Variability of Low-Z Inhomogeneity Correction in IMRT/SBRT: A Multi-Institutional Collaborative Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACS. American Cancer Society. Cancer Facts and Figures. 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 21 August 2022).
- Shirvani, S.M.; Juloori, A.; Allen, P.K.; Komaki, R.; Liao, Z.; Gomez, D.; O’Reilly, M.; Welsh, J.; Papadimitrakopoulou, V.; Cox, J.D.; et al. Comparison of 2 common radiation therapy techniques for definitive treatment of small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Videtic, G.M.M.; Donington, J.; Giuliani, M.; Heinzerling, J.; Karas, T.Z.; Kelsey, C.R.; Lally, B.E.; Latzka, K.; Lo, S.S.; Moghanaki, D.; et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive Summary of an ASTRO Evidence-Based Guideline. Pract. Radiat. Oncol. 2017, 7, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, R.D.; Paulus, R.; Pass, H.I.; Gore, E.M.; Edelman, M.J.; Galvin, J.; Straube, W.L.; Nedzi, L.A.; McGarry, R.C.; Robinson, C.G.; et al. Stereotactic Body Radiation Therapy for Operable Early-Stage Lung Cancer: Findings From the NRG Oncology RTOG 0618 Trial. JAMA Oncol. 2018, 4, 1263–1266. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.D.; Hu, C.; Michalski, J.M.; Bradley, J.C.; Galvin, J.; Johnstone, D.W.; Choy, H. Long-term Results of Stereotactic Body Radiation Therapy in Medically Inoperable Stage I Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 1287–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICRU Report 83. In Prescribing, Recording, and Reporting Intensity-Modulated Photon-Beam Therapy (IMRT) (ICRU Report 83) Report; Report No.: ICRU Report 83; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 2010.
- ICRU Report 91. In Prescribing Recording, and Reporting of Stereotactic Treatments with Small Photon Beams Report; Report No.: ICRU Report 91; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 2017.
- Appel, S.; Bar, J.; Ben-Nun, A.; Perelman, M.; Alezra, D.; Urban, D.; Ben-Ayun, M.; Honig, N.; Ofek, E.; Katzman, T.; et al. Comparative effectiveness of intensity modulated radiation therapy to 3-dimensional conformal radiation in locally advanced lung cancer: Pathological and clinical outcomes. Br. J. Radiol. 2019, 92, 20180960. [Google Scholar] [CrossRef]
- Bradley, J.; Graham, M.V.; Winter, K.; Purdy, J.A.; Komaki, R.; Roa, W.H.; Ryu, J.K.; Bosch, W.; Emami, B. Toxicity and outcome results of RTOG 9311: A phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 318–328. [Google Scholar] [CrossRef]
- Furuse, K.; Kubota, K.; Kawahara, M.; Kodama, N.; Ogawara, M.; Akira, M.; Nakajima, S.; Takada, M.; Kusunoki, Y.; Negoro, S. Phase II study of concurrent radiotherapy and chemotherapy for unresectable stage III non-small-cell lung cancer. Southern Osaka Lung Cancer Study Group. J. Clin. Oncol. 1995, 13, 869–875. [Google Scholar] [CrossRef]
- Erdi, Y.E.; Rosenzweig, K.; Erdi, A.K.; Macapinlac, H.A.; Hu, Y.-C.; Braban, L.E.; Humm, J.L.; Squire, O.D.; Chui, C.-S.; Larson, S.M.; et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother. Oncol. 2002, 62, 51–60. [Google Scholar] [CrossRef]
- Giraud, P.; Antoine, M.; Larrouy, A.; Milleron, B.; Callard, P.; De Rycke, Y.; Carette, M.-F.; Rosenwald, J.-C.; Cosset, J.-M.; Housset, M.; et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1015–1024. [Google Scholar] [CrossRef]
- Narayanasamy, G.; Desai, D.; Morrill, S.; Zhang, X.; Galhardo, E.; Maraboyina, S.; Penagaricano, J. Technical Note: A planning technique to lower normal tissue toxicity in lung SBRT plans based on two likely dependent RTOG metrics. Med. Phys. 2018, 45, 2325–2328. [Google Scholar] [CrossRef]
- Popescu, C.C.; Olivotto, I.A.; Beckham, W.A.; Ansbacher, W.; Zavgorodni, S.; Shaffer, R.; Wai, E.S.; Otto, K. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 287–295. [Google Scholar] [CrossRef]
- Christian, J.A.; Bedford, J.L.; Webb, S.; Brada, M. Comparison of inverse-planned three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 735–741. [Google Scholar] [CrossRef]
- Fogliata, A.; Vanetti, E.; Albers, D.; Brink, C.; Clivio, A.; Knöös, T.; Nicolini, G.; Cozzi, L. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: Comparison with Monte Carlo calculations. Phys. Med. Biol. 2007, 52, 1363–1385. [Google Scholar] [CrossRef]
- Fogliata, A.; Nicolini, G.; Vanetti, E.; Clivio, A.; Cozzi, L. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: Fundamental characterization in water. Phys. Med. Biol. 2006, 51, 1421–1438. [Google Scholar] [CrossRef]
- Knöös, T.; Wieslander, E.; Cozzi, L.; Brink, C.; Fogliata, A.; Albers, D.; Nyström, H.; Lassen, S. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys. Med. Biol. 2006, 51, 5785–5807. [Google Scholar] [CrossRef] [Green Version]
- Fogliata, A.; Nicolini, G.; Clivio, A.; Vanetti, E.; Cozzi, L. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1587–1595. [Google Scholar] [CrossRef]
- Fogliata, A.; Nicolini, G.; Clivio, A.; Vanetti, E.; Cozzi, L. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc((R)) stereotactic treatments. Med. Phys. 2011, 38, 6228–6237. [Google Scholar] [CrossRef]
- Fogliata, A.; Nicolini, G.; Clivio, A.; Vanetti, E.; Cozzi, L. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat. Oncol. 2011, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Chang, S.X.; Cheng, C.W.; DesRosiers, C.M.; Mitra, R.K.; Das, I.J. Dosimetric evaluation of high-Z inhomogeneity used for hip prosthesis: A multi-institutional collaborative study. Phys. Med. 2022, 95, 148–155. [Google Scholar] [CrossRef]
- Shiraishi, S.; Fong de Los Santos, L.E.; Antolak, J.A.; Olivier, K.R.; Garces, Y.I.; Park, S.S.; Grams, M.P. Phantom Verification of AAA and Acuros Dose Calculations for Lung Cancer: Do Tumor Size and Regression Matter? Pract. Radiat. Oncol. 2019, 9, 29–37. [Google Scholar] [CrossRef]
- Carrasco, P.; Jornet, N.; Dutch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M. Comparison of dose calculation algorithms in phantoms with lung equivalent hteregeneities under conditions of lateral electronic disequilibrium. Med. Phys. 2004, 31, 2899–2911. [Google Scholar] [CrossRef] [PubMed]
- Fogliata, A.; Cozzi, L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: The lung SBRT case. Phys. Med. 2017, 44, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Ojala, J.J.; Kapanen, M.K.; Hyodynmaa, S.J.; Wigren, T.K.; Pitkanen, M.A. Performance of dose calculation algorithms from three generations in lung SBRT: Comparison with full Monte Carlo-based dose distributions. J. Appl. Clin. Med. Phys. 2014, 15, 4662. [Google Scholar] [CrossRef] [PubMed]
- Chetty, I.J.; Devpura, S.; Liu, D.; Chen, D.; Li, H.; Wen, N.; Kumar, S.; Fraser, C.; Siddiqui, M.S.; Ajlouni, M.; et al. Correlation of dose computed using different algorithms with local control following stereotactic ablative radiotherapy (SABR)-based treatment of non-small-cell lung cancer. Radiother. Oncol. 2013, 109, 498–504. [Google Scholar] [CrossRef]
- Orton, C.G.; Mondalek, P.M.; Spicka, J.T.; Herron, D.S.; Andres, L.I. Lung corrections in photon beam treatment planning: Are we ready? Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 2191–2199. [Google Scholar] [CrossRef]
- Xiao, Y.; Papiez, L.; Paulus, R.; Timmerman, R.; Straube, W.L.; Bosch, W.R.; Michalski, J.; Galvin, J.M. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: Stereotactic body tadiotherapy of inoperable stage I-II non–small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1235–1242. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, N.; Battista, J.J.; Boyer, A.L.; Kappas, C.; Klein, E.; Mackie, T.; Sharpe, M.; Van Dyk, J. Tissue Inhomogeneity Corrections for Megavoltage Photon Beams: AAPM Report N0. 85; Medical Physics Publishing: Madison, WI, USA, 2004. [Google Scholar]
- Sempau, J.; Acosta, E.; Baró, J.; Fernandez-Vareá, J.M.; Salvat, F. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl. Inst. Methods B 1997, 132, 377–390. [Google Scholar] [CrossRef]
- Salvat, F.; Fernandez-Vareá, J.M.; Baró, J.; Sempau, J. PENELOPE: An Algorithm and Computer Code for Monte Carlo Simulation of Electron-Photon Showers; Report No.: 799; Informes Technicos Ciemat, Direccion de Techologia: Barcelona, Spain, 1996. [Google Scholar]
- IAEA. Dosimetry of Small Static Fields Used in External Beam Radiotherapy: An IAEA-AAPM International Code of Practice for Reference and Relative Dose Determination, Technical Report Series No. 483; International Atomic Energy Agency: Vienna, Austria, 2017. [Google Scholar]
- Das, I.J.; Francescon, P.; Moran, J.M.; Ahnesjö, A.; Aspradakis, M.M.; Cheng, C.; Ding, G.X.; Fenwick, J.D.; Huq, M.S.; Oldham, M.; et al. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med. Phys. 2021, 48, e886–e921. [Google Scholar] [CrossRef]
- Das, I.J.; Sanfilippo, N.J.; Fogliata, A.; Luca Cozzi, L. Intensity Modulated Radiation Therapy: A Clinical Overview; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Das, I.J.; Moskvin, V.; Johnstone, P.A. Analysis of treatment planning time among systems and planners for intensity-modulated radiation therapy. J. Am. Coll. Radiol. 2009, 6, 514–517. [Google Scholar] [CrossRef]
- Sauer, O.A.; Shepard, D.M.; Mackie, T.R. Application of constrained optimization to radiotherapy planning. Med. Phys. 1999, 26, 2359–2366. [Google Scholar] [CrossRef]
- Nicolini, G.; Ghosh-Laskar, S.; Shrivastava, S.K.; Banerjee, S.; Chaudhary, S.; Agarwal, J.P.; Munshi, A.; Clivio, A.; Fogliata, A.; Mancosu, P.; et al. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 553–560. [Google Scholar] [CrossRef]
- Chetty, I.J.; Rosu, M.; McShan, D.L.; Fraass, B.A.; Ten Haken, R.K. The influence of beam model differences in the comparison of dose calculation algorithms for lung cancer treatment planning. Phys. Med. Biol. 2005, 50, 801–815. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.O.; Das, I.J.; Jones, F.L. A Monte Carlo study of IMRT beamleats in homogeneous media. Med. Phys. 2003, 30, 296–300. [Google Scholar] [CrossRef]
- Jones, A.O.; Das, I.J. Comparison of inhomogeneity correction algorithms in small photon fields. Med Phys. 2005, 32, 766–776. [Google Scholar] [CrossRef]
- Galavis, P.E.; Hu, L.; Holmes, S.; Das, I.J. Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry. Med. Phys. 2019, 46, 2468–2476. [Google Scholar] [CrossRef]
- Akino, Y.; Fujiwara, M.; Okamura, K.; Shiomi, H.; Mizuno, H.; Isohashi, F.; Suzuki, O.; Seo, Y.; Tamari, K.; Ogawa, K. Characterization of a microSilicon diode detector for small-field photon beam dosimetry. J. Radiat. Res. 2020, 61, 410–418. [Google Scholar] [CrossRef]
- Fogliata, A.; Cozzi, L.; Clivio, A.; Ibatici, A.; Mancosu, P.; Navarria, P.; Nicolini, G.; Santoro, A.; Vanetti, E.; Scorsetti, M. Preclinical assessment of volumetric modulated arc therapy for total marrow irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 628–636. [Google Scholar] [CrossRef]
- Ottosson, R.O.; Karlsson, A.; Behrens, C.F. Pareto front analysis of 6 and 15 MV dynamic IMRT for lung cancer using pencil beam, AAA and Monte Carlo. Phys. Med. Biol. 2010, 55, 4521–4533. [Google Scholar] [CrossRef]
- Kry, S.F.; Feygelman, V.; Balter, P.; Knoos, T.; Charlie Ma, C.M.; Snyder, M.; Tonner, B.; Vassiliev, O.N. AAPM Task Group 329: Reference dose specification for dose calculations: Dose-to-water or dose-to-muscle? Med. Phys. 2020, 47, e52–e64. [Google Scholar] [CrossRef]
Structure | Constraints |
---|---|
PTV | 95% dose 95% volume |
110% dose < 10% volume | |
115% dose < 5% volume | |
Lung | V20 < 20% |
Heart | 50% dose < 70% volume |
65% dose < 2% volume | |
75% dose < 0 volume | |
Spinal Cord | 60% dose < 2% volume |
70% dose < 0% volume |
Vendor | TPS/Version | Algorithm | Treatment Machine |
---|---|---|---|
BrainLab | BrainScan/V5.31 | Pencil beam convolution | Varian 2100EX |
CMS | XiO/V4.3.1 | Superposition/PBC | Varian Trilogy |
Nomos * | Corvous V3 | Clarkson Integration | Siemens Oncor |
Varian | Eclipse V13.2 | Pencil beam/AAA | Varian TrueBeam |
MDS-Nordion * | Helax-TMS, V 6.0 | Pencil Beam | Siemens Primus |
Siemens KonRad * | KonRad V 2.2 | Pencil Beam | Siemens Primus |
Nucletron | Oncentra/V3.0 | Pencil beam/CC | Siemens Oncor |
Philips | Pinnacle V 9.7 | Convolution/PBC | Elekta-Infinity |
Nucletron * | Oncentra Plato V 13.7 | Pencil Beam | Elekta-SL |
Prowess * | Panther/V5.2 | Convolution/PBC | Elekta-SL |
Radionics | V RT4 | Pencil beam (modified) | Varian 2100EX |
Univ. of North Carolina | PLanUNC | Modified Batho, PB | Siemens Primus |
Monte Carlo | Penelope/2002 | Mixed MC Scheme | Varian Trilogy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, P.; DesRosiers, C.M.; Mitra, R.K.; Srivastava, S.P.; Das, I.J. Variability of Low-Z Inhomogeneity Correction in IMRT/SBRT: A Multi-Institutional Collaborative Study. J. Clin. Med. 2023, 12, 906. https://doi.org/10.3390/jcm12030906
Yadav P, DesRosiers CM, Mitra RK, Srivastava SP, Das IJ. Variability of Low-Z Inhomogeneity Correction in IMRT/SBRT: A Multi-Institutional Collaborative Study. Journal of Clinical Medicine. 2023; 12(3):906. https://doi.org/10.3390/jcm12030906
Chicago/Turabian StyleYadav, Poonam, Colleen M. DesRosiers, Raj K. Mitra, Shiv P. Srivastava, and Indra J. Das. 2023. "Variability of Low-Z Inhomogeneity Correction in IMRT/SBRT: A Multi-Institutional Collaborative Study" Journal of Clinical Medicine 12, no. 3: 906. https://doi.org/10.3390/jcm12030906
APA StyleYadav, P., DesRosiers, C. M., Mitra, R. K., Srivastava, S. P., & Das, I. J. (2023). Variability of Low-Z Inhomogeneity Correction in IMRT/SBRT: A Multi-Institutional Collaborative Study. Journal of Clinical Medicine, 12(3), 906. https://doi.org/10.3390/jcm12030906