External Validation and Recalibration of a Mortality Prediction Model for Patients with Ischaemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Information Source
2.3. Variables
2.4. Method and Statistical Analysis
3. Results
3.1. Descriptive Study
3.2. External Validation
3.3. Recalibrated Model
3.4. Internal Validation of the Recalibrated Model
3.5. Importance of the Predictors in the RM
4. Discussion
4.1. Findings
4.2. Comparison with Previous Studies
4.3. Study Limitations
4.3.1. Revised ICD Classification
4.3.2. PCCDB per se and the NIHSS Scale
4.3.3. Database Imbalance
4.4. Strengths of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Purroy, F.; Montalà, N. Epidemiology of stroke in the last decade: A systematic review. Rev. Neurol. 2021, 73, 321–336. [Google Scholar] [CrossRef]
- Di Cesare, M.; Bentham, J.; Stevens, G.A.; Zhou, B.; Danaei, G.; Lu, Y.; Bixby, H.; Cowan, M.J.; Riley, L.M.; Hajifathalian, K.; et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Danaei, G.; Finucane, M.M.; Lu, Y.; Singh, G.M.; Cowan, M.J.; Paciorek, C.J.; Lin, J.K.; Farzadfar, F.; Khang, Y.H.; Stevens, G.A.; et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet 2011, 378, 31–40. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nohara, Y.; Soejima, H.; Yonehara, T.; Nakashima, N.; Kamouchi, M. Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes after Acute Ischemic Stroke. Stroke 2020, 51, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhang, L.; Li, Y.; Wang, D.; Fang, Q.; Tang, X. Derivation and Validation of a New Visceral Adiposity Index for Predicting Short-Term Mortality of Patients with Acute Ischemic Stroke in a Chinese Population. Brain Sci. 2023, 13, 297. [Google Scholar] [CrossRef]
- Nasution, I.; Hutagalung, H.S.; Irawan, E. Validation of the Premise Score after Addition of Recurrent Stroke Variable to Predicting Early Mortality in Acute Ischemic Stroke Patients. Open Access Maced. J. Med. Sci. 2022, 10, 81–86. [Google Scholar] [CrossRef]
- Smith, E.E.; Shobha, N.; Dai, D.; Olson, D.M.; Reeves, M.J.; Saver, J.L.; Hernandez, A.F.; Peterson, E.D.; Fonarow, G.C.; Schwamm, L.H. Risk score for in-hospital ischemic stroke mortality derived and validated within the Get with the Guidelines–Stroke Program. Circulation 2010, 122, 1496–1504. [Google Scholar] [CrossRef]
- Patel, P.D.; Salwi, S.; Liles, C.; Mistry, A.M.; Mistry, E.A.; Fusco, M.R.; Chitale, R.V.; Shannon, C.N. Creation and Validation of a Stroke Scale to Increase Utility of National Inpatient Sample Administrative Data for Clinical Stroke Research. J. Stroke Cerebrovasc. Dis. 2021, 30, 105658. [Google Scholar] [CrossRef]
- Hadianfard, Z.; Afshar, H.; Nazarbaghi, S.; Rahimi, B.; Timpka, T. Predicting Mortality in Patients with Stroke Using Data Mining Techniques. Acta Inform. Pragensia 2022, 11, 36–47. [Google Scholar] [CrossRef]
- Lea-Pereira, M.C.; Amaya-Pascasio, L.; Martínez-Sánchez, P.; Rodríguez Salvador, M.D.M.; Galván-Espinosa, J.; Téllez-Ramírez, L.; Reche-Lorite, F.; Sánchez, M.J.; García-Torrecillas, J.M. Predictive Model and Mortality Risk Score during Admission for Ischaemic Stroke with Conservative Treatment. Int. J. Environ. Res. Public Health 2022, 19, 3182. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Fang, J.; D’Uva, C.; Saposnik, G.; Gould, L.; McGrath, E.; Kapral, M.K.; Investigators of the Registry of the Canadian Stroke Network. The PLAN score: A bedside prediction rule for death and severe disability following acute ischemic stroke. Arch. Intern. Med. 2012, 172, 1548–1556. [Google Scholar] [CrossRef]
- Huang, J.; Jin, W.; Duan, X.; Liu, X.; Shu, T.; Fu, L.; Deng, J.; Chen, H.; Liu, G.; Jiang, Y.; et al. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Front. Public Health 2022, 10, 1086339. [Google Scholar] [CrossRef] [PubMed]
- Harbour, R.; Miller, J. A new system for grading recommendations in evidence based guidelines. BMJ Clin. Res. Ed. 2001, 323, 334–336. [Google Scholar] [CrossRef]
- Collins, G.S.; Ogundimu, E.O.; Altman, D.G. Sample size considerations for the external validation of a multivariable prognostic model: A resampling study. Stat. Med. 2016, 35, 214–226. [Google Scholar] [CrossRef]
- Debray, T.P.; Vergouwe, Y.; Koffijberg, H.; Nieboer, D.; Steyerberg, E.W.; Moons, K.G. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J. Clin. Epidemiol. 2015, 68, 279–289. [Google Scholar] [CrossRef]
- Ramspek, C.L.; Jager, K.J.; Dekker, F.W.; Zoccali, C.; van Diepen, M. External validation of prognostic models: What, why, how, when and where? Clin. Kidney J. 2021, 14, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. New Guideline for the Reporting of Studies Developing, Validating, or Updating a Multivariable Clinical Prediction Model: The TRIPOD Statement. Adv. Anat. Pathol. 2015, 22, 303–305. [Google Scholar] [CrossRef]
- Siontis, G.C.; Tzoulaki, I.; Castaldi, P.J.; Ioannidis, J.P. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 2015, 68, 25–34. [Google Scholar] [CrossRef]
- Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Steyerberg, E.W.; Harrell, F.E., Jr.; Borsboom, G.J.; Eijkemans, M.J.; Vergouwe, Y.; Habbema, J.D. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef]
- Altman, D.G.; Vergouwe, Y.; Royston, P.; Moons, K.G. Prognosis and prognostic research: Validating a prognostic model. BMJ Clin. Res. Ed. 2009, 338, b605. [Google Scholar] [CrossRef] [PubMed]
- Matias-Guiu, J. Epidemiological research on stroke in Spain. Population-based studies or use of estimates from the minimum basic data set? Rev. Esp. Cardiol. 2007, 60, 563–564. [Google Scholar] [PubMed]
- Aylin, P.; Bottle, A.; Majeed, A. Use of administrative data or clinical databases as predictors of risk of death in hospital: Comparison of models. BMJ Clin. Res. Ed. 2007, 334, 1044. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Bleeker, S.E.; Moll, H.A.; Grobbee, D.E.; Moons, K.G. Internal and external validation of predictive models: A simulation study of bias and precision in small samples. J. Clin. Epidemiol. 2003, 56, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Harrell, F.E., Jr. Prediction models need appropriate internal, internal-external, and external validation. J. Clin. Epidemiol. 2016, 69, 245–247. [Google Scholar] [CrossRef]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Li, Y.; Tang, X.; Yao, Y.; Fang, Q. Development of stroke predictive model in community-dwelling population: A longitudinal cohort study in Southeast China. Front. Aging Neurosci. 2022, 14, 1036215. [Google Scholar] [CrossRef]
- Koton, S.; Patole, S.; Carlson, J.M.; Haight, T.; Johansen, M.; Schneider, A.L.C.; Pike, J.R.; Gottesman, R.F.; Coresh, J. Methods for stroke severity assessment by chart review in the Atherosclerosis Risk in Communities study. Sci. Rep. 2022, 12, 12338. [Google Scholar] [CrossRef]
- De Stefano, F.; Mayo, T.; Covarrubias, C.; Fiani, B.; Musch, B. Effect of comorbidities on ischemic stroke mortality: An analysis of the National Inpatient Sample (NIS) Database. Surg. Neurol. Int. 2021, 12, 268. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, X.; Gong, Y.; Liu, Y.; Wang, S.; Li, Z.; Chen, W.; Zhou, F.; Zhou, J.; Jiang, T.; et al. A novel nomogram to predict early neurological deterioration in patients with acute ischaemic stroke. Eur. J. Neurol. 2020, 27, 1996–2005. [Google Scholar] [CrossRef]
- Joundi, R.A.; King, J.A.; Stang, J.; Nicol, D.; Hill, M.D.; Kapral, M.K.; Smith, E.E.; Yu, A.Y.X. External Validation of the Passive Surveillance Stroke Severity Indicator. Can. J. Neurol. Sci. 2023, 50, 399–404. [Google Scholar] [CrossRef]
- Waddell, K.J.; Myers, L.J.; Perkins, A.J.; Sico, J.J.; Sexson, A.; Burrone, L.; Taylor, S.; Koo, B.; Daggy, J.K.; Bravata, D.M. Development and validation of a model predicting mild stroke severity on admission using electronic health record data. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2023, 32, 107255. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.H.; Mendelsohn, A.B.; Panozzo, C.A.; Maro, J.C.; Brown, J.S. Health outcomes coding trends in the US Food and Drug Administration’s Sentinel System during transition to International Classification of Diseases-10 coding system: A brief review. Pharmacoepidemiol. Drug Saf. 2021, 30, 838–842. [Google Scholar] [CrossRef]
- Saber, H.; Saver, J.L. Distributional Validity and Prognostic Power of the National Institutes of Health Stroke Scale in US Administrative Claims Data. JAMA Neurol. 2020, 77, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Iluţ, S.; Vesa, Ş.C.; Văcăraș, V.; Mureșanu, D.F. Predictors of Short-Term Mortality in Patients with Ischemic Stroke. Medicina 2023, 59, 1142. [Google Scholar] [CrossRef] [PubMed]
- Gattringer, T.; Posekany, A.; Niederkorn, K.; Knoflach, M.; Poltrum, B.; Mutzenbach, S.; Haring, H.P.; Ferrari, J.; Lang, W.; Willeit, J.; et al. Predicting Early Mortality of Acute Ischemic Stroke. Stroke 2019, 50, 349–356. [Google Scholar] [CrossRef]
- Sung, S.F.; Hsieh, C.Y.; Lin, H.J.; Chen, Y.W.; Chen, C.H.; Kao Yang, Y.H.; Hu, Y.H. Validity of a stroke severity index for administrative claims data research: A retrospective cohort study. BMC Health Serv. Res. 2016, 16, 509. [Google Scholar] [CrossRef]
- Simpson, A.N.; Wilmskoetter, J.; Hong, I.; Li, C.Y.; Jauch, E.C.; Bonilha, H.S.; Anderson, K.; Harvey, J.; Simpson, K.N. Stroke Administrative Severity Index: Using administrative data for 30-day poststroke outcomes prediction. J. Comp. Eff. Res. 2018, 7, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Librero, J.; Peiro, S. Do chronic diseases prevent intra-hospital mortality? Paradoxes and biases in information about hospital morbidity. Gac. Sanit. 1998, 12, 199–206. [Google Scholar] [CrossRef]
- Yetano, J.; Izarzugaza, I.; Aldasoro, E.; Ugarte, T.; López-Arbeloa, G.; Aguirre, U. Calidad de las variables administrativas del Conjunto Mínimo Básico de Datos de Osakidetza-Servicio Vasco de Salud. Rev. Calid. Asist. 2008, 23, 216–221. [Google Scholar] [CrossRef]
Quantitative, mean ± sd | |
---|---|
Age (years) | 74.85 ± 13.34 |
NDD | 8.40 ± 3.80 |
NPD | 2.72 ± 0.53 |
Qualitative, n(%) | |
Female sex | 68,380 (46.49) |
Mortality | 15,638 (10.6) |
COPD | 10,091 (6.9) |
Ischaemic heart disease | 15,296 (10.4) |
Arterial hypertension | 102,028 (69.4) |
Obesity | 11,365 (7.7) |
Renal insufficiency | 15,452 (10.5) |
Atrial fibrillation | 40,047 (27.2) |
Diabetes | 43,857 (29.8) |
Heart failure | 7673 (5.2) |
Basilar arterial stenosis | 11,724 (8.0) |
Qualitative Variables | |||||||
---|---|---|---|---|---|---|---|
Total | Exitus | ||||||
n (%) | n (%) | ORu | 95% CI OR | p | |||
Sex | Men | 78,712 (53.5) | 6382 (8.1) | 1 | |||
Women | 68,380 (46.5) | 9256 (13.5) | 1.774 | 1.715; 1.835 | <0.001 | ||
Year | 2016 | 47,637 (32.4) | 5258 (11) | 1 | |||
2017 | 48,912 (33.3) | 5073 (10.4) | 0.993 | 0.895; 0.972 | 0.010 | ||
2018 | 50,548 (34.4) | 5307 (10.5) | 0.945 | 0.908; 0.984 | 0.060 | ||
ICU | No | 135,261 (92.00) | 13,280 (9.8) | 1 | |||
Yes | 6982 (4.70) | 1749 (25.1) | 3.07 | 2.900; 3.250 | <0.001 | ||
Hypertension | No | 45,069 (30.6) | 4894 (10.9) | 1 | |||
Yes | 102,028 (69.4) | 10,744 (10.5) | 0.966 | 0.932; 1.001 | 0.060 | ||
Dyslipidaemia | No | 136,025 (92.5) | 14,985 (11) | 1 | |||
Yes | 11,072 (7.5) | 653 (5.9) | 0.506 | 0.467; 0.549 | <0.001 | ||
COPD | No | 146,721 (99.7) | 15,503 (10.6) | 1 | |||
Yes | 376 (0.3) | 135 (35.9) | 1.173 | 1.102; 1.248 | <0.001 | ||
Chronic respiratory failure | No | 107,050 (72.8) | 8809 (8.2) | 1 | |||
Yes | 40,047 (27.2) | 6829 (17.1) | 4.741 | 3.838; 5.857 | <0.001 | ||
Atrial fibrillation | No | 100,997 (68.37) | 10,926 (10.8) | 1 | |||
Yes | 43,857 (29.8) | 4518 (10.3) | 2.293 | 2.216; 2.372 | <0.001 | ||
Diabetes | No | 133,259 (90.6) | 14,130 (10.6) | 1 | |||
Yes | 13,838 (9.4) | 1508 (10.9) | 0.947 | 0.913; 0.982 | 0.003 | ||
Prior TIA | No | 131,645 (89.5) | 13,043 (9.9) | 1 | |||
Yes | 15,452 (10.5) | 2,595 (16.8) | 1.031 | 0.975; 1.091 | 0.285 | ||
Chronic kidney disease | No | 135,373 (92) | 14,777 (10.9) | 1 | |||
Yes | 11,724 (8) | 861 (7.3) | 1.835 | 1.753; 1.922 | <0.001 | ||
SPCS | No | 131,801 (89.6) | 13,709 (10.4) | 1 | |||
Yes | 15,296 (10.4) | 1,929 (12.6) | 0.647 | 0.602; 0.695 | <0.001 | ||
Ischaemic heart disease | No | 146,721 (99.7) | 15,503 (10.6) | 1 | |||
Yes | 376 (0.3) | 135 (35.9) | 1.243 | 1.181; 1.308 | <0.001 | ||
Quantitative Variables | |||||||
N | Mean | SD | Diff of Means | 95% CI Interval | p | ||
Age | Survive | 15,638 | 73.84 | 13.331 | |||
Death | 131,459 | 83.360 | 9.913 | −9.542 | −9.696; −9.353 | <0.001 | |
Length of stay | Survive | 15,638 | 7.080 | 4.504 | |||
Death | 13,1459 | 6.260 | 4.797 | 0.822 | 0.747; 0.897 | <0.001 | |
NDD | Survive | 15,638 | 8.270 | 3.743 | |||
Death | 131,459 | 9.531 | 4.114 | −1.261 | −1.324; −1.198 | 0.124 | |
NPD | Survive | 15,638 | 2.800 | 2.531 | |||
Death | 131,459 | 2.001 | 2.333 | 0.798 | 0.759; −0.837 | <0.001 |
Exitus | OR | 95% CI | SD | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Age | 1.069 | 1.067 | 1.072 | 0.001 | <0.001 |
Female sex | 1.202 | 1.149 | 1.257 | 0.023 | <0.001 |
Readmission (Yes) | 2.008 | 1.862 | 2.165 | 0.038 | <0.001 |
Ischaemic heart disease (Yes) | 1.342 | 1.227 | 1.467 | 0.046 | <0.001 |
Hypertension (Yes) | 0.726 | 0.695 | 0.759 | 0.023 | <0.001 |
Diabetes (Yes) | 1.105 | 1.054 | 1.158 | 0.024 | <0.001 |
Atrial fibrillation (Yes) | 1.537 | 1.471 | 1.607 | 0.023 | <0.001 |
Dyslipidaemia (Yes) | 0.638 | 0.606 | 0.671 | 0.026 | <0.001 |
Heart failure (Yes) | 1.518 | 1.421 | 1.622 | 0.034 | <0.001 |
SPCS (Yes) | 2.639 | 2.071 | 3.364 | 0.124 | <0.001 |
Exitus | OR | 95% CI | SD | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Age | 1.073 | 1.070 | 1.075 | 0.001 | <0.001 |
Female sex | 1.143 | 1.102 | 1.185 | 0.019 | <0.001 |
Ischaemic heart disease (Yes) | 1.192 | 1.129 | 1.257 | 0.027 | <0.001 |
Hypertension (Yes) | 0.719 | 0.692 | 0.747 | 0.019 | <0.001 |
Atrial fibrillation (Yes) | 1.414 | 1.363 | 1.466 | 0.018 | <0.001 |
Dyslipidaemia (Yes) | 0.652 | 0.600 | 0.709 | 0.042 | <0.001 |
Heart failure (Yes) | 2.133 | 2.016 | 2.258 | 0.029 | <0.001 |
SPCS (Yes) | 0.755 | 0.701 | 0.813 | 0.038 | <0.001 |
Model | AUC | Accuracy | F1-Score | Precision | Recall |
---|---|---|---|---|---|
Logistic Regression | 0.743 | 0.893 | 0.011 | 0.381 | 0.006 |
Tree | 0.739 | 0.894 | 0.022 | 0.641 | 0.011 |
Random Forest | 0.761 | 0.894 | 0.039 | 0.592 | 0.020 |
Neural Network | 0.747 | 0.894 | 0.004 | 0.492 | 0.002 |
Gradient Boosting | 0.747 | 0.894 | 0.004 | 0.725 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Torrecillas, J.M.; Lea-Pereira, M.C.; Amaya-Pascasio, L.; Rosa-Garrido, C.; Quesada-López, M.; Reche-Lorite, F.; Iglesias-Espinosa, M.; Aparicio-Mota, A.; Galván-Espinosa, J.; Martínez-Sánchez, P.; et al. External Validation and Recalibration of a Mortality Prediction Model for Patients with Ischaemic Stroke. J. Clin. Med. 2023, 12, 7168. https://doi.org/10.3390/jcm12227168
García-Torrecillas JM, Lea-Pereira MC, Amaya-Pascasio L, Rosa-Garrido C, Quesada-López M, Reche-Lorite F, Iglesias-Espinosa M, Aparicio-Mota A, Galván-Espinosa J, Martínez-Sánchez P, et al. External Validation and Recalibration of a Mortality Prediction Model for Patients with Ischaemic Stroke. Journal of Clinical Medicine. 2023; 12(22):7168. https://doi.org/10.3390/jcm12227168
Chicago/Turabian StyleGarcía-Torrecillas, Juan Manuel, María Carmen Lea-Pereira, Laura Amaya-Pascasio, Carmen Rosa-Garrido, Miguel Quesada-López, Fernando Reche-Lorite, Mar Iglesias-Espinosa, Adrián Aparicio-Mota, José Galván-Espinosa, Patricia Martínez-Sánchez, and et al. 2023. "External Validation and Recalibration of a Mortality Prediction Model for Patients with Ischaemic Stroke" Journal of Clinical Medicine 12, no. 22: 7168. https://doi.org/10.3390/jcm12227168