Effects of Earmuffs and Eye Masks on Propofol Sedation during Spinal Anesthesia for Orthopedic Surgery: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Spinal Anesthesia and Intervention
2.3. Study Outcomes
2.4. Statistical Analysis
2.5. Sample Size Calculation
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.W.; Fan, Y.; Manyande, A.; Tian, Y.K.; Yin, P. Effects of music on target-controlled infusion of propofol requirements during combined spinal-epidural anaesthesia. Anaesthesia 2005, 60, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.W.; Ki, M.J.; Kim, D.; Oh, Y.J.; Lee, J. The effect of an eye mask on midazolam requirement for sedation during spinal anesthesia: A randomized controlled trial. BMC Anesthesiol. 2021, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, M.; Mushtaq, A.; Mukhtar, S.; Khan, Z. Preoperative anxiety before elective surgery. Neurosciences 2007, 12, 145–148. [Google Scholar] [PubMed]
- Nigussie, S.; Belachew, T.; Wolancho, W. Predictors of preoperative anxiety among surgical patients in Jimma University Specialized Teaching Hospital, South Western Ethiopia. BMC Surg. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet 2006, 367, 1618–1625. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, K.H.; Lee, C.S.; Lee, H.S.; Moon, S.Y.; Hwang, S.I.; Song, J.H. The effect-site concentration of propofol producing respiratory depression during spinal anesthesia. Korean J. Anesthesiol. 2011, 61, 122–126. [Google Scholar] [CrossRef]
- Conrad, B.; Larsen, R.; Rathgeber, J.; Lange, H.; Stuber, H.; Crozier, T. Propofol infusion for sedation in regional anesthesia. A comparison with midazolam. Anasth Intensiv. Notf. 1990, 25, 186–192. [Google Scholar] [CrossRef]
- Frank, L.R.; Strote, J.; Hauff, S.R.; Bigelow, S.K.; Fay, K. Propofol by infusion protocol for ED procedural sedation. Am. J. Emerg. Med. 2006, 24, 599–602. [Google Scholar] [CrossRef]
- Hu, R.F.; Jiang, X.Y.; Zeng, Y.M.; Chen, X.Y.; Zhang, Y.H. Effects of earplugs and eye masks on nocturnal sleep, melatonin and cortisol in a simulated intensive care unit environment. Crit. Care 2010, 14, R66. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.G.; Lee, J.J.; Kim, D.M.; Kim, J.A.; Kim, C.S.; Hahm, T.S.; Lee, B.D. Blocking noise but not music lowers bispectral index scores during sedation in noisy operating rooms. J. Clin. Anesth. 2008, 20, 12–16. [Google Scholar] [CrossRef]
- Al-Samsam, R.H.; Cullen, P. Sleep and adverse environmental factors in sedated mechanically ventilated pediatric intensive care patients. Pediatr. Crit. Care Med. 2005, 6, 562–567. [Google Scholar] [CrossRef]
- Le Guen, M.; Nicolas-Robin, A.; Lebard, C.; Arnulf, I.; Langeron, O. Earplugs and eye masks vs routine care prevent sleep impairment in post-anaesthesia care unit: A randomized study. Br. J. Anaesth. 2014, 112, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Lepage, C.; Drolet, P.; Girard, M.; Grenier, Y.; DeGagne, R. Music decreases sedative requirements during spinal anesthesia. Anesth Analg. 2001, 93, 912–916. [Google Scholar] [CrossRef]
- Brown, C.H.T.; Azman, A.S.; Gottschalk, A.; Mears, S.C.; Sieber, F.E. Sedation depth during spinal anesthesia and survival in elderly patients undergoing hip fracture repair. Anesth Analg. 2014, 118, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Sieber, F.E.; Zakriya, K.J.; Gottschalk, A.; Blute, M.R.; Lee, H.B.; Rosenberg, P.B.; Mears, S.C. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin. Proc. 2010, 85, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.Y.; Lee, S.Y.; Kim, T.Y.; Kim, D.K.; Lee, K.M.; Woo, N.S.; Chang, Y.J.; Lee, M.A. Spectral entropy for assessing the depth of propofol sedation. Korean J. Anesthesiol. 2012, 62, 234–239. [Google Scholar] [CrossRef]
- Aikawa, M.; Uesato, M.; Urahama, R.; Hayano, K.; Kunii, R.; Kawasaki, Y.; Isono, S.; Matsubara, H. Predictor of respiratory disturbances during gastric endoscopic submucosal dissection under deep sedation. World J. Gastrointest. Endosc. 2020, 12, 378–387. [Google Scholar] [CrossRef]
- Calderwood, A.H.; Chapman, F.J.; Cohen, J.; Cohen, L.B.; Collins, J.; Day, L.W.; Early, D.S. Guidelines for safety in the gastrointestinal endoscopy unit. Gastrointest. Endosc. 2014, 79, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Tanabe, S.; Azuma, M.; Sato, A.; Naruke, A.; Ishido, K.; Katada, C.; Higuchi, K.; Koizumi, W. Propofol sedation with bispectral index monitoring is useful for endoscopic submucosal dissection: A randomized prospective phase II clinical trial. Endoscopy 2012, 44, 584–589. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, E.Y.; Hwang, J.W.; Do, S.H.; Na, H.S. Comparison of upper airway patency in patients with mild obstructive sleep apnea during dexmedetomidine or propofol sedation: A prospective, randomized, controlled trial. BMC Anesthesiol. 2018, 18, 120. [Google Scholar] [CrossRef]
- Kim, J.H.; Byun, S.; Choi, Y.J.; Kwon, H.J.; Jung, K.; Kim, S.E.; Park, M.I.; Moon, W.; Park, S.J. Efficacy and Safety of Etomidate in Comparison with Propofol or Midazolam as Sedative for Upper Gastrointestinal Endoscopy. Clin. Endosc. 2020, 53, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.; Roth, N.; Motamedi, N.; Lee, T.; Leonor, P.; Salem, M.; Gibbs, D.; Vargo, J. Anesthetist-Directed Sedation Favors Success of Advanced Endoscopic Procedures. Am. J. Gastroenterol. 2017, 112, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Goudra, B.G.; Singh, P.M.; Gouda, G.; Borle, A.; Gouda, D.; Dravida, A.; Chandrashakhara, V. Safety of Non-anesthesia Provider-Administered Propofol (NAAP) Sedation in Advanced Gastrointestinal Endoscopic Procedures: Comparative Meta-Analysis of Pooled Results. Dig. Dis. Sci. 2015, 60, 2612–2627. [Google Scholar] [CrossRef] [PubMed]
- Sneyd, J.R.; Absalom, A.R.; Barends, C.R.M.; Jones, J.B. Hypotension during propofol sedation for colonoscopy: A retrospective exploratory analysis and meta-analysis. Br. J. Anaesth. 2022, 128, 610–622. [Google Scholar] [CrossRef]
- Mannion, S. Sedation, spinal anesthesia and older patients. J. Postgrad. Med. 2007, 53, 155. [Google Scholar] [CrossRef]
- Passot, S.; Servin, F.; Allary, R.; Pascal, J.; Prades, J.M.; Auboyer, C.; Molliex, S. Target-controlled versus manually-controlled infusion of propofol for direct laryngoscopy and bronchoscopy. Anesth Analg. 2002, 94, 1212–1216, table of contents. [Google Scholar] [CrossRef]
- Pollock, J.E.; Neal, J.M.; Liu, S.S.; Burkhead, D.; Polissar, N. Sedation during spinal anesthesia. Anesthesiology 2000, 93, 728–734. [Google Scholar] [CrossRef]
- Struys, M.M.R.F.; Vereecke, H.; Moerman, A.; Jensen, E.W.; Verhaeghen, D.; De Neve, N.; Dumortier, F.J.E.; Mortier, E.P. Ability of the Bispectral Index, Autoregressive Modelling with Exogenous Input-derived Auditory Evoked Potentials, and Predicted Propofol Concentrations to Measure Patient Responsiveness during Anesthesia with Propofol and Remifentanil. Anesthesiology 2003, 99, 802–812. [Google Scholar] [CrossRef]
- Liu, J.; Singh, H.; White, P.F. Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg. 1997, 84, 185–189. [Google Scholar] [CrossRef]
- Singh, H. Bispectral index (BIS) monitoring during propofol-induced sedation and anaesthesia. Eur. J. Anaesthesiol. 1999, 16, 31–36. [Google Scholar] [CrossRef]
- Maurice-Szamburski, A.; Bruder, N.; Loundou, A.; Capdevila, X.; Auquier, P. Development and validation of a perioperative satisfaction questionnaire in regional anesthesia. Anesthesiology 2013, 118, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Naqibuddin, M.; Fleisher, L.A. Measurement of patient satisfaction as an outcome of regional anesthesia and analgesia: A systematic review. Reg. Anesth. Pain Med. 2001, 26, 196–208. [Google Scholar] [CrossRef]
- Wu, C.L.; Fleisher, L.A. Outcomes research in regional anesthesia and analgesia. Anesth Analg. 2000, 91, 1232–1242. [Google Scholar] [CrossRef]
Control Group (n = 37) | Intervention Group (n = 38) | p-Value | |
---|---|---|---|
Age, years | 52.0 (39.0–60.0) | 54.5 (41.0–61.8) | 0.248 |
Male, n | 16 | 18 | 0.720 |
Weight, kg | 68.0 (64.0–85.0) | 74.1 (63.9–83.4) | 0.618 |
Height, cm | 163.0 (156.0–168.0) | 162.5 (155.1–170.6) | 0.931 |
ASA grade, I/II | 17/20 | 18/20 | 0.902 |
Control Group (n = 37) | Intervention Group (n = 38) | p-Value | |
---|---|---|---|
Surgery time, min | 125.0 (105.0–165.0) | 115.0 (106.3–173.8) | 0.706 |
Sedation time, min | 86.0 (70.0–120.0) | 80.0 (60.0–108.8) | 0.257 |
Intrathecal bupivacaine dose, mg | 13.0 (11.3–13.0) | 12.5 (12.0–13.8) | 0.494 |
Intrathecal fentanyl dose, mcg | 20.0 (15.0–20.0) | 15.0 (10.0–20.0) | 0.177 |
Type of surgery, n | |||
TKRA | 6 | 8 | |
Knee arthroscopic surgery | 15 | 17 | 0.264 |
Ankle arthroscopic surgery | 5 | 7 | |
ORIF | 6 | 3 | |
Others 1 | 5 | 3 |
Control Group (n = 37) | Intervention Group (n = 38) | Odds Ratio (95% CI) | p-Value | |
---|---|---|---|---|
Propofol dose, mg·kg−1·h−1 | 3.1 (2.7–3.4) | 2.3 (2.0–2.7) | <0.001 | |
Mean propofol target concentration, μg·mL−1 | 1.2 (1.1–1.4) | 0.9 (0.8–1.1) | <0.001 | |
Mean BIS | 76.3 (74.2–79.8) | 75.9 (73.5–79.0) | 0.478 | |
Induction time, s | 280.0 (180.0–452.0) | 190.0 (120.0–321.0) | 0.006 | |
Basal MBP, mmHg | 81.0 (74.0–89.0) | 79.5 (75.0–94.9) | 0.379 | |
Mean MBP, mmHg | 75.1 (69.5–78.9) | 77.3 (72.9–86.1) | 0.036 | |
Basal heart rate, beat/min | 71.0 (59.0–76.0) | 66.0 (60.0–77.0) | 0.461 | |
Mean heart rate, beat/min | 61.9 (58.2–67.2) | 63.4 (56.0–71.9) | 0.546 | |
Inotropic requirement, n | 17 | 20 | 1.3 (0.5–3.2) | 0.563 |
Apnea incidence, n | 11 | 3 | 0.3 (0.1–1.0) | 0.038 |
PONV, n | 8 | 4 | 0.4 (0.1–1.6) | 0.190 |
Patient satisfaction | 8.0 (8.0–10.0) | 10.0 (9.0–10.0) | 0.002 |
Control Group | Intervention Group | p-Value | |
---|---|---|---|
High noise level 1 | n = 12 | n = 11 | |
Propofol dose, mg·kg−1·h−1 | 3.3 (3.1–3.5) | 2.4 (2.2–2.6) | <0.001 |
Mean propofol target concentration, μg·mL−1 | 1.2 (1.2–1.2) | 0.8 (0.8–1.0) | 0.023 |
Low noise level 2 | n = 20 | n = 24 | |
Propofol dose, mg·kg−1·h−1 | 3.0 (2.6–3.4) | 2.2 (1.9–2.6) | <0.001 |
Mean propofol target concentration, μg·mL−1 | 1.0 (0.8–1.2) | 0.8 (0.6–1.0) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-W.; Bae, S.I.; Ryu, J.; Chung, S.H.; Do, S.-H. Effects of Earmuffs and Eye Masks on Propofol Sedation during Spinal Anesthesia for Orthopedic Surgery: A Randomized Controlled Trial. J. Clin. Med. 2023, 12, 899. https://doi.org/10.3390/jcm12030899
Park J-W, Bae SI, Ryu J, Chung SH, Do S-H. Effects of Earmuffs and Eye Masks on Propofol Sedation during Spinal Anesthesia for Orthopedic Surgery: A Randomized Controlled Trial. Journal of Clinical Medicine. 2023; 12(3):899. https://doi.org/10.3390/jcm12030899
Chicago/Turabian StylePark, Jin-Woo, Sung Il Bae, Jungyul Ryu, Seung Hyun Chung, and Sang-Hwan Do. 2023. "Effects of Earmuffs and Eye Masks on Propofol Sedation during Spinal Anesthesia for Orthopedic Surgery: A Randomized Controlled Trial" Journal of Clinical Medicine 12, no. 3: 899. https://doi.org/10.3390/jcm12030899