Acute Effect of Positive Airway Pressure on Heart Rate Variability in Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Polysomnography
2.3. Heart Rate Variability
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tietjens, J.R.; Claman, D.; Kezirian, E.J.; De Marco, T.; Mirzayan, A.; Sadroonri, B.; Goldberg, A.N.; Long, C.; Gerstenfeld, E.P.; Yeghiazarians, Y. Obstructive Sleep Apnea in Cardiovascular Disease: A Review of the Literature and Proposed Multidisciplinary Clinical Management Strategy. J. Am. Heart Assoc. 2019, 8, e010440. [Google Scholar] [CrossRef] [PubMed]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef]
- Bauters, F.; Rietzschel, E.R.; Hertegonne, K.B.C.; Chirinos, J.A. The Link Between Obstructive Sleep Apnea and Cardiovascular Disease. Curr. Atheroscler. Rep. 2016, 18, 1. [Google Scholar] [CrossRef]
- Durgan, D.J.; Bryan, R.M., Jr. Cerebrovascular consequences of obstructive sleep apnea. J. Am. Heart Assoc. 2012, 1, e000091. [Google Scholar] [CrossRef]
- Dewan, N.A.; Nieto, F.J.; Somers, V.K. Intermittent hypoxemia and OSA: Implications for comorbidities. Chest 2015, 147, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, C.D. Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea. J. Thorac. Dis. 2018, 10, S33–S39. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, H.U.; Bin, Y.S.; Sutherland, K.; Ucak, S.; de Chazal, P.; Cistulli, P.A. The effect of obstructive sleep apnea therapy on cardiovascular autonomic function: A systematic review and meta-analysis. Sleep 2022, 45, zsac210. [Google Scholar] [CrossRef] [PubMed]
- Tobaldini, E.; Nobili, L.; Strada, S.; Casali, K.R.; Braghiroli, A.; Montano, N. Heart rate variability in normal and pathological sleep. Front. Physiol. 2013, 4, 294. [Google Scholar] [CrossRef]
- Koizumi, K.; Terui, N.; Kollai, M. Neural control of the heart: Significance of double innervation re-examined. J. Auton. Nerv. Syst. 1983, 7, 279–294. [Google Scholar] [CrossRef]
- Guilleminault, C.; Poyares, D.; Rosa, A.; Huang, Y.S. Heart rate variability, sympathetic and vagal balance and EEG arousals in upper airway resistance and mild obstructive sleep apnea syndromes. Sleep Med. 2005, 6, 451–457. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Gula, L.J.; Krahn, A.D.; Skanes, A.; Ferguson, K.A.; George, C.; Yee, R.; Klein, G.J. Heart rate variability in obstructive sleep apnea: A prospective study and frequency domain analysis. Ann. Noninvasive Electrocardiol. 2003, 8, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Chemla, D.; Roisman, G.; Mao, W.; Bazizi, S.; Lefevre, A.; Escourrou, P. Overnight heart rate variability in patients with obstructive sleep apnoea: A time and frequency domain study. Clin. Exp. Pharmacol. Physiol. 2012, 39, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Shin, C.J.; Hong, S.C.; Yu, J.; Ryu, S.H.; Kim, E.J.; Shin, H.B.; Shin, B.H. Correlation between the severity of obstructive sleep apnea and heart rate variability indices. J. Korean Med. Sci. 2008, 23, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, S.Y.; Park, D.Y.; Wu, H.W.; Hwang, G.S.; Kim, H.J. Clinical Implication of Heart Rate Variability in Obstructive Sleep Apnea Syndrome Patients. J. Craniofac. Surg. 2015, 26, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Narkiewicz, K.; Montano, N.; Cogliati, C.; van de Borne, P.J.; Dyken, M.E.; Somers, V.K. Altered cardiovascular variability in obstructive sleep apnea. Circulation 1998, 98, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M.; Altin, R.; Ozeren, A.; Kart, L.; Bilge, M.; Unalacak, M. Cardiac autonomic activity in obstructive sleep apnea: Time-dependent and spectral analysis of heart rate variability using 24-hour Holter electrocardiograms. Tex. Heart Inst. J. 2004, 31, 132–136. [Google Scholar]
- Chang, J.S.; Lee, S.D.; Ju, G.; Kim, J.W.; Ha, K.; Yoon, I.Y. Enhanced cardiorespiratory coupling in patients with obstructive sleep apnea following continuous positive airway pressure treatment. Sleep Med. 2013, 14, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Covassin, N.; Zhou, J.; Zhang, Y.; Ren, R.; Yang, L.; Tan, L.; Li, T.; Xue, P.; Tang, X. Interaction effect of obstructive sleep apnea and periodic limb movements during sleep on heart rate variability. J. Sleep Res. 2019, 28, e12861. [Google Scholar] [CrossRef]
- Palma, J.A.; Urrestarazu, E.; Lopez-Azcarate, J.; Alegre, M.; Fernandez, S.; Artieda, J.; Iriarte, J. Increased sympathetic and decreased parasympathetic cardiac tone in patients with sleep related alveolar hypoventilation. Sleep 2013, 36, 933–940. [Google Scholar] [CrossRef]
- Palma, J.A.; Iriarte, J.; Fernandez, S.; Alegre, M.; Valencia, M.; Artieda, J.; Urrestarazu, E. Long-term continuous positive airway pressure therapy improves cardiac autonomic tone during sleep in patients with obstructive sleep apnea. Clin. Auton. Res. 2015, 25, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Salsone, M.; Vescio, B.; Quattrone, A.; Roccia, F.; Sturniolo, M.; Bono, F.; Aguglia, U.; Gambardella, A.; Quattrone, A. Cardiac parasympathetic index identifies subjects with adult obstructive sleep apnea: A simultaneous polysomnographic-heart rate variability study. PLoS ONE 2018, 13, e0193879. [Google Scholar] [CrossRef] [PubMed]
- Dal-Fabbro, C.; Garbuio, S.; D’Almeida, V.; Cintra, F.D.; Tufik, S.; Bittencourt, L. Mandibular advancement device and CPAP upon cardiovascular parameters in OSA. Sleep Breath. 2014, 18, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Roche, F.; Court-Fortune, I.; Pichot, V.; Duverney, D.; Costes, F.; Emonot, A.; Vergnon, J.M.; Geyssant, A.; Lacour, J.R.; Barthelemy, J.C. Reduced cardiac sympathetic autonomic tone after long-term nasal continuous positive airway pressure in obstructive sleep apnoea syndrome. Clin. Physiol. 1999, 19, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Salsone, M.; Marelli, S.; Vescio, B.; Quattrone, A.; Gambardella, A.; Castelnuovo, A.; Quattrone, A.; Ferini Strambi, L. Usefulness of cardiac parasympathetic index in CPAP-treated patients with obstructive sleep apnea: A preliminary study. J. Sleep Res. 2020, 29, e12893. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, E.; Kinami, S.; Ishida, Y.; Shiotani, H.; Nishimura, Y. Continuous positive nasal airway pressure decreases levels of serum amyloid A and improves autonomic function in obstructive sleep apnea syndrome. Int. J. Cardiol. 2009, 135, 338–345. [Google Scholar] [CrossRef]
- Efazati, N.; Rahimi, B.; Mirdamadi, M.; Edalatifard, M.; Tavoosi, A. Changes in heart rate variability (HRV) in patients with severe and moderate obstructive sleep apnea before and after acute CPAP therapy during nocturnal polysomnography. Sleep Sci. 2020, 13, 97–102. [Google Scholar]
- Chrysostomakis, S.I.; Simantirakis, E.N.; Schiza, S.E.; Karalis, I.K.; Klapsinos, N.C.; Siafakas, N.M.; Vardas, P.E. Continuous positive airway pressure therapy lowers vagal tone in patients with obstructive sleep apnoea-hypopnoea syndrome. Hellenic J. Cardiol. 2006, 47, 13–20. [Google Scholar]
- Ferland, A.; Poirier, P.; Series, F. Sibutramine versus continuous positive airway pressure in obese obstructive sleep apnoea patients. Eur. Respir. J. 2009, 34, 694–701. [Google Scholar] [CrossRef]
- Shiina, K.; Tomiyama, H.; Takata, Y.; Yoshida, M.; Kato, K.; Saruhara, H.; Hashimura, Y.; Matsumoto, C.; Asano, K.; Usui, Y.; et al. Effects of CPAP therapy on the sympathovagal balance and arterial stiffness in obstructive sleep apnea. Respir. Med. 2010, 104, 911–916. [Google Scholar] [CrossRef]
- Tasali, E.; Chapotot, F.; Leproult, R.; Whitmore, H.; Ehrmann, D.A. Treatment of obstructive sleep apnea improves cardiometabolic function in young obese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2011, 96, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Glos, M.; Penzel, T.; Schoebel, C.; Nitzsche, G.R.; Zimmermann, S.; Rudolph, C.; Blau, A.; Baumann, G.; Jost-Brinkmann, P.G.; Rautengarten, S.; et al. Comparison of effects of OSA treatment by MAD and by CPAP on cardiac autonomic function during daytime. Sleep Breath. 2016, 20, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Miglis, M.G. Autonomic dysfunction in primary sleep disorders. Sleep Med. 2016, 19, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef]
- Guo, W.; Lv, T.; She, F.; Miao, G.; Liu, Y.; He, R.; Xue, Y.; Nu, N.K.; Yang, J.; Li, K.; et al. The impact of continuous positive airway pressure on heart rate variability in obstructive sleep apnea patients during sleep: A meta-analysis. Heart Lung 2018, 47, 516–524. [Google Scholar] [CrossRef]
- Cabiddu, R.; Cerutti, S.; Viardot, G.; Werner, S.; Bianchi, A.M. Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration. Front. Physiol. 2012, 3, 45. [Google Scholar] [CrossRef]
- da Silva, S.P.; Hulce, V.D.; Backs, R.W. Effects of obstructive sleep apnea on autonomic cardiac control during sleep. Sleep Breath. 2009, 13, 147–156. [Google Scholar] [CrossRef]
- Drager, L.F.; McEvoy, R.D.; Barbe, F.; Lorenzi-Filho, G.; Redline, S.; Initiative, I. Sleep Apnea and Cardiovascular Disease: Lessons from Recent Trials and Need for Team Science. Circulation 2017, 136, 1840–1850. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Lee, C.H.; Sethi, R.; Li, R.; Ho, H.H.; Hein, T.; Jim, M.H.; Loo, G.; Koo, C.Y.; Gao, X.F.; Chandra, S.; et al. Obstructive Sleep Apnea and Cardiovascular Events After Percutaneous Coronary Intervention. Circulation 2016, 133, 2008–2017. [Google Scholar] [CrossRef]
- Wang, H.; Parker, J.D.; Newton, G.E.; Floras, J.S.; Mak, S.; Chiu, K.L.; Ruttanaumpawan, P.; Tomlinson, G.; Bradley, T.D. Influence of obstructive sleep apnea on mortality in patients with heart failure. J. Am. Coll. Cardiol. 2007, 49, 1625–1631. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M.; Mehra, R.; Patel, S.R.; Quan, S.F.; Babineau, D.C.; Tracy, R.P.; Rueschman, M.; Blumenthal, R.S.; Lewis, E.F.; et al. CPAP versus oxygen in obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Kohler, M.; Pepperell, J.C.; Casadei, B.; Craig, S.; Crosthwaite, N.; Stradling, J.R.; Davies, R.J. CPAP and measures of cardiovascular risk in males with OSAS. Eur. Respir. J. 2008, 32, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, W.T.; bin Nasir, U.; Alqalyoobi, S.; O’Neal, W.T.; Mawri, S.; Sabbagh, S.; Soliman, E.Z.; Al-Mallah, M.H. Meta-Analysis of Continuous Positive Airway Pressure as a Therapy of Atrial Fibrillation in Obstructive Sleep Apnea. Am. J. Cardiol. 2015, 116, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | |
---|---|
Male: Female, n (%) | 320 (79.6%): 82 (20.4%) |
Age, years | 52.0 ± 11.8 (range = 16–81) |
BMI (kg/m2) | 28.8 ± 4.4 (range = 19–48.9) |
Moderate: Severe OSA, n (%) | 132 (32.8%): 270 (67.2%) |
Hypertension, n (%) | 228 (56.7%) |
Diabetes mellitus, n (%) | 77 (19.2%) |
Current smoker, n (%) | 91 (22.6%) |
ESS score | 8.3 ± 4.6 (range = 0–24) |
PSQI | 7.5 ± 4.6 (range = 0–22) |
SF-36 | 68.2 ± 19.4 (range = 15–98) |
PSG Parameters | ||||
---|---|---|---|---|
Baseline | During CPAP | p | ||
Total sleep time (min) | 349.0 ± 48.8 | 349.8 ± 46.5 | 0.791 | |
Sleep efficiency (%) | 84.6 ± 10.7 | 86.7 ± 10.1 | <0.001 | |
WASO (min) | 53.3 ± 40.9 | 45.1 ± 38.1 | <0.001 | |
N1 (%) | 127.2 ± 56.3 | 68.2 ± 33.5 | <0.001 | |
N2 (%) | 126.5 ± 88.7 | 162.5 ± 45.2 | <0.001 | |
N3 (%) | 11.3 ± 19.2 | 15.6 ± 23.5 | <0.001 | |
REM (min) | 86.7 ± 33.3 | 103.5 ± 37.6 | <0.001 | |
AHI | 43.9 ± 22.0 | 2.6 ± 3.1 | <0.001 | |
REM-AHI | 47.4 ± 22.1 | |||
NREM-AHI | 42.0 ± 24.6 | |||
ODI | 41.0 ± 22.3 | 3.5 ± 5.8 | <0.001 | |
AI | 50.7 ± 22.7 | 15.1 ± 12.4 | <0.001 | |
Mean SaO2 | 93.7 ± 2.5 | 95.8 ± 1.2 | <0.001 | |
Frequency domain HRV parameters | ||||
Baseline | During CPAP | Difference | p | |
TP (ms2) | 39,836 ± 20,001 | 35,672 ± 17,055 | 4164 ± 2946 | <0.001 |
VLF (ms2) | 21,184 ± 12,586 | 18,494 ± 10,006 | 2690 ± 2580 | <0.001 |
LF (ms2) | 12,472 ± 7636 | 11,560 ± 7157 | 912 ± 479 | 0.001 |
HF (ms2) | 5380 ± 2917 | 4920 ± 2507 | 460 ± 410 | <0.001 |
LF/HF ratio | 2.9 ± 2.3 | 2.8 ± 2.2 | 0.1 ± 0.1 | 0.978 |
PSG Parameters | ||||||
---|---|---|---|---|---|---|
Male-severe (n = 230) | Male-moderate (n = 90) | |||||
Baseline | During CPAP | p | Baseline | During CPAP | p | |
TP (ms2) | 43,682 ± 20,907 | 37,445 ± 17,293 | <0.001 | 40,712 ± 18,397 | 40,096 ± 16,776 | 0.565 |
VLF (ms2) | 23,781 ± 13,638 | 19,760 ± 10,444 | <0.001 | 20,958 ± 10,437 | 20,306 ± 9008 | 0.478 |
LF (ms2) | 13,742 ± 7651 | 12,115 ± 6924 | <0.001 | 13,170 ± 7929 | 13,695 ± 8154 | 0.480 |
HF (ms2) | 5311 ± 13,638 | 4869 ± 2442 | 0.001 | 5905 ± 3224 | 5450 ± 2942 | 0.038 |
LF/HF ratio | 3.2 ± 2.4 | 2.9 ± 2.0 | 0.283 | 2.8 ± 2.2 | 3.2 ± 2.9 | 0.041 |
Female-severe (n = 40) | Female-moderate (n = 42) | |||||
Baseline | During CPAP | p | Baseline | During CPAP | p | |
TP (ms2) | 27,359 ± 15,634 | 25,169 ± 12,854 | 0.221 | 28,781 ± 11,920 | 26,484 ± 12,322 | 0.149 |
VLF (ms2) | 13,499 ± 9157 | 12,422 ± 7781 | 0.307 | 14,765 ± 7511 | 13,458 ± 7630 | 0.123 |
LF (ms2) | 8292 ± 6821 | 7656 ± 5592 | 0.476 | 7995 ± 3860 | 7660 ± 4128 | 0.520 |
HF (ms2) | 4805 ± 3320 | 4318 ± 2250 | 0.436 | 5177 ± 2280 | 4637 ± 1873 | 0.083 |
LF/HF ratio | 2.5 ± 2.7 | 2.2 ± 1.6 | 0.610 | 1.8 ± 1.2 | 1.7 ± 1.0 | 0.846 |
Male-Severe (n = 230) | Male-Moderate (n = 90) | Female-Severe (n = 40) | Female-Moderate (n = 42) | Overall p | |
---|---|---|---|---|---|
∆TP (ms2) | 6237 ± 17,279 a | 615 ± 12,870 | 2190 ± 9648 | 2297 ± 9812 | 0.010 |
∆VLF (ms2) | 4020 ± 11,565 a | 652 ± 7304 | 1076 ± 6119 | 1307 ± 5669 | 0.013 |
∆LF (ms2) | 1627 ± 6732 a | −525 ± 5611 | 636 ± 5261 | 335 ± 3266 | 0.010 |
∆HF (ms2) | 441 ± 2239 | 455 ± 2285 | 486 ± 2116 | 540 ± 1749 | 0.919 |
Multivariate Linear Regression Analysis | ||||
---|---|---|---|---|
Independent variables | ∆VLF | ∆LF | ∆HF | ∆TP |
Age | 0.129 * | 0.052 | –0.119 * | 0.086 |
Sex | –0.078 | –0.015 | 0.007 | –0.056 |
BMI | 0.061 | 0.150 ** | 0.084 | 0.112 * |
∆AHI | 0.188 * | 0.166 * | –0.025 | 0.186 * |
∆AI | –0.070 | –0.047 | –0.038 | –0.069 |
∆mean SaO2 | –0.021 | –0.038 | 0.312 *** | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.H.; Song, M.J.; Kim, J.H. Acute Effect of Positive Airway Pressure on Heart Rate Variability in Obstructive Sleep Apnea. J. Clin. Med. 2023, 12, 7606. https://doi.org/10.3390/jcm12247606
Shin JH, Song MJ, Kim JH. Acute Effect of Positive Airway Pressure on Heart Rate Variability in Obstructive Sleep Apnea. Journal of Clinical Medicine. 2023; 12(24):7606. https://doi.org/10.3390/jcm12247606
Chicago/Turabian StyleShin, Ji Hye, Min Ji Song, and Ji Hyun Kim. 2023. "Acute Effect of Positive Airway Pressure on Heart Rate Variability in Obstructive Sleep Apnea" Journal of Clinical Medicine 12, no. 24: 7606. https://doi.org/10.3390/jcm12247606
APA StyleShin, J. H., Song, M. J., & Kim, J. H. (2023). Acute Effect of Positive Airway Pressure on Heart Rate Variability in Obstructive Sleep Apnea. Journal of Clinical Medicine, 12(24), 7606. https://doi.org/10.3390/jcm12247606