Antibody–Drug Conjugates in HR+ Breast Cancer: Where Are We Now and Where Are We Heading?
Abstract
:1. Introduction
2. Antibody–Drug Conjugates (ADCs): Structure and Mechanism of Action
2.1. Structure
- (1)
- A monoclonal humanized antibody (mAb): it can target tumor antigens or proteins expressed mainly in tumors rather than normal cells;
- (2)
- A cytotoxic payload carried by the mAb and released in tumor cells, where it exerts its cytotoxic activity. ADCs in clinical development carry various classes of cytotoxics, including microtubule inhibitors (e.g., auristatins like monomethyl auristatin E and F, MMAE, and MMAF, and maytansinoid microtubule inhibitors, DM1 and DM4), antitumor antibiotics (calicheamicins), and DNA-targeting agents (e.g., camptothecin analogs like SN-38 and exatecan mesylate). ADC payloads are potent cytotoxic agents with IC50 values in the nanomolar to picomolar range, regardless of the specific cytotoxic mechanism;
- (3)
- A linker: this component of the ADC connects the mAb to the cytotoxic payloads. The biological properties of linkers are crucial for safety and antitumor activity, as they should ensure the stability of the entire ADC complex in the bloodstream while enabling optimal intratumoral delivery of the payload for maximum efficacy. Linkers are categorized as cleavable and non-cleavable (stable), according to their capacity to undergo enzymatic or chemical cleavage [17].
2.2. Mechanism of Action
- -
- Recognition of the target antigen on the tumor cell (Phase 1);
- -
- Internalization of the ADC/antigen complex via endocytosis within the tumor cell (Phase 2);
- -
- Transfer of the cytotoxic payload to the tumor cell’s lysosomes (Phase 3);
- -
- Release of the cytotoxic payload within the tumor cell thanks to its acidic environment and presence of proteolytic enzymes (Phase 4);
- -
- Cytotoxicity mediated by the cytotoxic payload, leading to cell death (Phase 5) [18].
2.3. Mechanism of Resistance
- Resistance against the entire ADC complex through physical barriers caused by a dense TME that hinders the intratumoral spread of the ADC [21];
2.4. Trastuzumab Deruxtecan (T-Dxd)
2.5. Enfortumab Vedotin (EV)
2.6. Sacituzumab Govitecan
2.7. Patritumab Deruxtecan
3. ADCs in Metastatic HR+ Breast Cancer: State of the Art
3.1. Trastuzumab-Deruxtecan (T-DXd) in HR + BC
3.2. Sacituzumab Govitecan (SG) in HR+ Breast Cancer
4. Future Perspectives
4.1. Agents That Target HER2
4.2. Agents That Target HER 3
4.3. Agents That Target TROP-2
4.4. Novel Selected Targets
4.5. ADCs in Combination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Luveta, J.; Parks, R.M.; Heery, D.M.; Cheung, K.-L.; Johnston, S.J. Invasive Lobular Breast Cancer as a Distinct Disease: Implications for Therapeutic Strategy. Oncol. Ther. 2020, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; El-Sayed, M.E.; Powe, D.G.; Green, A.R.; Habashy, H.; Grainge, M.J.; Robertson, J.F.R.; Blamey, R.; Gee, J.; Nicholson, R.I.; et al. Invasive Lobular Carcinoma of the Breast: Response to Hormonal Therapy and Outcomes. Eur. J. Cancer 2008, 44, 73–83. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Davey, M.G.; Barkley, L.R.; Kerin, M.J. Differences in Sensitivity to Neoadjuvant Chemotherapy among Invasive Lobular and Ductal Carcinoma of the Breast and Implications on Surgery—A Systematic Review and Meta-Analysis. Breast 2022, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Verras, G.I.; Tchabashvili, L.; Mulita, F.; Grypari, I.M.; Sourouni, S.; Panagodimou, E.; Argentou, M.I. Micropapillary Breast Carcinoma: From Molecular Pathogenesis to Prognosis. Breast Cancer Targets Ther. 2022, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Akrida, I.; Mulita, F. The Clinical Significance of HER2 Expression in DCIS. Med. Oncol. 2022, 40, 16. [Google Scholar] [CrossRef] [PubMed]
- Hager, G.L.; Lim, C.S.; Elbi, C.; Baumann, C.T. Trafficking of Nuclear Receptors in Living Cells. J. Steroid Biochem. Mol. Biol. 2000, 74, 249–254. [Google Scholar] [CrossRef]
- Pagani, O.; Regan, M.M.; Francis, P.A. Are SOFT and TEXT Results Practice Changing and How? Breast 2016, 27, 122–125. [Google Scholar] [CrossRef]
- Osborne, C.K. Tamoxifen in the Treatment of Breast Cancer. N. Engl. J. Med. 1998, 339, 1609–1618. [Google Scholar] [CrossRef]
- Gnant, M.; Curigliano, G.; Senn, H.; Thürlimann, B.; Weber, W.P. Customizing Early Breast Cancer Therapies—The 2021 St. Gallen International Breast Cancer Consensus Conference. Breast 2022, 62, S2. [Google Scholar] [CrossRef]
- Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.; Biganzoli, L.; et al. 5th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 5). Ann. Oncol. 2020, 31, 1623–1649. [Google Scholar] [CrossRef]
- Jeselsohn, R.; Buchwalter, G.; De Angelis, C.; Brown, M.; Schiff, R. ESR1 Mutations—A Mechanism for Acquired Endocrine Resistance in Breast Cancer. Nat. Rev. Clin. Oncol. 2015, 12, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Fribbens, C.; O’Leary, B.; Kilburn, L.; Hrebien, S.; Garcia-Murillas, I.; Beaney, M.; Cristofanilli, M.; Andre, F.; Loi, S.; Loibl, S.; et al. Plasma ESR1 Mutations and the Treatment of Estrogen Receptor-Positive Advanced Breast Cancer. J. Clin. Oncol. 2016, 34, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA -Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.J.; Cheng, J.; Prowell, T.M.; Bloomquist, E.; Tang, S.; Wedam, S.B.; Royce, M.; Krol, D.; Osgood, C.; Ison, G.; et al. Overall Survival in Patients with Hormone Receptor-Positive, HER2-Negative, Advanced or Metastatic Breast Cancer Treated with a Cyclin-Dependent Kinase 4/6 Inhibitor plus Fulvestrant: A US Food and Drug Administration Pooled Analysis. Lancet Oncol. 2021, 22, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and Challenges for the next Generation of Antibody-Drug Conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Sievers, E.L.; Senter, P.D. Antibody-Drug Conjugates in Cancer Therapy. Annu. Rev. Med. 2013, 64, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Xu, S. Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates. Pharm. Res. 2015, 32, 3577–3583. [Google Scholar] [CrossRef]
- Staudacher, A.H.; Brown, M.P. Antibody Drug Conjugates and Bystander Killing: Is Antigen-Dependent Internalisation Required? Br. J. Cancer 2017, 117, 1736–1742. [Google Scholar] [CrossRef]
- Singh, A.P.; Seigel, G.M.; Guo, L.; Verma, A.; Wong, G.G.L.; Cheng, H.P.; Shah, D.K. Evolution of the Systems Pharmacokinetics-Pharmacodynamics Model for Antibody-Drug Conjugates to Characterize Tumor Heterogeneity and In Vivo Bystander Effect. J. Pharmacol. Exp. Ther. 2020, 374, 184–199. [Google Scholar] [CrossRef]
- Bordeau, B.M.; Yang, Y.; Balthasar, J.P. Transient Competitive Inhibition Bypasses the Binding Site Barrier to Improve Tumor Penetration of Trastuzumab and Enhance T-DM1 Efficacy. Cancer Res. 2021, 81, 4145. [Google Scholar] [CrossRef]
- Loganzo, F.; Tan, X.; Sung, M.; Jin, G.; Myers, J.S.; Melamud, E.; Wang, F.; Diesl, V.; Follettie, M.T.; Musto, S.; et al. Tumor Cells Chronically Treated with a Trastuzumab-Maytansinoid Antibody-Drug Conjugate Develop Varied Resistance Mechanisms but Respond to Alternate Treatments. Mol. Cancer Ther. 2015, 14, 952–963. [Google Scholar] [CrossRef]
- Sung, M.; Tan, X.; Lu, B.; Golas, J.; Hosselet, C.; Wang, F.; Tylaska, L.; King, L.; Zhou, D.; Dushin, R.; et al. Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1). Mol. Cancer Ther. 2018, 17, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.T.; Sun, S.; Leshchiner, I.; Thimmiah, N.; Martin, E.E.; McLoughlin, D.; Danysh, B.P.; Slowik, K.; Jacobs, R.A.; Rhrissorrakrai, K.; et al. Parallel Genomic Alterations of Antigen and Payload Targets Mediate Polyclonal Acquired Clinical Resistance to Sacituzumab Govitecan in Triple-Negative Breast Cancer. Cancer Discov. 2021, 11, 2436. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Shen, B.Q.; Yadav, D.B.; Sliwkowski, M.X.; Crocker, L.M.; Lacap, J.A.; Phillips, G.D.L. Mechanisms of Acquired Resistance to Trastuzumab Emtansine in Breast Cancer Cells. Mol. Cancer Ther. 2018, 17, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Yver, A.; Agatsuma, T.; Soria, J.C. The Art of Innovation: Clinical Development of Trastuzumab Deruxtecan and Redefining How Antibody-Drug Conjugates Target HER2-Positive Cancers. Ann. Oncol. 2020, 31, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.-B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- FDA. Grants Regular Approval to Fam-Trastuzumab Deruxtecan-Nxki for Breast Cancer | FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-fam-trastuzumab-deruxtecan-nxki-breast-cancer (accessed on 3 September 2023).
- Cortés, J.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef]
- Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res. 2016, 76, 3003–3013. [Google Scholar] [CrossRef]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 Is a Novel Target for Solid Cancer Therapy with Sacituzumab Govitecan (IMMU-132), an Antibody-Drug Conjugate (ADC). Oncotarget 2015, 6, 22496. [Google Scholar] [CrossRef]
- Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; et al. Sacituzumab Govitecan-Hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2019, 380, 741–751. [Google Scholar] [CrossRef]
- FDA. Grants Regular Approval to Sacituzumab Govitecan for Triple-Negative Breast Cancer | FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-sacituzumab-govitecan-triple-negative-breast-cancer (accessed on 3 September 2023).
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Ishikawa, H.; Abe, M.; Shiose, Y.; Ueno, S.; Nakamaru, K.; Murakami, M. Abstract 5201: U3-1402, a Novel HER3-Targeting Antibody-Drug Conjugate, Exhibits In Vitro Antitumor Activity against Breast Cancer Cells Expressing HER3 Mutations without Dependence on HER2 Overexpression. Cancer Res. 2020, 80, 5201. [Google Scholar] [CrossRef]
- Modi, S.; Park, H.; Murthy, R.K.; Iwata, H.; Tamura, K.; Tsurutani, J.; Moreno-Aspitia, A.; Doi, T.; Sagara, Y.; Redfern, C.; et al. Antitumor Activity and Safety of Trastuzumab Deruxtecan in Patients with HER2-Low–Expressing Advanced Breast Cancer: Results from a Phase Ib Study. J. Clin. Oncol. 2020, 38, 1887. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Jacot, W.; Tokunaga, E.; Sohn, J.; Cardoso, F.; Xu, B.; Vidal Losada, M.J.; Gil, M.J.; Ueno, N.T.; Prat, A.; et al. 185O—Trastuzumab Deruxtecan (T-DXd) vs Treatment of Physician’s Choice (TPC) in Patients (Pts) with HER2-Low Unresectable and/or Metastatic Breast Cancer (MBC): A Detailed Safety Analysis of the Randomized, Phase 3 DESTINY-Breast04 Trial. ESMO Open 2023, 8, 101223. [Google Scholar] [CrossRef]
- Mosele, F.; Deluche, E.; Lusque, A.; Le Bescond, L.; Filleron, T.; Pradat, Y.; Ducoulombier, A.; Pistilli, B.; Bachelot, T.; Viret, F.; et al. Trastuzumab Deruxtecan in Metastatic Breast Cancer with Variable HER2 Expression: The Phase 2 DAISY Trial. Nat. Med. 2023, 29, 2110–2120. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Tolaney, S.M.; Arteaga, C.; Cortes, J.; Sohn, J.; Marmé, F.; Hong, Q.; Delaney, R.J.; Hafeez, A.; et al. TROPiCS-02: A Phase III Study Investigating Sacituzumab Govitecan in the Treatment of HR+/HER2- Metastatic Breast Cancer. Future Oncol. 2020, 16, 705–712. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortés, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Gómez Pardo, P.; et al. Overall Survival with Sacituzumab Govitecan in Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer (TROPiCS-02): A Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet 2023, 402, 1423–1433. [Google Scholar] [CrossRef]
- Marmè, F.; Rugo, H.; Tolaney, S.; Bardia, A.; Schmid, P.; Verret, W.; Valdez, T.; Wang, H.; Cortes, J. 194P—Safety Outcomes by UGT1A1 Status in the Phase 3 TROPiCS-02 Study of Sacituzumab Govitecan (SG) in HR+/HER2- Metastatic Breast Cancer (MBC). ESMO Open 2023, 8, 101383. [Google Scholar] [CrossRef]
- FDA. Approves Sacituzumab Govitecan-Hziy for HR-Positive Breast Cancer | FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-sacituzumab-govitecan-hziy-hr-positive-breast-cancer (accessed on 3 September 2023).
- Hurvitz, S.A.; Wang, L.S.; Chan, D.; Phan, V.; Lomis, T.; McAndrew, N.P.; Spring, L.; Tetef, M.L.; Villa, D.; Applebaum, S.; et al. TRIO-US B-12 TALENT: Phase II Neoadjuvant Trial Evaluating Trastuzumab Deruxtecan with or without Anastrozole for HER2-Low, HR+ Early-Stage Breast Cancer. J. Clin. Oncol. 2022, 40, TPS623. [Google Scholar] [CrossRef]
- Study of Trastuzumab Deruxtecan (T-DXd), vs. Investigator’s Choice Chemotherapy in HER2-Low, Hormone Receptor Positive, Metastatic Breast Cancer. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04494425 (accessed on 3 September 2023).
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab Duocarmazine in Locally Advanced and Metastatic Solid Tumours and HER2-Expressing Breast Cancer: A Phase 1 Dose-Escalation and Dose-Expansion Study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef]
- Manich, C.S.; O’Shaughnessy, J.; Aftimos, P.G.; van den Tweel, E.; Oesterholt, M.; Escriva-de-Romani, S.I.; Tueux, N.Q.; Tan, T.J.; Lim, J.S.; Ladoire, S.; et al. Primary Outcome of the Phase III SYD985.002/TULIP Trial Comparing Vic- Trastuzumab Duocarmazine to Physician’s Choice Treatment in Patients with Pre-Treated HER2-Positive Locally Advanced or Metastatic Breast Cancer. Ann. Oncol. 2021, 32, S1288. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.; Jiang, J.; Huang, C.; Yao, X.; Xu, Q.; Yu, F.; Lou, L.; Fang, J. An Anti-HER2 Antibody Conjugated with Monomethyl Auristatin E Is Highly Effective in HER2-Positive Human Gastric Cancer. Cancer Biol. Ther. 2016, 17, 346. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Zhang, Q.; Feng, J.; Fang, J.; Chen, X.; Han, Y.; Li, Q.; Zhang, P.; Yuan, P.; et al. RC48-ADC, a HER2-Targeting Antibody-Drug Conjugate, in Patients with HER2-Positive and HER2-Low Expressing Advanced or Metastatic Breast Cancer: A Pooled Analysis of Two Studies. J. Clin. Oncol. 2021, 39, 1022. [Google Scholar] [CrossRef]
- Pascual, T.; Oliveira, M.; Ciruelos, E.; Bellet Ezquerra, M.; Saura, C.; Gavilá, J.; Pernas, S.; Muñoz, M.; Vidal, M.J.; Margelí Vila, M.; et al. SOLTI-1805 TOT-HER3 Study Concept: A Window-of-Opportunity Trial of Patritumab Deruxtecan, a HER3 Directed Antibody Drug Conjugate, in Patients with Early Breast Cancer. Front. Oncol. 2021, 11, 638482. [Google Scholar] [CrossRef]
- Krop, I.E.; Masuda, N.; Mukohara, T.; Takahashi, S.; Nakayama, T.; Inoue, K.; Iwata, H.; Toyama, T.; Yamamoto, Y.; Hansra, D.M.; et al. Results from the Phase 1/2 Study of Patritumab Deruxtecan, a HER3-Directed Antibody-Drug Conjugate (ADC), in Patients with HER3-Expressing Metastatic Breast Cancer (MBC). J. Clin. Oncol 2022, 40, 1002. [Google Scholar] [CrossRef]
- Okajima, D.; Yasuda, S.; Maejima, T.; Karibe, T.; Sakurai, K.; Aida, T.; Toki, T.; Yamaguchi, J.; Kitamura, M.; Kamei, R.; et al. Datopotamab Deruxtecan, a Novel TROP2-Directed Antibody-Drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Mol. Cancer Ther. 2021, 20, 2329–2340. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Krop, I.; Juric, D.; Kogawa, T.; Hamilton, E.; Spira, A.I.; Mukohara, T.; Tsunoda, T.; Damodaran, S.; Greenberg, J.; et al. Abstract PD13-08: PD13-08 Phase 1 TROPION-PanTumor01 Study Evaluating Datopotamab Deruxtecan (Dato-DXd) in Unresectable or Metastatic Hormone Receptor–Positive/HER2–Negative Breast Cancer (BC). Cancer Res. 2023, 83, PD13-08. [Google Scholar] [CrossRef]
- Taylor, K.M.; Morgan, H.E.; Smart, K.; Zahari, N.M.; Pumford, S.; Ellis, I.O.; Robertson, J.F.R.; Nicholson, R.I. The Emerging Role of the LIV-1 Subfamily of Zinc Transporters in Breast Cancer. Mol. Med. 2007, 13, 396. [Google Scholar] [CrossRef]
- Taylor, K.M.; Morgan, H.E.; Johnson, A.; Hadley, L.J.; Nicholson, R.I. Structure-Function Analysis of LIV-1, the Breast Cancer-Associated Protein That Belongs to a New Subfamily of Zinc Transporters. Biochem. J. 2003, 375, 51. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.T.; Higgins, S.; Stevens, N.; Gardai, S.J.; Sussman, D. Abstract 2742: Additional Mechanisms of Action of Ladiratuzumab Vedotin Contribute to Increased Immune Cell Activation within the Tumor. Cancer Res. 2018, 78, 2742. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Li, L.; Zhang, Y.; Huang, X.; Li, G.; Xu, C.; Yin, M.; Zhou, P.; Shi, F.; et al. Role of Nectin-4 Protein in Cancer (Review). Int. J. Oncol. 2021, 59, 1–14. [Google Scholar] [CrossRef] [PubMed]
- A Study to Evaluate Enfortumab Vedotin in Subjects with Locally Advanced or Metastatic Malignant Solid Tumors (EV-202). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04225117 (accessed on 4 September 2023).
- Ashman, N.; Bargh, J.D.; Spring, D.R. Non-Internalising Antibody–Drug Conjugates. Chem. Soc. Rev. 2022, 51, 9182–9202. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.N.; Ishii, C.; Ishida, S.; Ogitani, Y.; Wada, T.; Agatsuma, T. A HER2-Targeting Antibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model. Mol. Cancer Ther. 2018, 17, 1494–1503. [Google Scholar] [CrossRef]
- A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients with Metastatic or Locally Advanced Breast Cancer. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03424005 (accessed on 4 September 2023).
- Garrido-Castro, A.C.; Keenan, T.E.; Li, T.; Lange, P.; Callahan, C.; Guerriero, J.; Tayob, N.; Anderson, L.; Yam, C.; Daniel, B.R.; et al. Saci-IO TNBC: Randomized Phase II Trial of Sacituzumab Govitecan (SG) +/- Pembrolizumab in PD-L1– Metastatic Triple-Negative Breast Cancer (MTNBC). J. Clin. Oncol. 2021, 39, TPS1106. [Google Scholar] [CrossRef]
- DS8201a and Pembrolizumab in Participants with Locally Advanced/Metastatic Breast or Non-Small Cell Lung Cancer. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04042701 (accessed on 4 September 2023).
- A Phase 1b/2 Study of T-DXd Combinations in HER2-Positive Metastatic Breast Cancer. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04538742 (accessed on 4 September 2023).
Antibody-Drug Conjugate | Payload | Linker | Trial | Population | Phase | Status |
---|---|---|---|---|---|---|
HER 2 | ||||||
Vic-trastuzumab duocarmazine (SYD985) | duocarmycin (DNA alkylator) | cleavable | NCT04602117 | HER2-positive advanced solid tumors or HER2-low breast cancer | 1 | recruiting |
MRG002 | MMAE | cleavable vc-linker | NCT05263869 | HER2-positive BC with liver metastases | 2 | recruiting |
NCT04924699 | HER2-positive unresectable locally advanced or metastatic BC | 2 | recruiting | |||
NCT04742153 | HER2-low, locally advanced or mBC | 2 | recruiting | |||
Disitamab-vedotin (RC48) | MMAE | cleavable | NCT04400695 | locally advanced or HER2-low mBC | 3 | recruiting |
NCT03052634 | advanced BC with HER2-positive or low HER2 expression | 1–3 | active, not recruiting | |||
HER3 | ||||||
Antibody–drug conjugate | payload | linker | trial | population | Phase | Status |
Patritumab deruxtecan | exatecan derivative | tetrapeptide-based | NCT04965766 | first-line HER3-high, HER2−, HR+ unresectable locally advanced BC or mBC | 2 | recruiting |
NCT04610528 | HR+/HER2− tumor with non-metastatic primary invasive BC, untreated and recently diagnosed | 1 | recruiting | |||
TROP2 | ||||||
Antibody–drug conjugate | payload | linker | trial | population | Phase | Status |
Datopotamab deruxtecan | deruxtecan | tetrapeptide-based cleavable linker | NCT05104866 (TROPION-Breast01) | inoperable or metastatic HR+/HER2 − BC | 3 | recruiting |
Nectin-4 | ||||||
Antibody–drug conjugate | payload | linker | trial | population | Phase | Status |
Enfortumab vedotin | MMAE | protease-cleavable | NCT04225117 | treatment of refractory advanced solid tumors (HR+/HER2− or TNBC) | 2 | active, not recruiting |
FRα | ||||||
Antibody–drug conjugate | payload | linker | trial | population | Phase | Status |
PRO1184 | exatecan, a topoisomerase 1 inhibitor | cleavable | NCT05579366 | advanced and/or metastatic solid tumors (TNBC, HR+, and HER2+) | 1–2 | recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, P.; Sanna, V.; Perrone, M.; Guarini, C.; Santoro, A.N.; Laface, C.; Carrozzo, D.; Oliva, G.R.; Fancellu, A.; Fedele, P. Antibody–Drug Conjugates in HR+ Breast Cancer: Where Are We Now and Where Are We Heading? J. Clin. Med. 2023, 12, 7325. https://doi.org/10.3390/jcm12237325
De Santis P, Sanna V, Perrone M, Guarini C, Santoro AN, Laface C, Carrozzo D, Oliva GR, Fancellu A, Fedele P. Antibody–Drug Conjugates in HR+ Breast Cancer: Where Are We Now and Where Are We Heading? Journal of Clinical Medicine. 2023; 12(23):7325. https://doi.org/10.3390/jcm12237325
Chicago/Turabian StyleDe Santis, Pierluigi, Valeria Sanna, Martina Perrone, Chiara Guarini, Anna Natalizia Santoro, Carmelo Laface, Daniela Carrozzo, Gaia Rachele Oliva, Alessandro Fancellu, and Palma Fedele. 2023. "Antibody–Drug Conjugates in HR+ Breast Cancer: Where Are We Now and Where Are We Heading?" Journal of Clinical Medicine 12, no. 23: 7325. https://doi.org/10.3390/jcm12237325
APA StyleDe Santis, P., Sanna, V., Perrone, M., Guarini, C., Santoro, A. N., Laface, C., Carrozzo, D., Oliva, G. R., Fancellu, A., & Fedele, P. (2023). Antibody–Drug Conjugates in HR+ Breast Cancer: Where Are We Now and Where Are We Heading? Journal of Clinical Medicine, 12(23), 7325. https://doi.org/10.3390/jcm12237325