Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Study and Control Groups
2.2. Disease Activity
2.3. Nutritional Status
2.4. Serum Markers of the Nutritional Status
2.5. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Inflammatory Markers in CD and UC
3.3. Inflammatory Markers and Disease Activity
3.4. Inflammatory Markers and Nutritional Status of Patients
3.5. Correlations between Inflammatory Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zagórowicz, E.; Walkiewicz, D.; Kucha, P.; Perwieniec, J.; Maluchnik, M.; Wieszczy, P.; Reguła, J. Nationwide data on epidemiology of inflammatory bowel disease in Poland between 2009 and 2020. Pol. Arch. Intern. Med. 2022, 132, 16194. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Jess, T. Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United Eur. Gastroenterol. J. 2022, 10, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A.; Novick, D.; Kim, S.; Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol. 2013, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.E.; Smith, D.E. The IL-1 family: Regulators of immunity. Nat. Rev. Immunol. 2010, 10, 89–102. [Google Scholar] [CrossRef]
- Pizarro, T.T.; Michie, M.H.; Bentz, M.; Woraratanadharm, J.; Smith, M.F., Jr.; Foley, E.; Moskaluk, C.A.; Bickston, S.J.; Cominelli, F. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: Expression and localization in intestinal mucosal cells. J. Immunol. 1999, 162, 6829–6835. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and epigenetic etiology of inflammatory bowel disease: An update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef]
- Kanai, T.; Watanabe, M.; Okazawa, A.; Nakamaru, K.; Okamoto, M.; Naganuma, M.; Ishii, H.; Ikeda, M.; Kurimoto, M.; Hibi, T. Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn’s disease. Gastroenterology 2000, 119, 1514–1523. [Google Scholar] [CrossRef]
- Andersen, N.N.; Jess, T. Has the risk of colorectal cancer in inflammatory bowel disease decreased? World J. Gastroenterol. 2013, 19, 7561–7568. [Google Scholar] [CrossRef]
- Papoutsopoulou, S.; Campbell, B.J. Epigenetic modifications of the nuclear factor kappa B signalling pathway and its impact on inflammatory bowel disease. Curr. Pharm. Des. 2021, 27, 3702–3713. [Google Scholar] [CrossRef]
- Kuenzig, M.E.; Fung, S.G.; Marderfeld, L.; Mak, J.W.Y.; Kaplan, G.G.; Ng, S.C.; Wilson, D.C.; Cameron, F.; Henderson, P.; Kotze, P.G.; et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: Systematic review. Gastroenterology 2022, 162, 1147–1159.e4. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Mack, D.R.; Nguyen, G.C.; Snapper, S.B.; Li, W.; Mojaverian, N.; Quach, P.; Muise, A.M. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology 2014, 147, 803–813.e7. [Google Scholar] [CrossRef]
- Panufnik, P.; Więcek, M.; Kaniewska, M.; Lewandowski, K.; Szwarc, P.; Rydzewska, G. Selected aspects of nutrition in the prevention and treatment of iInflammatory bowel disease. Nutrients 2022, 14, 4965. [Google Scholar] [CrossRef] [PubMed]
- Elhag, D.A.; Kumar, M.; Saadaoui, M.; Akobeng, A.K.; Al-Mudahka, F.; Elawad, M.; Al Khodor, S. Inflammatory bowel disease treatments and predictive biomarkers of therapeutic response. Int. J. Mol. Sci. 2022, 23, 6966. [Google Scholar] [CrossRef] [PubMed]
- Grossberg, L.B.; Papamichael, K.; Cheifetz, A.S. Review article: Emerging drug therapies in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2022, 55, 789–804. [Google Scholar] [CrossRef]
- Lamano, J.B.; Lamano, J.B.; Li, Y.D.; DiDomenico, J.D.; Choy, W.; Veliceasa, D.; Oyon, D.E.; Fakurnejad, S.; Ampie, L.; Kesavabhotla, K.; et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin. Cancer Res. 2019, 25, 3643–3657. [Google Scholar] [CrossRef]
- Xu, Y.H.; Zhu, W.M.; Guo, Z. Current status of novel biologics and small molecule drugs in the individualized treatment of inflammatory bowel disease. World. J. Gastroenterol. 2022, 28, 6888–6899. [Google Scholar] [CrossRef]
- McElvaney, O.J.; Curley, G.F.; Rose-John, S.; McElvaney, N.G. Interleukin-6: Obstacles to targeting a complex cytokine in critical illness. Lancet Respir. Med. 2021, 9, 643–654. [Google Scholar] [CrossRef]
- Neurath, M.F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 269–278. [Google Scholar] [CrossRef]
- Aschenbrenner, D.; Quaranta, M.; Banerjee, S.; Ilott, N.; Jansen, J.; Steere, B.; Chen, Y.H.; Ho, S.; Cox, K.; Arancibia-Cárcamo, C.V.; et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 2021, 70, 1023–1036. [Google Scholar] [CrossRef]
- Shouval, D.S.; Biswas, A.; Kang, Y.H.; Griffith, A.E.; Konnikova, L.; Mascanfroni, I.D.; Redhu, N.S.; Frei, S.M.; Field, M.; Doty, A.L.; et al. Interleukin 1β Mediates Intestinal Inflammation in Mice and Patients with Interleukin 10 Receptor Deficiency. Gastroenterology 2016, 151, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.J.; Nickerson, P.; Bernstein, C.N. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am. J. Gastroenterol. 2005, 100, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Hashizume, M.; Yoshida, H.; Suzuki, M.; Shiina, M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 2012, 122, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 2014, 141, 125–139. [Google Scholar] [CrossRef] [PubMed]
- White, J.R.; Phillips, F.; Monaghan, T.; Fateen, W.; Samuel, S.; Ghosh, S.; Moran, G.W. Review article: Novel oral-targeted therapies in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2018, 47, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Veenbergen, S.; Li, P.; Raatgeep, H.C.; Lindenbergh-Kortleve, D.J.; Simons-Oosterhuis, Y.; Farrel, A.; Costes, L.M.M.; Joosse, M.E.; van Berkel, L.A.; de Ruiter, L.F.; et al. IL-10 signaling in dendritic cells controls IL-1β-mediated IFNγ secretion by human CD4+ T cells: Relevance to inflammatory bowel disease. Mucosal Immunol. 2019, 12, 1201–1211. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Z.; Hegarty, J.P.; Lin, T.R.; Wang, Y.; Deiling, S.; Wu, R.; Thomas, N.J.; Floros, J. Genetic association and epistatic interaction of the interleukin-10 signaling pathway in pediatric inflammatory bowel disease. World. J. Gastroenterol. 2017, 23, 4897–4909. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Rasquinha, M.T.; Sur, M.; Lasrado, N.; Reddy, J. IL-10 as a Th2 Cytokine: Differences Between Mice and Humans. J. Immunol. 2021, 207, 2205–2215. [Google Scholar] [CrossRef]
- Steen, E.H.; Wang, X.; Balaji, S.; Butte, M.J.; Bollyky, P.L.; Keswani, S.G. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv. Wound. Care 2020, 9, 184–198. [Google Scholar] [CrossRef]
- Glocker, E.O.; Kotlarz, D.; Klein, C.; Shah, N.; Grimbacher, B. IL-10 and IL-10 receptor defects in humans. Ann. NY Acad. Sci. 2011, 1246, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Strisciuglio, C.; Giugliano, F.P.; Martinelli, M.; Cenni, S.; Greco, L.; Staiano, A.; Miele, E. Impact of environmental and familial factors in a cohort of pediatric patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2016, 64, 569–574. [Google Scholar] [CrossRef]
- Gajendran, M.; Loganathan, P.; Catinella, A.P.; Hashash, J.G. A comprehensive review and update on Crohn’s disease. Dis. Mon. 2018, 64, 20–57. [Google Scholar] [CrossRef] [PubMed]
- Glinkowski, S.; Marcinkowska, D. Ulcerative colitis: Assessment of disease activity based on contemporary scales. Nowa Med. 2018, 25, 123–137. [Google Scholar] [CrossRef]
- Polińska, B.; Matowicka-Karna, J.; Kemona, H. The cytokines in inflammatory bowel disease. Postępy Hig. Med. Doświadczalnej 2009, 63, 389–394. [Google Scholar]
- Sobolewska-Włodarczyk, A.; Włodarczyk, M.; Talar, M.; Wiśniewska-Jarosińska, M.; Gąsiorowska, A.; Fichna, J. The association of the quality of sleep with proinflammatory cytokine profile in inflammatory bowel disease patients. Pharmacol. Rep. 2021, 73, 1660–1669. [Google Scholar] [CrossRef]
- Wędrychowicz, A.; Tomasik, P.; Zając, A.; Fyderek, K. Prognostic value of assessment of stool and serum IL-1β, IL-1ra and IL-6 concentrations in children with active and inactive ulcerative colitis. Arch. Med. Sci. 2018, 14, 107–114. [Google Scholar] [CrossRef]
- Matusiewicz, M.; Neubauer, K.; Bednarz-Misa, I.; Gorska, S.; Krzystek-Korpacka, M. Systemic interleukin-9 in inflammatory bowel disease: Association with mucosal healing in ulcerative colitis. World J. Gastroenterol. 2017, 23, 4039–4046. [Google Scholar] [CrossRef]
- Kallen, K.J. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. Biochim. Biophys. Acta 2002, 1592, 323–343. [Google Scholar] [CrossRef]
- Schumertl, T.; Lokau, J.; Rose-John, S.; Garbers, C. Function and proteolytic generation of the soluble interleukin-6 receptor in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119143. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, T.; Xiao, G.; Hu, Z.; Chen, J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front. Bioeng. Biotechnol. 2022, 10, 909591. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, K.H.; Papamichael, K.; Feuerstein, J.D.; Christodoulou, D.K.; Cheifetz, A.S. Biological therapies in inflammatory bowel disease: Beyond anti-TNF therapies. Clin. Immunol. 2019, 206, 9–14. [Google Scholar] [CrossRef]
- García-Juárez, M.; Camacho-Morales, A. Defining the role of anti- and pro-inflammatory outcomes of interleukin-6 in mental health. Neuroscience 2022, 492, 32–46. [Google Scholar] [CrossRef]
- Lubecka-Macura, A.; Kohut, M. TNF superfamily-mechanisms of action, biologic funtions and therapeutic possibilities. Gastroenterol. Rev. 2010, 5, 303–309. [Google Scholar] [CrossRef]
- Wędrychowicz, A.; Fyderek, K.; Stopyrowa, J. Stool and serum interleukin 1b and interleukin receptor antagonist and laboratory disease markers in children with active ulcerative colitis. Pediatr. Wsp. Gastroenterol. Hepatol. 2002, 4, 369–372. [Google Scholar]
- Gurram, B.; Salzman, N.H.; Kaldunski, M.L.; Jia, S.; Li, B.U.; Stephens, M.; Sood, M.R.; Hessner, M.J. Plasma-induced signatures reveal an extracellular milieu possessing an immunoregulatory bias in treatment-naive paediatric inflammatory bowel disease. Clin. Exp. Immunol. 2016, 184, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Perálvarez, M.L.; García-Sánchez, V.; Villar-Pastor, C.M.; González, R.; Iglesias-Flores, E.; Muntane, J.; Gómez-Camacho, F. Role of serum cytokine profile in ulcerative colitis assessment. Inflamm. Bowel Dis. 2012, 18, 1864–1871. [Google Scholar] [CrossRef]
- Toptygina, A.P.; Semikina, E.L.; Bobyleva, G.V.; Miroshkina, L.V.; Petrichuk, S.V. Cytokine profile in children with inflammatory bowel disease. Biochemistry 2014, 79, 1371–1375. [Google Scholar] [CrossRef]
- Łodyga, M.; Maciejewska, K.; Stawczyk-Eder, K.; Eder, P.; Dobrowolska, A.; Wiśniewska-Jarosińska, M.; Gąsiorowska, A.; Cicha, M.; Rydzewska, G. Assessment of the activity of the immune system in patients with inflammatory bowel diseases and asymptomatic COVID-19. Gastroenterol. Rev. 2023. [Google Scholar] [CrossRef]
- Woźniak-Stolarska, B.; Sajewicz, Z.; Błachut, K. Poziom interleukiny 10 (IL10) w surowicy krwi w zapalnych chorobach jelit. Gastroenterol. Pol. 2002, 9, 94. [Google Scholar]
- Melgar, S.; Yeung, M.; Bas, A.; Forsberg, G.; Suhr, O.; Oberg, A.; Hammarstrom, S.; Danielsson, A.; Hammarstrom, M.L. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin. Exp. Immunol. 2003, 134, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Liang, L.; Guo, X. Serum interleukin-10 level in patients with inflammatory bowel disease: A meta-analysis. Eur. J. Inflamm. 2019, 17, 2058739219843405. [Google Scholar] [CrossRef]
- Liu, R.; Nikolajczyk, B.S. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front. Immunol. 2019, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Ziora, K.; Świder, M.; Mazur, B.; Oświęcimska, J. Stężenia IL-6, TNF-α i INF-γ we krwi u dziewcząt z zaburzeniami odżywiania (jadłowstręt psychiczny contra otyłość). Endokrynol. Pediatryczna 2013, 3, 31–46. [Google Scholar] [CrossRef]
- Ling, S.C.; Griffiths, A.M. Nutrition in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2000, 3, 339–344. [Google Scholar] [CrossRef]
- Gassull, M.A. Nutrition and inflammatory bowel disease: Its relation to pathophysiology, outcome and therapy. Dig. Dis. 2003, 21, 220–227. [Google Scholar] [CrossRef]
- Allende, L.M.; Corell, A.; Manzanares, J.; Madruga, D.; Marcos, A.; Madroño, A.; López-Goyanes, A.; García-Pérez, M.A.; Moreno, J.M.; Rodrigo, M.; et al. Immunodeficiency associated with anorexia nervosa is secondary and improves after refeeding. Immunology 1998, 94, 543–551. [Google Scholar] [CrossRef]
- Costa, R.G.F.; Caro, P.L.; de Matos-Neto, E.M.; Lima, J.D.C.C.; Radloff, K.; Alves, M.J.; Camargo, R.G.; Pessoa, A.F.M.; Simoes, E.; Gama, P.; et al. Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. J. Cachexia Sarcopenia Muscle 2019, 10, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Freyssenet, D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: Lessons from human and animal studies. J. Cachexia Sarcopenia Muscle 2021, 12, 252–273. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Santana, G.; Almeida, N.; Lyra, A. Analysis of fat and muscle mass in patients with inflammatory bowel disease during remission and active phase. Br. J. Nutr. 2008, 101, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Argilés, J.M.; Busquets, S.; López-Soriano, F.J. Cytokines in the pathogenesis of cancer cachexia. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 401–406. [Google Scholar] [CrossRef]
- Gutiérrez-Cuevas, J.; Sandoval-Rodriguez, A.; Meza-Rios, A.; Monroy-Ramírez, H.C.; Galicia-Moreno, M.; García-Bañuelos, J.; Santos, A.; Armendariz-Borunda, J. Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells 2021, 10, 629. [Google Scholar] [CrossRef]
- Gutiérrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 11629. [Google Scholar] [CrossRef]
- Plata-Salaman, C.R. Central nervous system mechanisms contributing to the cachexia-anorexia syndrome. Nutrition 2000, 16, 1009–1012. [Google Scholar] [CrossRef]
- Grabiec, K.; Burchert, M.; Milewska, M.; Błaszczyk, M.; Grzelkowska-Kowalczyk, K. Systemic and local mechanisms leading to cachexia in cancer. Post. Hig. Med. Doświadczalnej 2013, 67, 1397–1409. [Google Scholar] [CrossRef]
IBD N(%)/Mean ± SD | Controls N(%)/Mean ± SD | |
---|---|---|
CD | 48 (58.5) | - |
UC | 34 (41.5) | - |
Age (years) | 38.1 ± 11.6 | 33.6 ± 9.1 |
Female | 42 (51.2) | 15 (60) |
Level of education | ||
Secondary | 42 (51.2) | 4 (16) * |
High | 40 (48.8) | 21 (84) * |
Current smoking | 14 (17.1) | 3 (12) |
Disease duration | 8.4 ± 5.7 | - |
Past intestinal resection | 22 (26.8) | - |
Weight lost during last 6 months (%) | 50 (60.9)/16.5 ± 8.2 | - |
Anthropometry | ||
BMI (kg/m2) | 24.23 ± 4.76 | 24.64 ± 3.97 |
<18.5 | 10 (12.2) | 3 (12) |
18.5–24.9 | 38 (46.3) | 11 (44) |
25.0–29.9 | 26 (31.7) | 9 (36) |
>30.0 | 8 (9.8) | 2 (8) |
Waist circumference (cm) | 88.9 ± 14.5 | 85.3 ± 9.1 |
Normal | 57 (69.5) | 18 (72) |
High | 25 (30.5) | 7 (28) |
Fatty tissue (%) | 27.1 ± 9.6 | 30.1 ± 8.6 * |
Low | 14 (17.1) | 2 (8) * |
Normal | 59 (71.9) | 15 (60) * |
High | 9 (11.0) | 8 (32) * |
Free fat mass (%) | 72.1 ± 11.2 | 69.9 ± 8.6 * |
Water (%) | 55.1 ± 6.5 | 53.8 ± 4.1 |
Low | 26 (31.7) | 10 (40) * |
Normal | 56 (68.3) | 15 (60) * |
Muscle mass (kg) | 43.4 ± 13.7 | 43.6 ± 9.6 |
Medications | ||
Biological therapy | 66 (80.5) | - |
Immunosuppression | 33 (40.2) | - |
Steroids | 25 (30.5) | - |
5-ASA | 64 (78.0) | - |
Disease activity | ||
Self-reported clinical stage of disease | - | |
Remission | 40 (48.8) | - |
Moderate | 27 (32.9) | - |
Active | 15 (18.3) | - |
UC | ||
Partial Mayo Score (0/1/2/3) | 17 (50.0)/0 (0)/11 (32.4)/6 (17.6) | - |
Montreal classification | ||
E1/E2/E3 | 4 (11.8)/16 (47.0)/14 (41.2) | - |
S0/S1/S2/S3 | - | |
12 (35.3)/10 (29.4)/11 (32.4)/3 (8.8) | ||
CD | ||
CDAI (0/1/2/3) | 17 (35.4)/10 (20.9)/17 (35.4)/4 (8.3) | - |
Montreal classification | - | |
A1/A2/A3 | 8 (16.7)/36 (75)/4 (8.3) | |
L1/L2/L3 | 17 (35.4)/7 (14.6)/24 (50)/0 (0) | - |
B1/B2/B3 | 21 (43.8)/18 (37.5)/15 (3.2) | - |
Analyzed Marker | Study Group | Statistical Parameter | p-Value * | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Median | Q1–Q3 | Min.–Max. | |||
Il-6 (pg/mL) | CD | 13.46 | 21.16 | 5.90 | 3.85–7.20 | 0.40–96.90 | 0.7484 |
UC | 19.20 | 49.34 | 5.65 | 4.40–7.40 | 0.60–272.40 | ||
Control | 15.68 | 14.16 | 8.80 | 4.70–27.60 | 4.10–42.70 | ||
Il-1 beta (pg/mL) | CD | 11.61 | 18.23 | 2.92 | 2.77–9.91 | 1.65–82.29 | 0.9038 |
UC | 12.51 | 16.98 | 2.94 | 2.26–14.92 | 0.89–57.89 | ||
Control | 10.16 | 11.19 | 3.17 | 2.77–21.98 | 1.91–30.40 | ||
Il-10 (pg/mL) | CD | 13.89 | 19.62 | 2.31 | 1.90–20.09 | 0.73–68.95 | 0.0063 ** |
UC | 19.83 | 24.14 | 8.05 | 2.25–24.05 | 1.47–90.10 | ||
Control | 5.30 | 6.60 | 3.10 | 1.80–5.10 | 0.72–25.20 |
IL-6 (pg/mL) Me [Q1–Q3] | IL-1β (pg/mL) Me [Q1–Q3] | IL-10 (pg/mL) Me [Q1–Q3] | |
---|---|---|---|
Disease duration | |||
< 5 | 5.9 [3.9–7.4] | 2.9 [2.7–3.0] | 2.1 [1.9–11.6] |
5–10 | 5.2 [4.6–7.4] | 2.9 [2.2–3.0] | 2.5 [2.1–23.9] |
>10 | 5.9 [3.9–7.0] | 9.6 [2.8–39.4] | 14.7 [2.2–48.0] |
p-value | 0.9533 | 0.0300 * 0.0011 ** | 0.0314 * |
Biology therapy | |||
YES | 5.1 [4.4–6.9] | 2.9 [2.6–12.2] | 2.5 [1.9–23.9] |
NO | 6.6 [4.0–15.0] | 2.9 [2.8–18.6] | 2.5 [2.1–11.9] |
p-value | 0.0067 * | 0.6314 | 0.8699 |
Surgery | |||
YES | 5.7 [3.9–6.3] | 2.8 [2.4–3.1] | 2.3 [2.0–14.7] |
NO | 5.9 [4.4–7.5] | 2.9 [2.7–12.7] | 2.7 [2.0–23.7] |
p-value | 0.7894 | 0.3708 | 0.3002 |
IL-6 (pg/mL) Me [Q1–Q3] | IL-1β (pg/mL) Me [Q1–Q3] | IL-10 (pg/mL) Me [Q1–Q3] | |
---|---|---|---|
Partial Mayo Score | |||
0 | 5.3 [4.4–7.4] | 2.9 [2.6–37.4] | 23.6 [2.3–48.6] |
2 | 6.0 [5.4–6.9] | 3.0 [2.1–26.2] | 3.4 [2.3–14.7] |
3 | 4.4 [3.7–7.7] | 2.8 [2.3–3.0] | 2.2 [1.9–2.6] |
p-value | 0.2860 | 0.370 | 0.0059 * |
Montreal Classification | |||
E1 | 5.6 [5.1–59.9] | 7.9 [2.3–27.4] | 35.0 [19.4–56.8] |
E2 | 5.9 [4.6–6.9] | 2.9 [2.1–12.2] | 2.6 [2.2–23.6] |
E3 | 5.9 [3.7–7.7] | 3.0 [2.8–26.2] | 2.6 [2.1–17.4] |
p-value | 0.8337 | 0.8563 | 0.1118 |
S0 | 6.0 [4.6–53.9] | 2.9 [2.3–41.7] | 24.0 [2.6–46.4] |
S1 | 4.8 [4.4–5.3] | 3.0 [2.8–12.2] | 14.7 [2.1–19.8] |
S2 | 5.9 [4.5–6.9] | 3.0 [2.2–26.2] | 2.4 [2.2–11.6] |
S3 | 7.7 [7.7–7.7] | 2.6 [2.3–2.9] | 2.0 [1.5–2.6] |
p-value | 0.1130 | 0.8013 | 0.0022 * |
IL-6 (pg/mL) Me [Q1–Q3] | IL-1β (pg/mL) Me [Q1–Q3] | IL-10 (pg/mL) Me [Q1–Q3] | |
---|---|---|---|
Age at onset (years) | |||
A1 < 16 | 6.1 [4.9–6.6] | 3.0 [2.8–3.5] | 17.1 [2.2–34.1] |
A2 17–40 | 5.9 [3.8–7.4] | 2.9 [2.7–3.1] | 2.2 [1.8–13.6] |
A3 > 40 | 4.0 [3.0–50.8] | 2.9 [2.8–25.5] | 2.1 [1.8–33.2] |
p-value | 0.6631 | 0.5373 | 0.3924 |
Localization | |||
L1 Ileum | 5.0 [3.8–6.5] | 2.9 [2.9–9.6] | 2.2 [1.9–13.6] |
L2 Colon | 6.6 [4.9–7.6] | 2.4 [2.0–2.9] | 11.4 [1.8–37.0] |
L3 Ileum + colon | 5.9 [3.8–6.6] | 2.9 [2.8–10.9] | 2.3 [1.8–19.5] |
p-value | 0.5291 | 0.2207 | 0.7955 |
Course of the disease | |||
B1 No stenoses or fistulas | 5.9 [3.9–7.4] | 2.9 [2.7–10.2] | 8.6 [1.9–37.0] |
B2 Stenoses | 5.7 [4.4–6.3] | 2.9 [2.8–3.0] | 2.2 [1.8–2.3] |
B3 Fistulas | 6.1 [5.5–7.6] | 2.9 [2.7–3.0] | 2.2 [1.8–8.0] |
Perianal lesions | 6.1 [2.6–9.0] | 2.7 [2.4–14.1] | 11.2 [2.1–28.5] |
p-value | 0.6029 | 0.9337 | 0.1095 |
CDAI | |||
<150 | 5.9 [3.9–18.8] | 3.0 [2.9–19.1] | 8.5 [1.9–32.0] |
150–220 | 6.3 [4.7–7.4] | 2.9 [2.3–3.0] | 1.8 [1.7–2.9] |
221–450 | 4.9 [3.3–6.1] | 2.9 [2.7–2.9] | 2.3 [2.0–19.5] |
>450 | 5.9 [5.9–35.2] | 2.8 [2.6–2.9] | 2.3 [1.9–2.6] |
p-value | 0.3000 | 0.2810 | 0.0462 * |
IL-6 (pg/mL) Me [Q1–Q3] | IL-1β (pg/mL) Me [Q1–Q3] | IL-10 (pg/mL) Me [Q1–Q3] | |
---|---|---|---|
BMI [kg/m2] | |||
<18.5 | 6.1 [5.9–22.3] | 2.9 [2.8–3.0] | 6.2 [2.3–20.1] |
18.5–24.9 | 5.2 [4.4–6.3] | 2.9 [2.3–10.9] | 2.3 [1.9–19.3] |
>25 | 5.3 [3.7–7.7] | 2.9 [2.8–13.2] | 2.3 [2.1–23.9] |
>30 | 8.7 [5.6–34.3] | 6.6 [2.6–25.7] | 22.3 [5.1–44.6] |
p-value | 0.1346 | 0.5881 | 0.4926 |
Waist circumference [cm] | |||
Normal | 5.9 [4.4–6.6] | 2.9 [2.5–10.9] | 2.3 [1.9–19.8] |
High | 5.5 [3.9–18.8] | 3.0 [2.8–14.9] | 14.9 [2.1–46.0] |
p-value | 0.4727 | 0.2627 | 0.1499 |
Weight reduction in 6 months [%] | |||
<10 | 4.9 [3.8–6.7] | 2.9 [2.3–3.1] | 2.3 [1.9–20.8] |
>10 | 5.9 [4.9–22.3] | 3.0 [2.8–37.4] | 3.5 [2.2–23.9] |
p-value | 0.0479 * 0.1445 ** | 0.0486 * 0.0052 ** | 0.3108 |
Adipose tissue [%] | |||
Low | 5.7 [4.4–7.7] | 3.0 [2.8–26.2] | 8.0 [2.3–20.6] |
Normal | 4.6 [3.4–5.9] | 2.8 [2.3–3.0] | 2.4 [1.9–19.8] |
High | 6.2 [5.9–23.9 | 2.9 [2.8–13.2] | 2.3 [2.0–42.7] |
p-value | 0.0084 * 0.0466 ** | 0.2662 | 0.3960 |
Water content [%] | |||
Low | 5.4 [4.4–7.4] | 2.9 [2.5–12.2] | 2.3 [1.9–23.6] |
Normal | 5.9 [3.8–22.3] | 2.9 [2.7–26.2] | 4.4 [2.2–20.6] |
p-value | 0.7370 | 0.6796 | 0.3371 |
IL-6 (pg/mL) | IL-1β (pg/mL) | |
---|---|---|
All participants | ||
IL-6 (pg/mL) | - | - |
IL-1β (pg/mL) | 0.3238 ** | - |
IL-10 (pg/mL) | 0.2616 * | 0.3308 ** |
CD | ||
IL-6 (pg/mL) | - | - |
IL-1β (pg/mL) | 0.3155 * | - |
IL-10 (pg/mL) | 0.4129 ** | 0.3914 ** |
UC | ||
IL-6 (pg/mL) | - | - |
IL-1β (pg/mL) | 0.3372 | - |
IL-10 (pg/mL) | 0.0323 | 0.2762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godala, M.; Gaszyńska, E.; Walczak, K.; Małecka-Wojciesko, E. Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2023, 12, 5956. https://doi.org/10.3390/jcm12185956
Godala M, Gaszyńska E, Walczak K, Małecka-Wojciesko E. Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine. 2023; 12(18):5956. https://doi.org/10.3390/jcm12185956
Chicago/Turabian StyleGodala, Małgorzata, Ewelina Gaszyńska, Konrad Walczak, and Ewa Małecka-Wojciesko. 2023. "Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease" Journal of Clinical Medicine 12, no. 18: 5956. https://doi.org/10.3390/jcm12185956
APA StyleGodala, M., Gaszyńska, E., Walczak, K., & Małecka-Wojciesko, E. (2023). Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine, 12(18), 5956. https://doi.org/10.3390/jcm12185956