Relationships between Late-Life Blood Pressure and Cerebral Microinfarcts in Octogenarians: An Observational Autopsy Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Participants
2.2. Classification of Cases and Controls
2.3. Study Exposure
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association of Late-Life BP with Presence and Number of Microinfarcts
3.3. Association of Late-Life BP with Cortical and Subcortical Microinfarcts
3.4. The Associations of the Covariates with Microinfarcts
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, E.E.; Schneider, J.A.; Wardlaw, J.M.; Greenberg, S.M. Cerebral microinfarcts: The invisible lesions. Lancet Neurol. 2012, 11, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Capuano, A.W.; Leurgans, S.E.; Buchman, A.S.; Bennett, D.A.; Schneider, J.A. The relationship of cerebral vessel pathology to brain microinfarcts. Brain Pathol. 2017, 27, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.K.; Cheng, Y.; Roseman, J.M.; Zamrini, E.; Ahmed, A. Relationships between cerebral vasculopathies and microinfarcts in a community-based cohort of older adults. J. Clin. Med. 2023, 12, 3807. [Google Scholar] [CrossRef] [PubMed]
- Pires, P.W.; Dams Ramos, C.M.; Matin, N.; Dorrance, A.M. The effects of hypertension on the cerebral circulation. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, 1598. [Google Scholar] [CrossRef] [PubMed]
- Graff-Radford, J.; Raman, M.R.; Rabinstein, A.A.; Przybelski, S.A.; Lesnick, T.G.; Boeve, B.F.; Murray, M.E.; Dickson, D.W.; Reichard, R.R.; Parisi, J.E.; et al. Association between microinfarcts and blood pressure trajectories. JAMA Neurol. 2018, 75, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Larson, E.B.; Sonnen, J.A.; Shofer, J.B.; McCormick, W.; Bowen, J.D.; Montine, T.J.; Li, G. Blood pressure and brain injury in older adults: Findings from a community-based autopsy study. J. Am. Geriatr. Soc. 2009, 57, 1975–1981. [Google Scholar] [CrossRef]
- Larson, E.B.; Wang, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Crane, P.; Kukull, W. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 2006, 144, 73–81. [Google Scholar] [CrossRef]
- Montine, T.J.; Phelps, C.H.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Dickson, D.W.; Duyckaerts, C.; Frosch, M.P.; Masliah, E.; Mirra, S.S.; et al. National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Sonnen, J.A.; Larson, E.B.; Crane, P.K.; Haneuse, S.; Li, G.; Schellenberg, G.D.; Craft, S.; Leverenz, J.B.; Montine, T.J. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann. Neurol. 2007, 62, 406–413. [Google Scholar] [CrossRef]
- Van Veluw, S.J.; Shih, A.Y.; Smith, E.E.; Chen, C.; Schneider, J.A.; Wardlaw, J.M.; Greenberg, S.M.; Biessels, G.J. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 2017, 16, 730–740. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, L.; Wang, Z.; Wang, X.; Wang, Y.; Wei, H.; Li, R.; Du, Y. Dynamic analysis of blood pressure changes in progressive cerebral infarction. Int. Health 2015, 7, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Postupna, N.; Rose, S.E.; Bird, T.D.; Gonzalez-Cuyar, L.F.; Sonnen, J.A.; Larson, E.B.; Keene, C.D.; Montine, T.J. Novel antibody capture assay for paraffin-embedded tissue detects wide-ranging amyloid beta and paired helical filament-tau accumulation in cognitively normal older adults. Brain Pathol. 2012, 22, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Emi, M.; Wu, L.L.; Robertson, M.A.; Myers, R.L.; Hegele, R.A.; Williams, R.R.; White, R.; Lalouel, J.-M. Genotyping and sequence analysis of apolipoprotein E isoforms. Genomics 1988, 3, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Hixson, J.E.; Vernier, D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid Res. 1990, 31, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.J.; Zhang, M.; Xu, Z.Q.; Gao, C.Y.; Fang, C.Q.; Yan, J.C.; Zhou, H.D. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 2011, 76, 1485–1491. [Google Scholar] [CrossRef]
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of hypertension on cognitive function: A scientific statement from the American heart association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef]
- Meschia, J.F.; Bushnell, C.; Boden-Albala, B.; Braun, L.T.; Bravata, D.M.; Chaturvedi, S.; Creager, M.A.; Eckel, R.H.; Elkind, M.S.V.; Fornage, M.; et al. Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American heart association/American stroke association. Stroke 2014, 45, 3754–3832. [Google Scholar] [CrossRef]
- Sierra, C.; Coca, A.; Schiffrin, E.L. Vascular mechanisms in the pathogenesis of stroke. Curr. Hypertens. Rep. 2011, 13, 200–207. [Google Scholar] [CrossRef]
- Hartmann, D.A.; Hyacinth, H.I.; Liao, F.F.; Shih, A.Y. Does pathology of small venules contribute to cerebral microinfarcts and dementia? J. Neurochem. 2018, 144, 517–526. [Google Scholar] [CrossRef]
- Boutouyrie, P.; Chowienczyk, P.; Humphrey, J.D.; Mitchell, G.F. Arterial stiffness and cardiovascular risk in hypertension. Circ. Res. 2021, 128, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Avolio, A. Arteriosclerosis and atherosclerosis assessment in clinical practice: Methods and significance. Pulse 2023, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Petrovitch, H.; White, L.; Izmirilian, G.; Ross, G.; Havlik, R.; Markesbery, W.; Nelson, J.; Davis, D.; Hardman, J.; Foley, D.; et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: The HAAS. Honolulu-asia aging study. Neurobiol. Aging 2000, 21, 57–62. [Google Scholar] [PubMed]
- Launer, L.J.; Ross, G.W.; Petrovitch, H.; Masaki, K.; Foley, D.; White, L.R.; Havlik, R.J. Midlife blood pressure and dementia: The Honolulu-asia aging study. Neurobiol. Aging 2000, 21, 49–55. [Google Scholar] [CrossRef]
- Walker, K.A.; Sharrett, A.R.; Wu, A.; Schneider, A.L.C.; Albert, M.; Lutsey, P.L.; Bandeen-Roche, K.; Coresh, J.; Gross, A.L.; Windham, B.G.; et al. Association of midlife to late-life blood pressure patterns with incident dementia. JAMA 2019, 322, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Cavressi, M.; Tomietto, P. Gait and apathy as relevant symptoms of subcortical vascular dementia. Am. J. Alzheimer’s Dis. Other Dement. 2015, 30, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Ince, P.G.; Minett, T.; Forster, G.; Brayne, C.; Wharton, S.B. Medical Research Council Cognitive Function and Ageing Neuropathology Study. Microinfarcts in an older population-representative brain donor cohort (MRC CFAS): Prevalence, relation to dementia and mobility, and implications for the evaluation of cerebral small vessel disease. Neuropathol. Appl. Neurobiol. 2017, 43, 409–418. [Google Scholar] [PubMed]
- Luo, D.; Cheng, Y.; Zhang, H.; Ba, M.; Chen, P.; Li, H.; Chen, K.; Sha, W.; Zhang, C.; Chen, H. Association between high blood pressure and long term cardiovascular events in young adults: Systematic review and meta-analysis. BMJ 2020, 370, m3222. [Google Scholar] [CrossRef]
- Li, H.-Q.; Wang, X.; Wang, H.-F.; Zhang, W.; Song, J.-H.; Chi, S.; Sun, Y.-P.; Zhong, X.-L.; Ma, T.; Dai, G.-Z.; et al. Dose-response relationship between blood pressure and intracranial atherosclerotic stenosis. Atherosclerosis 2021, 317, 36–40. [Google Scholar] [CrossRef]
- Taylor, B.C.; Wilt, T.J.; Welch, H.G. Impact of diastolic and systolic blood pressure on mortality: Implications for the definition of “normal”. J. Gen. Intern. Med. 2011, 26, 685–690. [Google Scholar] [CrossRef]
- Oishi, E.; Ohara, T.; Sakata, S.; Fukuhara, M.; Hata, J.; Yoshida, D.; Shibata, M.; Ohtsubo, T.; Kitazono, T.; Kiyohara, Y.; et al. Day-to-Day Blood pressure variability and risk of dementia in a general Japanese elderly population: The Hisayama Study. Circulation 2017, 136, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Tully, P.J.; Yano, Y.; Launer, L.J.; Kario, K.; Nagai, M.; Mooijaart, S.P.; Claassen, J.A.H.R.; Lattanzi, S.; Vincent, A.D.; Tzourio, C. Variability in Blood Pressure and Brain Health Consortium. Association between blood pressure variability and cerebral small-vessel disease: A systematic review and meta-analysis. J. Am. Heart Assoc. 2020, 9, e013841. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ke, Z.; He, W.; Cai, Z. Volume of white matter hyperintensities increases with blood pressure in patients with hypertension. J. Int. Med. Res. 2019, 47, 3681–3689. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, E.J.; Breteler, M.M.B.; Schmidt, R.; Berger, K.; Nisson, L.G.; Oudkerk, M.; Pajak, A.; Sans, S.; de Ridder, M.; Dufouil, C.; et al. The association between blood pressure, hypertension, and cerebral white matter lesions. Hypertension 2004, 44, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Westover, M.B.; Bianchi, M.T.; Yang, C.; Schneider, J.A.; Greenberg, S.M. Estimating cerebral microinfarct burden from autopsy samples. Neurology 2013, 80, 1365–1369. [Google Scholar] [CrossRef]
- Pioli, M.R.; Ritter, A.M.; de Faria, A.P.; Modolo, R. White coat syndrome and its variations: Differences and clinical impact. Integr. Blood Press. Control 2018, 11, 73–79. [Google Scholar] [CrossRef]
Variables, n (%) or Mean (SD) | Microinfarcts Not Present (N = 277) | Microinfarcts Present (N = 274) | p-Value |
---|---|---|---|
Age categories | <0.001 | ||
<80 years | 24 (8.7%) | 6 (2.2%) | |
80–89 years | 110 (39.7%) | 101 (36.9%) | |
≥90 years | 143 (51.6%) | 167 (60.9%) | |
Sex | 0.559 | ||
Male | 118 (42.6%) | 110 (40.1%) | |
Female | 159 (57.4%) | 164 (59.9%) | |
Race White | 256 (92.4%) | 259 (94.5%) | 0.581 |
Education ≤high school | 126 (45.5%) | 137 (50.0%) | 0.454 |
Marital status Never married/separated/divorced/widowed | 178 (64.3%) | 186 (67.9%) | 0.040 |
Ever smoker | 151 (54.5%) | 149 (54.4%) | 0.603 |
Stroke | 23 (8.3%) | 37 (13.5%) | 0.050 |
Heart disease | 84 (30.3%) | 95 (34.7%) | 0.276 |
Diabetes | 43 (15.5%) | 45 (16.4%) | 0.773 |
Dementia | 109 (39.4%) | 139 (50.7%) | 0.002 |
APOE e4 carrier | 0.169 | ||
No | 199 (71.8%) | 199 (72.6%) | |
Yes | 75 (27.1%) | 66 (24.1%) | |
Unknown | 3 (1.1%) | 9 (3.3%) | |
BRAAK * | 0.268 | ||
Stage 0 | 7 (2.5%) | 2 (0.7%) | |
Stage I–II | 56 (20.2%) | 47 (17.2%) | |
Stage III–IV | 111 (40.1%) | 113 (41.2%) | |
Stage V–VI | 103 (37.2%) | 112 (40.9%) | |
Unknown | 7 (2.5%) | 2 (0.7%) | |
Last systolic blood pressure (mmHg) | 132.3 (21.6) | 135.9 (21.6) | 0.051 |
Last diastolic blood pressure (mmHg) | 69.7 (10.7) | 72.0 (12.1) | 0.015 |
Ever hypertension (self-report) | 188 (67.9%) | 201 (73.4%) | 0.158 |
Ever used anti-hypertensive medications | 106 (38.3%) | 117 (42.7%) | 0.289 |
Ever used anti-lipid medications | 112 (40.4%) | 126 (46.0%) | 0.188 |
Time of last vital sign before death | |||
Within 1 year | 63 (22.7%) | 49 (17.9%) | 0.075 |
1–<2 years | 82 (29.6%) | 64 (23.4%) | |
2–<5 years | 80 (28.9%) | 100 (36.5%) | |
5+ years | 52 (18.8%) | 61 (22.3%) | |
Vital sign not available | 63 (22.7%) | 49 (17.9%) |
Late-Life BP | Microinfarcts | Microinfarct Number | Microinfarct Cortical | Microinfarct Subcortical | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Not Present | Present | p | None | One | Multiple | p | Not Present | Present | p | Not Present | Present | p | |
N | 277 | 274 | 277 | 132 | 142 | 358 | 193 | 388 | 163 | ||||
Mean SBP | 134.6 (16.4) | 139.7 (15.8) | 0.0002 | 134.6 (16.4) | 138.8 (15.7) | 140.5 (15.8) | 0.0008 | 136.0 (16.4) | 139.2 (15.8) | 0.0248 | 135.4 (15.9) | 141.5 (16.4) | <0.0001 |
Mean DBP | 70.5 (8.2) | 72.3 (8.2) | 0.0104 | 70.5 (8.2) | 72.5 (8.1) | 72.1 (8.3) | 0.0345 | 71.0 (8.0) | 72.1 (8.7) | 0.1071 | 70.9 (8.3) | 72.5 (8.1) | 0.0390 |
Mean PP | 64.1 (13.7) | 67.4 (13.5) | 0.0046 | 64.1 (13.7) | 66.3 (13.1) | 68.5 (13.8) | 0.0078 | 65.0 (14.0) | 67.1 (13.0)) | 0.0914 | 64.4 (13.0) | 69.0 (14.7) | 0.0003 |
Presence of Microinfarcts | Number of Microinfarcts | ||||
---|---|---|---|---|---|
Adjusted * Odds Ratio (95% CI) | p Values | Adjusted * Odds Ratio (95% CI) | p Values | ||
Systolic blood pressure (mmHg) | SBP categories 1 | ||||
100–119 (n = 75) | 1.00 | 1.00 | |||
120–129 (n = 113) | 2.22 (1.18–4.18) | 0.013 | 2.01 (1.10–3.69) | 0.024 | |
130–139 (n = 143) | 2.71 (1.48–4.98) | 0.001 | 2.68 (1.50–4.80) | 0.001 | |
140–149 (n = 106) | 2.09 (1.10–3.98) | 0.024 | 2.11 (1.14–3.90) | 0.018 | |
150–159 (n = 63) | 2.87 (1.40–5.92) | 0.004 | 2.55 (1.28–5.04) | 0.007 | |
160–169 (n = 33) | 2.69 (1.13–6.39) | 0.025 | 2.66 (1.18–5.98) | 0.019 | |
170+ (n = 18) | 5.10 (1.59–16.32) | 0.006 | 4.68 (1.71–12.80) | 0.003 | |
SBP trend 2 | |||||
No change (n = 179) | 1.00 | 1.00 | |||
Rise (n = 160) | 1.99 (1.27–3.11) | 0.003 | 1.99 (1.31–3.02) | 0.001 | |
Fall (n = 212) | 2.05 (1.35–3.12) | 0.001 | 1.91 (1.29–2.84) | 0.001 | |
SBP variability 3 | |||||
None (n = 318) | 1.00 | 1.00 | |||
Moderate (n = 145) | 0.99 (0.66–1.49) | 0.972 | 1.14 (0.78–1.67) | 0.485 | |
Extreme (n = 88) | 1.04 (0.64–1.70) | 0.864 | 1.08 (0.69–1.70) | 0.738 | |
Diastolic blood pressure (mmHg) | DBP categories 1 | ||||
60–64 (n = 73) | 1.00 | 1.00 | |||
40–59 (n = 38) | 1.44 (0.63–3.26) | 0.385 | 1.66 (0.76–3.63) | 0.206 | |
65–69 (n = 130) | 2.11 (1.15–3.87) | 0.016 | 2.09 (1.17–3.75) | 0.013 | |
70–74 (n = 141) | 2.21 (1.21–4.04) | 0.010 | 2.41 (1.35–4.29) | 0.003 | |
75–79 (n = 86) | 2.82 (1.46–5.48) | 0.002 | 2.41 (1.29–4.52) | 0.006 | |
80–84 (n = 55) | 2.19 (1.05–4.58) | 0.037 | 2.06 (1.02–4.15) | 0.044 | |
85+ (n = 28) | 3.07 (1.21–7.79) | 0.018 | 3.23 (1.38–7.58) | 0.007 | |
DBP trend 2 | |||||
No change (n = 154) | 1.00 | 1.00 | |||
Rise (n = 193) | 1.49 (0.96–2.31) | 0.079 | 1.42 (0.94–2.14) | 0.096 | |
Fall (n = 204) | 1.20 (0.78–1.86) | 0.408 | 1.22 (0.81–1.84) | 0.337 | |
DBP variability 3 | |||||
None (n = 315) | 1.00 | 1.00 | |||
Moderate (n = 152) | 1.69 (1.13–2.54) | 0.011 | 1.71 (1.18–2.49) | 0.005 | |
Extreme (n = 84) | 1.43 (0.87–2.37) | 0.158 | 1.29 (0.81–2.05) | 0.282 |
Presence of Cortical MIF | Presence of Subcortical MIF | ||||
---|---|---|---|---|---|
Adjusted * Odds Ratio (95% CI) | p Values | Adjusted * Odds Ratio (95% CI) | p Values | ||
Systolic blood pressure (mmHg) | SBP categories 1 | ||||
100–119 (n = 75) | 1.00 | 1.00 | |||
120–129 (n = 113) | 1.46 (0.75–2.85) | 0.269 | 1.70 (0.80–3.62) | 0.169 | |
130–139 (n = 143) | 1.95 (1.03–3.70) | 0.039 | 2.06 (1.00–4.23) | 0.050 | |
140–149 (n = 106) | 1.28 (0.65–2.54) | 0.471 | 2.51 (1.19–5.32) | 0.016 | |
150–159 (n = 63) | 2.07 (0.98–4.37) | 0.055 | 2.01 (0.87–4.63) | 0.102 | |
160–169 (n = 33) | 1.62 (0.66–3.99) | 0.296 | 3.10 (1.20–8.00) | 0.019 | |
170+ (n = 18) | 1.99 (0.67–5.94) | 0.216 | 8.80 (2.71–28.53) | < 0.001 | |
SBP trend 2 | |||||
No change (n = 179) | 1.00 | 1.00 | |||
Rise (n = 160) | 1.72 (1.08–2.75) | 0.022 | 2.29 (1.39–3.77) | 0.001 | |
Fall (n = 212) | 1.62 (1.04–2.51) | 0.032 | 2.05 (1.27–3.29) | 0.003 | |
SBP variability 3 | |||||
None (n = 318) | 1.00 | 1.00 | |||
Moderate (n = 145) | 1.30 (0.85–1.97) | 0.221 | 0.89 (0.57–1.38) | 0.593 | |
Extreme (n = 88) | 1.56 (0.95–2.57) | 0.077 | 0.78 (0.46–1.34) | 0.369 | |
Diastolic blood pressure (mmHg) | DBP categories 1 | ||||
60–64 (n = 73) | 1.00 | 1.00 | |||
40–59 (n = 38) | 1.27 (0.54–2.98) | 0.580 | 2.93 (1.04–8.26) | 0.043 | |
65–69 (n = 130) | 1.34 (0.71–2.51) | 0.365 | 3.52 (1.54–8.08) | 0.003 | |
70–74 (n = 141) | 1.13 (0.60–2.13) | 0.680 | 4.77 (2.11–10.82) | < 0.001 | |
75–79 (n = 86) | 1.50 (0.76–2.95) | 0.243 | 3.92 (1.64–9.36) | 0.002 | |
80–84 (n = 55) | 1.49 (0.70–3.17) | 0.305 | 3.85 (1.51–9.80) | 0.005 | |
85+ (n = 28) | 2.77 (1.10–6.98) | 0.031 | 3.72 (1.24–11.17) | 0.019 | |
DBP trend 2 | |||||
No change (n = 154) | 1.00 | 1.00 | |||
Rise (n = 193) | 1.44 (0.91–2.28) | 0.122 | 1.67 (1.03–2.69) | 0.037 | |
Fall (n = 204) | 1.29 (0.81–2.04) | 0.286 | 1.14 (0.70–1.87) | 0.591 | |
DBP variability 3 | |||||
None (n = 315) | 1.00 | 1.00 | |||
Moderate (n = 152) | 1.23 (0.81–1.86) | 0.324 | 1.95 (1.27–2.99) | 0.002 | |
Extreme (n = 84) | 1.19 (0.71–1.98) | 0.513 | 1.38 (0.80–2.35) | 0.246 |
Presence of Microinfarcts | Number of Microinfarcts | |||
---|---|---|---|---|
Covariates | Adjusted * Odds Ratio (95% CI) | p Values | Adjusted * Odds Ratio (95% CI) | p Values |
Age 80–89 vs. <80 years | 3.33 (1.28–8.64) | 0.014 | 3.67 (1.41–9.58) | 0.008 |
Age ≥ 90 vs. <80 years | 3.62 (1.40–9.35) | 0.008 | 3.81 (1.47–9.88) | 0.006 |
Female | 0.98 (0.68–1.40) | 0.905 | 0.98 (0.70–1.38) | 0.917 |
APOE e4 carrier Yes vs. No | 0.84 (0.56–1.26) | 0.389 | 0.95 (0.65–1.39) | 0.789 |
APOE e4 carrier Unknown vs. No | 2.83 (0.73–10.91) | 0.132 | 1.32 (0.45–3.92) | 0.614 |
Antihypertensive medication | 1.17 (0.77–1.76) | 0.463 | 1.15 (0.79–1.70) | 0.467 |
Time gap between last BP and death day (years) | 1.05 (0.98–1.13) | 0.154 | 1.06 (0.99–1.13) | 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sin, M.-K.; Cheng, Y.; Roseman, J.M.; Zamrini, E.; Ahmed, A. Relationships between Late-Life Blood Pressure and Cerebral Microinfarcts in Octogenarians: An Observational Autopsy Study. J. Clin. Med. 2023, 12, 6080. https://doi.org/10.3390/jcm12186080
Sin M-K, Cheng Y, Roseman JM, Zamrini E, Ahmed A. Relationships between Late-Life Blood Pressure and Cerebral Microinfarcts in Octogenarians: An Observational Autopsy Study. Journal of Clinical Medicine. 2023; 12(18):6080. https://doi.org/10.3390/jcm12186080
Chicago/Turabian StyleSin, Mo-Kyung, Yan Cheng, Jeffrey M. Roseman, Edward Zamrini, and Ali Ahmed. 2023. "Relationships between Late-Life Blood Pressure and Cerebral Microinfarcts in Octogenarians: An Observational Autopsy Study" Journal of Clinical Medicine 12, no. 18: 6080. https://doi.org/10.3390/jcm12186080
APA StyleSin, M.-K., Cheng, Y., Roseman, J. M., Zamrini, E., & Ahmed, A. (2023). Relationships between Late-Life Blood Pressure and Cerebral Microinfarcts in Octogenarians: An Observational Autopsy Study. Journal of Clinical Medicine, 12(18), 6080. https://doi.org/10.3390/jcm12186080