC, Zink MD, Gozdowsky S, Hoffmann JM, Hochhausen N, Röhl AB, Beckers SK, Kork F. A Longer Tpeak-Tend Interval Is Associated with a Higher Risk of Death: A Meta-Analysis. Journal of Clinical Medicine. 2023; 12(3):992. https://doi.org/10.3390/jcm12030992
Chicago/Turabian StyleBraun, Cathrin Caroline, Matthias Daniel Zink, Sophie Gozdowsky, Julie Martha Hoffmann, Nadine Hochhausen, Anna Bettina Röhl, Stefan Kurt Beckers, and Felix Kork. 2023. "A Longer Tpeak-Tend Interval Is Associated with a Higher Risk of Death: A Meta-Analysis" Journal of Clinical Medicine 12, no. 3: 992. https://doi.org/10.3390/jcm12030992