Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Protocol and Literature Search
- The included studies must have assessed the diagnostic or prognostic potential using deep learning algorithms in COVID-19 patients with pulmonary manifestations.
- Only original studies were included in the systematic review.
- Abstracts, case reports, case series, invited reviews, narrative and systematic reviews, meta-analyses, animal studies, editorials, letters to the editors, conference papers, commentaries, comparative studies, and expert views were excluded.
- Articles in non-English language were excluded.
- Studies that examined non-deep learning applications for diagnosis of pulmonary manifestations in COVID-19 patients were also excluded;
- The review study excluded papers that did not present sufficient information on related classification performance metrics.
- Finally, we also excluded studies focusing on non-radiological methods of diagnosis of pulmonary manifestations in COVID-19 patients, even if deep learning methods were used.
2.2. Specification of Public Dataset
2.3. Performance Evaluation and Baseline Models
2.4. CNN Architecture
- CNN architecture, i.e., the main underlying baseline model.
- Imaging modality, i.e., CT scan or X-ray.
- The prediction classes, i.e., COVID-19, normal, and pneumonia.
- Pre-processing steps, i.e., data augmentation, image processing methods, feature extraction, and image segmentation.
- Explainability, i.e., the activation heatmaps and grad-CAM visualization.
- Availability of code.
- Performance evaluation metrics, including accuracy, sensitivity, specificity, F-score, AUC, and others.
- Use of transfer learning techniques.
- Specific details of the datasets used.
3. Results
3.1. Definition of the Classification Target Classes
3.2. Overall Performance
3.3. Evaluation of DNN Architectures
3.4. Ensemble Learning
3.5. Transfer Learning and Data Augmentation
3.6. Explainability of CNN Model
3.7. Performance Enhancement: Novel CNN Strategy
3.8. Open COVID19 Dataset
3.9. Review of the Validity and Applicability of the DL Models
4. Discussion and Conclusions
4.1. Limitations of CNN in COVID-19 Detection
4.2. Potential for Future Research
- Can these models actually take over radiologist, or should their usage be strictly limited to a doctor’s assistantship, second opinions, or double-checking?
- How deeply can healthcare workers rely on these models depending on the level of hospital and doctor availability? Can these models be used without the radiologist’s opinion or only in the case that the radiologist is absolutely unavailable? Or, in this case, should a radiologist definitely double-check the model-made diagnosis?
- Can these models be used in the region where a particular model has not been validated or accustomed?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Peñarrubia, L.; Ruiz, M.; Porco, R.; Rao, S.N.; Juanola-Falgarona, M.; Manissero, D.; López-Fontanals, M.; Pareja, J. Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. Int. J. Infect. Dis. 2020, 97, 225–229. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, T.; Fujitani, S.; Yamasaki, Y.; Kunishima, H.; Matsuda, T. Development of a protective device for RT-PCR testing SARS-CoV-2 in COVID-19 patients. Infect. Control Hosp. Epidemiol. 2020, 41, 975–976. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, L. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management. Am. J. Roentgenol. 2020, 214, 1280–1286. [Google Scholar] [CrossRef]
- Sinonquel, P.; Eelbode, T.; Bossuyt, P.; Maes, F.; Bisschops, R. Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy. Dig. Endosc. 2021, 33, 242–253. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Savaş, S.; Topaloğlu, N.; Kazcı, Ö.; Koşar, P.N. Classification of carotid artery intima media thickness ultrasound images with deep learning. J. Med. Syst. 2019, 43, 1–12. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Yamac, M.; Ahishali, M.; Degerli, A.; Kiranyaz, S.; Chowdhury, M.E.H.; Gabbouj, M. Convolutional Sparse Support Estimator-Based COVID-19 Recognition From X-Ray Images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1810–1820. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Gandhi, T.K.; Panigrahi, B.K. Automated Diagnosis of COVID-19 Using Deep Features and Parameter Free BAT Optimization. IEEE J. Transl. Eng. Health Med. 2021, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, K.; Muku, S.; Garg, A.K.; Gabra, P.; Shankar, S.H.; Nischal, N.; Soni, K.D.; Bhalla, A.S.; Mohan, A.; Tiwari, P.; et al. Artificial Intelligence–assisted chest X-ray assessment scheme for COVID-19. Eur. Radiol. 2021, 31, 6039–6048. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jiang, W.; Qiu, X. Deep learning for COVID-19 detection based on CT images. Sci. Rep. 2021, 11, 14353. [Google Scholar] [CrossRef] [PubMed]
- Chikontwe, P.; Luna, M.; Kang, M.; Hong, K.S.; Ahn, J.H.; Park, S.H. Dual Attention Multiple Instance Learning with Unsupervised Complementary Loss for COVID-19 Screening. Med. Image Anal. 2021, 72, 102105. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Yang, Q.; Fu, Y.; Tian, M.; Zhuo, C. RCoNet: Deformable Mutual Information Maximization and High-order Uncertainty-aware Learning for Robust COVID-19 Detection. IEEE Trans. Neural Netw. Learn. Syst. 2021, 2, 3401–3411. [Google Scholar] [CrossRef] [PubMed]
- Fridadar, M.; Amer, R.; Gozes, O.; Nassar, J.; Greenspan, H. COVID-19 in CXR: From detection and severity scoring to patient disease monitoring. IEEE J. Biomed. Health Inform. 2021, 25, 1892–1903. [Google Scholar] [CrossRef]
- Yang, Y.; Lure, F.Y.; Miao, H.; Zhang, Z.; Jaeger, S.; Liu, J.; Guo, L. Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections. J. X-ray Sci. Technol. 2021, 29, 1–17. [Google Scholar] [CrossRef]
- Zhu, Z.; Xingming, Z.; Tao, G.; Dan, T.; Li, J.; Chen, X.; Li, Y.; Zhou, Z.; Zhang, X.; Zhou, J.; et al. Classification of COVID-19 by compressed chest CT image through deep learning on a large patients cohort. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 73–82. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Z.; Liu, G.; Zhang, W.; Du, Q.; Tan, J.; Gao, Q. Artificial Intelligence Clinicians Can Use Chest Computed Tomography Technology to Automatically Diagnose Coronavirus Disease 2019 (COVID-19) Pneumonia and Enhance Low-Quality Images. Infect. Drug Resist. 2021, 14, 671. [Google Scholar] [CrossRef]
- COVID-19 Patients Lungs X Ray Images 10000. Available online: https://www.kaggle.com/nabeelsajid917/COVID-19-x-ray-10000-images (accessed on 5 May 2023).
- Owais, M.; Lee, Y.W.; Mahmood, T.; Haider, A.; Sultan, H.; Park, K.R. Multilevel Deep-Aggregated Boosted Network to Recognize COVID-19 Infection from Large-Scale Heterogeneous Radiographic Data. IEEE J. Biomed. Health Inform. 2021, 25, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Zhong, A.; Li, X.; Wu, D.; Ren, H.; Kim, K.; Kim, Y.; Buch, V.; Neumark, N.; Bizzo, B.; Tak, W.Y.; et al. Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in COVID-19. Med. Image Anal. 2021, 70, 101993. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, P.; Dai, L.; Yang, Y.; Xie, P.; Tan, Y.; Du, J.; Shan, W.; Zhao, C.; Zhong, Q.; et al. Assisting scalable diagnosis automatically via CT images in the combat against COVID-19. Sci. Rep. 2021, 11, 4145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, D.; Shao, J.; Tian, S.; Tan, W.; Ma, Y.; Xu, Q.; Ma, X.; Li, D.; Chai, J.; et al. A deep learning integrated radiomics model for identification of coronavirus disease 2019 using computed tomography. Sci. Rep. 2021, 11, 3938. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Shi, F.; Qi, L.; Xie, X.; Wei, Y.; Ding, Z.; Gao, Y.; Wu, S.; Liu, J.; et al. A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning. Med. Image Anal. 2021, 69, 101978. [Google Scholar] [CrossRef]
- Polat, Ç.; Karaman, O.; Karaman, C.; Korkmaz, G.; Balcí, M.C.; Kelek, S.E. COVID-19 diagnosis from chest X-ray images using transfer learning: Enhanced performance by debiasing dataloader. J. X-ray Sci. Technol. 2021, 29, 19–36. [Google Scholar] [CrossRef]
- Lacerda, P.; Barros, B.; Albuquerque, C.; Conci, A. Hyperparameter Optimization for COVID-19 Pneumonia Diagnosis Based on Chest CT. Sensors 2021, 21, 2174. [Google Scholar] [CrossRef]
- Quan, H.; Xu, X.; Zheng, T.; Li, Z.; Zhao, M.; Cui, X. DenseCapsNet: Detection of COVID-19 from X-ray images using a capsule neural network. Comput. Biol. Med. 2021, 133, 104399. [Google Scholar] [CrossRef]
- Sedik, A.; Iliyasu, A.M.; El-Rahiem, A.; Abdel Samea, M.E.; Abdel-Raheem, A.; Hammad, M.; Peng, J.; El-Samie, A.; Fathi, E.; El-Latif, A.; et al. Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses 2020, 12, 769. [Google Scholar] [CrossRef]
- Ozyurt, F.; Tuncer, T.; Subasi, A. An automated COVID-19 detection based on fused dynamic exemplar pyramid feature extraction and hybrid feature selection using deep learning. Comput. Biol. Med. 2021, 132, 104356. [Google Scholar] [CrossRef]
- Habib, N.; Rahman, M.M. Diagnosis of corona diseases from associated genes and X-ray images using machine learning algorithms and deep CNN. Inform. Med. Unlocked 2021, 24, 100621. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Tong, L.; Zhu, Y.; Wang, M.D. COVID-19 Automatic Diagnosis with Radiographic Imaging: Explainable AttentionTransfer Deep Neural Networks. IEEE J. Biomed. Health Inform. 2021, 25, 2376–2387. [Google Scholar] [CrossRef] [PubMed]
- Le, D.N.; Parvathy, V.S.; Gupta, D.; Khanna, A.; Rodrigues, J.J.; Shankar, K. IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. Int. J. Mach. Learn. Cybern. 2021, 12, 3235–3248. [Google Scholar] [CrossRef]
- Lee, E.H.; Zheng, J.; Colak, E.; Mohammadzadeh, M.; Houshmand, G.; Bevins, N.; Kitamura, F.; Altinmakas, E.; Reis, E.P.; Kim, J.K.; et al. Deep COVID DeteCT: An international experience on COVID-19 lung detection and prognosis using chest CT. NPJ Digit. Med. 2021, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Khuzani, A.Z.; Heidari, M.; Shariati, S.A. COVID-Classifier: An automated machine learning model to assist in the diagnosis of COVID-19 infection in chest x-ray images. Sci. Rep. 2021, 11, 9887. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Bai, S.; Chen, Q.; Zhou, Y.; Xia, L.; Qin, L.; Gong, S.; Xie, X.; Zhou, C.; Tu, D.; et al. Deep learning for predicting COVID-19 malignant progression. Med Image Anal. 2021, 72, 102096. [Google Scholar] [CrossRef]
- Madhavan, M.V.; Khamparia, A.; Gupta, D.; Pande, S.; Tiwari, P.; Hossain, M.S. Res-CovNet: An internet of medical health things driven COVID-19 framework using transfer learning. Neural Comput. Appl. 2021, 1–14. [Google Scholar] [CrossRef]
- Kundu, R.; Basak, H.; Singh, P.K.; Ahmadian, A.; Ferrara, M.; Sarkar, R. Fuzzy rank-based fusion of CNN models using Gompertz function for screening COVID-19 CT-scans. Sci. Rep. 2021, 11, 14133. [Google Scholar] [CrossRef]
- Rahman, M.M.; Nooruddin, S.; Hasan, K.A.; Dey, N.K. HOG+ CNN Net: Diagnosing COVID-19 and pneumonia by deep neural network from chest X-Ray images. Sn Comput. Sci. 2021, 2, 371. [Google Scholar] [CrossRef]
- Li, J.; Zhao, G.; Tao, Y.; Zhai, P.; Chen, H.; He, H.; Cai, T. Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19. Pattern Recognit. 2021, 114, 107848. [Google Scholar] [CrossRef]
- Panthakkan, A.; Anzar, S.; Al Mansoori, S.; Al Ahmad, H. A novel DeepNet model for the efficient detection of COVID-19 for symptomatic patients. Biomed. Signal Process. Control 2021, 68, 102812. [Google Scholar] [CrossRef] [PubMed]
- Keles, A.; Keles, M.B.; Keles, A. COV19-CNNet and COV19-ResNet: Diagnostic inference Engines for early detection of COVID-19. Cogn. Comput. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Brown, L.G.; Foran, D.J.; Nosher, J.; Hacihaliloglu, I. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Khadidos, A.; Khadidos, A.O.; Kannan, S.; Natarajan, Y.; Mohanty, S.N.; Tsaramirsis, G. Analysis of COVID-19 Infections on a CT Image Using DeepSense Model. Front. Public Health 2020, 8, 599550. [Google Scholar] [CrossRef]
- Elsharkawy, M.; Sharafeldeen, A.; Taher, F.; Shalaby, A.; Soliman, A.; Mahmoud, A.; Ghazal, M.; Khalil, A.; Alghamdi, N.S.; Razek, A.A.K.A.; et al. Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images. Sci. Rep. 2021, 11, 12095. [Google Scholar] [CrossRef]
- Gunraj, H.; Wang, L.; Wong, A. COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases From Chest CT Images. Front. Med. 2020, 7, 1025. [Google Scholar] [CrossRef]
- Xiao, L.S.; Li, P.; Sun, F.; Zhang, Y.; Xu, C.; Zhu, H.; Cai, F.Q.; He, Y.L.; Zhang, W.F.; Ma, S.C.; et al. Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019. Front. Bioeng. Biotechnol. 2020, 8, 898. [Google Scholar] [CrossRef]
- Harmon, S.A.; Sanford, T.H.; Xu, S.; Turkbey, E.B.; Roth, H.; Xu, Z.; Yang, D.; Myronenko, A.; Anderson, V.; Amalou, A.; et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 2020, 11, 4080. [Google Scholar] [CrossRef]
- Kikkisetti, S.; Zhu, J.; Shen, B.; Li, H.; Duong, T.Q. Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs. PeerJ 2020, 8, e10309. [Google Scholar] [CrossRef]
- El-Bana, S.; Al-Kabbany, A.; Sharkas, M. A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in COVID-19 scans. PeerJ Comput. Sci. 2020, 6, e303. [Google Scholar] [CrossRef]
- Wang, D.; Mo, J.; Zhou, G.; Xu, L.; Liu, Y. An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. PLoS ONE 2020, 15, e0242535. [Google Scholar] [CrossRef] [PubMed]
- Albadr, M.A.A.; Tiun, S.; Ayob, M.; Al-Dhief, F.T.; Omar, K.; Hamzah, F.A. Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. PLoS ONE 2020, 15, e0242899. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D. A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks. Sci. Rep. 2020, 10, 16942. [Google Scholar] [CrossRef]
- Sekeroglu, B.; Ozsahin, I. Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks. Slas Technol. Transl. Life Sci. Innov. 2020, 25, 553–565. [Google Scholar] [CrossRef]
- Dansana, D.; Kumar, R.; Bhattacharjee, A.; Hemanth, D.J.; Gupta, D.; Khanna, A.; Castillo, O. Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm. Soft Comput. 2020, 27, 2635–2643. [Google Scholar] [CrossRef]
- Wang, X.; Deng, X.; Fu, Q.; Zhou, Q.; Feng, J.; Ma, H.; Liu, W.; Zheng, C. A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging 2020, 39, 2615–2625. [Google Scholar] [CrossRef]
- Serte, S.; Demirel, H. Deep learning for diagnosis of COVID-19 using 3D CT scans. Comput. Biol. Med. 2021, 132, 104306. [Google Scholar] [CrossRef]
- Sharifrazi, D.; Alizadehsani, R.; Roshanzamir, M.; Joloudari, J.H.; Shoeibi, A.; Jafari, M.; Hussain, S.; Sani, Z.A.; Hasanzadeh, F.; Khozeimeh, F.; et al. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images. Biomed. Signal Process. Control 2021, 68, 102622. [Google Scholar] [CrossRef]
- Gifani, P.; Shalbaf, A.; Vafaeezadeh, M. Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 115–123. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Singh, M.; Bansal, S.; Ahuja, S.; Dubey, R.K.; Panigrahi, B.K.; Dey, N. Transfer learning-based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data. Med. Biol. Eng. Comput. 2021, 59, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Pathak, Y.; Shukla, P.K.; Tiwari, A.; Stalin, S.; Singh, S. Deep transfer learning based classification model for COVID-19 disease. Irbm 2020, 43, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D. Classification of COVID-19 chest X-rays with deep learning: New models or fine tuning? Health Inf. Sci. Syst. 2021, 9, 2. [Google Scholar] [CrossRef]
- Saad, W.; Shalaby, W.A.; Shokair, M.; El-Samie, F.A.; Dessouky, M.; Abdellatef, E. COVID-19 classification using deep feature concatenation technique. J. Ambient Intell. Humaniz. Comput. 2022, 13, 2025–2043. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X.; Zha, Y.; Liang, W.; Wang, C.; Wang, K.; et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 2020, 181, 1423–1433. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Asadi, F.; Jafari, R.; Bashash, D.; Abolghasemi, H.; Aria, M. Deep Convolutional Neural Network-Based Computer-Aided Detection System for COVID-19 Using Multiple Lung Scans: Design and Implementation Study. J. Med. Internet Res. 2021, 23, e27468. [Google Scholar] [CrossRef]
- Gupta, P.; Siddiqui, M.K.; Huang, X.; Morales-Menendez, R.; Pawar, H.; Terashima-Marin, H.; Wajid, M.S. COVID-WideNet—A capsule network for COVID-19 detection. Appl. Soft Comput. 2022, 122, 108780. [Google Scholar] [CrossRef]
- El-Kenawy, E.S.M.; Mirjalili, S.; Ibrahim, A.; Alrahmawy, M.; El-Said, M.; Zaki, R.M.; Eid, M.M. Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 x-ray chest image classification. IEEE Access 2021, 9, 36019–36037. [Google Scholar] [CrossRef]
- Khan, S.H.; Sohail, A.; Khan, A.; Lee, Y.S. COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN. Diagnostics 2022, 12, 267. [Google Scholar] [CrossRef]
- Shah, P.M.; Ullah, F.; Shah, D.; Gani, A.; Maple, C.; Wang, Y.; Shahid; Abrar, M.; Islam, S.U. Deep GRU-CNN model for COVID-19 detection from chest X-rays data. IEEE Access 2021, 10, 35094–35105. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.P.; Andreychenko, A.E.; Blokhin, I.A.; Gelezhe, P.B.; Gonchar, A.P.; Nikolaev, A.E.; Pavlov, N.A.; Chernina, V.Y.; Gombolevskiy, V.A. Mosmeddata: Data set of 1110 chest ct scans performed during the COVID-19 epidemic. Digit. Diagn. 2020, 1, 49–59. [Google Scholar] [CrossRef]
- Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification. medRxiv 2020. [Google Scholar] [CrossRef]
- Soares, E. & Angelov, P. A large dataset of real patients CT scans for COVID-19 identification. Harv. Dataverse 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Open Access Biomedical Image Search Engine. Available online: https://openi.nlm.nih.gov/ (accessed on 20 September 2021).
- Italia Radiology Hospitals Dataset. 2020. Available online: https://sirm.org/category/senza-categoria/COVID-19/ (accessed on 5 May 2023).
- He, X.; Yang, X.; Zhang, S.; Zhao, J.; Zhang, Y.; Xing, E.; Xie, P. Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on CT Scans. medRxiv 2020. [Google Scholar] [CrossRef]
- Armato III, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef]
- Ning, W.; Lei, S.; Yang, J.; Cao, Y.; Jiang, P.; Yang, Q.; Zhang, J.; Wang, X.; Chen, F.; Geng, Z.; et al. iCTCF: An integrative resource of chest computed tomography images and clinical features of patients with COVID-19 pneumonia. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Gunraj, H.; Sabri, A.; Koff, D.; Wong, A. COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19 from Chest CT Images Through Bigger, More Diverse Learning. arXiv 2021, arXiv:2101.07433. [Google Scholar] [CrossRef]
- Haghanifar, A.; Majdabadi, M.M.; Choi, Y.; Deivalakshmi, S.; Ko, S. COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images using Deep Learning. Multimed. Tools Appl. 2020, 81, 30615–30645. [Google Scholar] [CrossRef]
- Linda, W.; Alexander, W.; Zhong, Q.L.; Paul, M.; Audrey, C.; Hayden, G.; James, L.; Ashkan, E.; Kim-Ann, G.; Abdul, A.H. Figure 1 COVID-19 Chest X-ray Dataset Initiative. 2020. Available online: https://github.com/agchung/Figure1-COVID-chestxray-dataset (accessed on 5 May 2023).
- Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar]
- Kermany, D.; Zhang, K.; Goldbaum, M. Labeled Optical Coherence Tomography (OCT) and Chest X-ray Images for Classification, Mendeley Data; Mendeley: London, UK, 2018. [Google Scholar] [CrossRef]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. arXiv 2020, arXiv:2006.11988. [Google Scholar]
- Degerli, A.; Ahishali, M.; Yamac, M.; Kiranyaz, S.; Chowdhury, M.E.; Hameed, K.; Hamid, T.; Mazhar, R.; Gabbouj, M. COVID-19 infection map generation and detection from chest X-ray images. Health Inf. Sci. Syst. 2021, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- CDGC Dataset. 2020. Available online: https://drive.google.com/uc?id=1coM7x3378f-Ou2l6Pg2wldaOI7Dntu1a (accessed on 5 May 2023).
- Vayá, M.d.l.I.; Saborit, J.M.; Montell, J.A.; Pertusa, A.; Bustos, A.; Cazorla, M.; Galant, J.; Barber, X.; Orozco-Beltrán, D.; García-García, F.; et al. Bimcv COVID-19+: A large annotated dataset of rx and ct images from COVID-19 patients. arXiv 2020, arXiv:2006.01174. [Google Scholar]
- Sait, U.; Lal, K.G.; Prajapati, S.; Bhaumik, R.; Kumar, T.; Sanjana, S.; Bhalla, K. Curated Dataset for COVID-19 Posterior-Anterior Chest Radiography Images (X-Rays); Mendeley: London, UK, 2020; Volume 1. [Google Scholar] [CrossRef]
- Montalbo, F.J.P. Diagnosing COVID-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion. Biomed. Signal Process. Control 2021, 68, 102583. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Tsai, E.B.; Simpson, S.; Lungren, M.P.; Hershman, M.; Roshkovan, L.; Colak, E.; Erickson, B.J.; Shih, G.; Stein, A.; Kalpathy-Cramer, J.; et al. The RSNA International COVID-19 Open Radiology Database (RICORD). Radiology 2021, 299, E204–E213. [Google Scholar] [CrossRef]
- Umer, M.; Ashraf, I.; Ullah, S.; Mehmood, A.; Choi, G.S. COVINet: A convolutional neural network approach for predicting COVID-19 from chest X-ray images. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 535–547. [Google Scholar] [CrossRef]
- Ghadezadeh, M.; Eshraghi, M.A.; Asadi, F.; Hosseini, A.; Jafari, R.; Bashash, D.; Abolghasemi, H. Efficient Framework for Detection of COVID-19 Omicron and Delta Variants Based on Two Intelligent Phases of CNN Models. Comput. Math. Methods Med. 2022, 2022, 4838009. [Google Scholar] [CrossRef]
- COVID-19 Omicron and Delta Variant Lung CT Scans. 2022. Available online: https://www.kaggle.com/datasets/mohammadamireshraghi/covid19-omicron-and-delta-variant-ct-scan-dataset (accessed on 5 May 2023).
- COVID-19 Chest XRay Images. 2021. Available online: https://www.kaggle.com/datasets/mohammadamireshraghi/covid19-xray-local-data (accessed on 5 May 2023).
- Ghaderzadeh, M.; Aria, M.; Hosseini, A.; Asadi, F.; Bashash, D.; Abolghasemi, H. A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images. Int. J. Intell. Syst. 2022, 37, 5113–5133. [Google Scholar] [CrossRef]
- Hussain, Z.; Gimenez, F.; Yi, D.; Rubin, D. Differential Data Augmentation Techniques for Medical Imaging Classification Tasks. AMIA Annu. Symp. Proc. AMIA Symp. 2018, 2017, 979–984. [Google Scholar]
- Cheng, Q.; Fan, M.; Hao, J.; Hu, X.; Ge, X.; Hu, Z.; Li, Z. Chest CT features of children infected by B.1.617.2 (Delta) variant of COVID-19. World J. Pediatr. 2022, 18, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.F.; Moons, K.G.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; Group†, P. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Wong, P.K.; Ren, H.; Wang, H.; Wang, J.; Li, Y. Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest ct scans. Chaos Solitons Fractals 2020, 140, 110153. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulos, C.; Weikert, T.; Yang, S.; Abdulkadir, A.; Schmülling, L.; Bühler, C.; Paciolla, F.; Sexauer, R.; Cyriac, J.; Nesic, I.; et al. Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning. Eur. J. Radiol. 2020, 131, 109233. [Google Scholar] [CrossRef]
- Elgendi, M.; Nasir, M.U.; Tang, Q.; Fletcher, R.R.; Howard, N.; Menon, C.; Ward, R.; Parker, W.; Nicolaou, S. The performance of deep neural networks in differentiating chest X-rays of COVID-19 patients from other bacterial and viral pneumonias. Front. Med. 2020, 7, 550. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef]
- Kugunavar, S.; Prabhakar, C. Convolutional neural networks for the diagnosis and prognosis of the coronavirus disease pandemic. Vis. Comput. Ind. Biomed. Art 2021, 4, 12. [Google Scholar] [CrossRef]
- Jin, C.; Chen, W.; Cao, Y.; Xu, Z.; Tan, Z.; Zhang, X.; Deng, L.; Zheng, C.; Zhou, J.; Shi, H.; et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088. [Google Scholar] [CrossRef]
- Heidari, M.; Mirniaharikandehei, S.; Khuzani, A.Z.; Danala, G.; Qiu, Y.; Zheng, B. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Int. J. Med. Inform. 2020, 144, 104284. [Google Scholar] [CrossRef]
- Mishra, A.K.; Das, S.K.; Roy, P.; Bandyopadhyay, S. Identifying COVID19 from chest CT images: A deep convolutional neural networks based approach. J. Healthc. Eng. 2020, 2020, 8843664. [Google Scholar] [CrossRef]
- Afshar, P.; Heidarian, S.; Naderkhani, F.; Oikonomou, A.; Plataniotis, K.N.; Mohammadi, A. Covid-caps: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett. 2020, 138, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; ZahediNasab, R.; Farahani, A.; Mohseni, H.; Ghasemian, F. Machine Learning Models for Image-Based Diagnosis and Prognosis of COVID-19: Systematic Review. JMIR Med. Informat. 2021, 9, e25181. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Peralta, L.; Calderón, Á.; Cabezon, V.; Ortega-Morán, J.; Sanchez-Margallo, F.; Polo, F.; Saratxaga, C.; Picon, A. Systematic acquisition and annotation of clinical cases for the generation of a medical image database. Proc. Br. J. Surg. 2019, 106, 16. [Google Scholar]
- Bernal, J.; Histace, A.; Masana, M.; Angermann, Q.; Sánchez-Montes, C.; de Miguel, C.R.; Hammami, M.; García-Rodríguez, A.; Córdova, H.; Romain, O.; et al. GTCreator: A flexible annotation tool for image-based datasets. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 191–201. [Google Scholar] [CrossRef] [PubMed]
Publication | Dataset | CNN Architecture | Performance Evaluation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Study | Source | Imaging | Classes | End-to-End | Expl | Structure | TL | Code | Sens/Spec/PPV/NPV | AUC | F1 | Acc. |
2021 | [11] | QaTa-Cov19 | CXR | 4, BP, VP, N, C | no/DA | no | CSEN | yes | no | 0.98/0.95/0.64/0.99 | - | 0.77 | 0.95 |
2021 | [12] | SARS CoV-2 CT | CT | 2, C, N | no/DA | OS | PF-BAT FKNN | yes | no | 0.99/0.99/0.99/0.99 | 0.99 | 0.99 | 0.99 |
2021 | [13] | AIIMS | CXR | 2, C, N | yes | RISE | CovidAid_V2 | no | yes | 0.88/0.94/0.88/0.94 | - | 0.88 | 0.92 |
2021 | [14] | COVIDx CT-2A | CT | 3, C, P, N | no/DA | CAM | ResNet-v2 | yes | no | 0.98/0.99/0.98/0.99 | - | - | 0.99 |
2021 | [13] | Shahid Beheshti University of MS | CT | 2, C, N | no/FE | no | NASNet | no | no | 0.99/0.98/0.99/0.99 | - | 0.99 | 0.99 |
2021 | [15] | Yeungnam University | CT | 2, P, C | no/DA | AM | DA-CMIL | no | no | 1/0.97/0.96/1 | 0.98 | 0.98 | 0.98 |
2021 | [16] | COVIDx | CXR | 3, C, P, N | no/DA | no | RCoNet | no | no | 0.97/0.98/0.97/- | - | 0.97 | 0.97 |
2021 | [17] | COVID-19 IDL, RSNA, CXR DI | CXR | 3, C, P, N | no/DA | CAM | ResNet50 | yes | no | 0.92/0.97/0.98/- | 0.98 | - | 0.94 |
2021 | [18] | Guangzhou, Hebei | CT | 2, C, N | no/DA | no | ResUNet | no | no | 0.91/0.90/0.89/0.92 | 0.90 | - | 0.91 |
2021 | [19] | Covid-ct-dataset, Guangxi Univ. | CT | 2, C, N | no/IP | HM | ResNet50 | yes | no | 0.93/0.92/-/- | 0.93 | 0.92 | 0.93 |
2021 | [20] | NLMMC | CT | 2, C, N | no/DA | no | GARCD | yes | no | 0.967/0.912/-/- | 0.98 | - | - |
2021 | [21] | Kaggle Chest X-ray | CXR | 2,C, N | no/DA | no | COVINet | no | no | 0.98/0.96/0.98/- | 0.98 | 0.98 | 0.97 |
2021 | [22] | 6 Public datasets | CT, CXR | 2, C, N | yes | CAM | MDA-BN | no | no | 0.98/0.92/0.93/0.98 | 0.98 | 0.95 | 0.95 |
2021 | [23] | COVIDx, 5 US and 4 SK hospitals | CXR | 3, C, P, N | no/SG | AM | DL CBIR | no | no | 0.85/-/0.95/- | 0.83 | - | 0.83 |
2021 | [24] | 4 CH, 2 GH, China | CT | 2, C, N | no/IP | no | COVIDNet | no | yes | 0.93/0.95/0.93/0.94 | 0.98 | 0.93 | 0.94 |
2021 | [25] | Jihan Infectious Disease Hospital | CT | 2, C, P | no/FE | no | DL-MLP | no | no | 0.87/0.90/0.80/- | 0.92 | 0.84 | 0.89 |
2021 | [26] | the Second Xiangya Hospital | CT | 2, SC, nSC | no/CR | AM | MIL | no | no | 0.93/0.96/-/- | 0.98 | 0.89 | 0.95 |
2021 | [27] | COVID chest X-ray, Chest X-ray14 | CXR | 2, C, CP | no/IP & DA | CAM | DenseNet-161 | yes | no | 0.80/1/0.8/0.96 | - | 0.98 | 0.97 |
2021 | [28] | MosMed, LUNA16 | CT | 2, C, N | no/IP | CAM | VGG16 | yes | no | 0.97/0.82/0.79/0.97 | - | 0.89 | 0.88 |
2021 | [29] | COVID-chest X-ray, CoronaHack COVID-19 radiography | CXR | 3, N, P, C | no/IP | CAM | DenseCapsNet | no | no | 1.00/0.95/0.91/1.00 | - | 0.91 | 0.91 |
COVID-CT | CT | 0.94/0.99/0.99/0.96 | 0.96 | 0.98 | 0.98 | ||||||||
2021 | [30] | Covid Chest X-ray | CXR | 2, C, N | no/DA | no | ConvLSTM | no | no | 0.97/0.98/0.98/0.98 | 0.81 | 0.98 | 0.95 |
2021 | [31] | COVID-CT | CT | 2, C, N | no/IP | no | DNN | no | no | 0.94/0.96/0.96/0.95 | - | 0.95 | 0.95 |
2021 | [32] | COVID-19 RD | CXR | 2, C, N | no/DA | no | CheXNet | yes | no | 0.99/1.00/1.00/0.99 | - | 0.99 | 0.99 |
SIRM, COVID-19 X-ray | CXR | 0.92/0.97/0.89/0.96 | - | 0.90 | 0.93 | ||||||||
2021 | [33] | COVID-CT, Radiopedia | CT | 3, N, C, P | no/DA | HM | EATC | no | no | 0.86/0.97/0.90/0.89 | - | 0.88 | 0.87 |
2021 | [34] | Covid Chest Xray | CXR | 2, C, N | no/FE | no | DWS-CNN | no | no | 0.98/0.98/-/- | - | 0.98 | 0.98 |
2021 | [35] | Multi-center dataset | CT | 2, C, N | yes | CAM | 3D-CNN | yes | yes | 0.90/0.98/0.96/0.94 | 0.88 | 0.93 | 0.88 |
2021 | [36] | UCSD (California) | CXR | 3, N, C, P | no/IP | no | ANN | no | no | 1.00/0.98/0.96/1.00 | 0.77 | 0.98 | 0.94 |
2021 | [37] | Wuhan Pulmonary Hospital | CT | 2, SC, nSC | yes | AM | 3D ResNet | yes | yes | 0.86/0.88/-/- | 0.92 | - | 0.88 |
2021 | [38] | Guangzhou W&C MC | CXR | 4, N, C, BP, VP | no | no | Res-CovNet | yes | no | 0.97/-/0.97/- | - | 0.98 | 0.98 |
SARS-COV-2 | CT | 0.98/0.98/0.98/0.99 | 0.98 | 0.98 | 0.98 | ||||||||
2021 | [39] | Harvard Dataverse | CT | 2, C, N | yes | no | VGG-11+Inceptionv3+ WideResnet-50 | yes | yes | 0.99/0.99/.0.98/0.98 | 0.98 | 0.98 | 0.98 |
2021 | [40] | Kaggle Chest X-ray | CXR | 3, N, P, C | no | no | HOG+CNN | no | no | 0.96/0.99/0.94/0.99 | 0.99 | 0.99 | 0.96 |
CC-CCII Dataset | CT | 0.90/0.90/-/- | 0.89 | - | 0.93 | ||||||||
2021 | [41] | COVID-19 IDL, HwaMei Hospital | CXR | 3, N, P, C | no/IP | AM | CMT-CNN | no | yes | 0.92/0.91/-/- | 0.92 | - | 0.97 |
COVID-19 IDL, Chest X-ray-NIHCC | CXR | 0.99/0.99/0.99/0.99 | - | 0.99 | 0.97 | ||||||||
2021 | [42] | Curated X-ray Dataset | CXR | 3, N, C, P | yes | no | COVID-DeepNet | no | no | 0.97/0.98/0.97/0.98 | 0.99 | 0.99 | 0.98 |
2021 | [43] | COVID-19 RD, Mendeley | CXR | 3, C, VP, N | no | no | Cov19-CNnet | no | no | 0.94/0.96/0.98/1.00 | - | 0.94 | 0.98 |
2021 | [44] | BIMCV, COVIDx, COVID-CXNet | CXR | 3, N, C, P | no/IP | CAM | Fus-ResNet50 | no | no | 0.95/0.99/0.94/0.99 | - | 0.95 | 0.95 |
2020 | [45] | IEEE8023, COVID-CT, CORD-19 | CT | 2, C, N | no/FE | no | DeepSense | no | no | 0.97/0.97/-/- | - | 0.92 | 0.98 |
2020 | [46] | COVID-chestxray, CORD-19 | CXR | 2, C, P | no/SG & IP | AM | DarkNet-19 | no | yes | 1.00/0.97/-/- | - | - | 0.98 |
2020 | [47] | COVIDx-CT | CT | 3, NC, NCP, CP | no/CR | no | COVIDNet-CT | no | no | 0.97/0.99/0.99/0.99 | - | 0.98 | 0.99 |
2020 | [48] | Honghu and Nanchang hospitals | CT | 3, NS, S, DP | no/CR | no | ResNet34 | yes | yes | 0.98/0.83/0.85/0.97 | 0.95 | 0.91 | 0.90 |
2020 | [49] | LIDC | CT | 2, N, C | no/CR | CAM | DenseNet-121 | no | yes | 0.91/0.93/0.85/0.95 | 0.94 | 0.88 | 0.90 |
2020 | [50] | COVID-19 CXR | CT | 3, N, C, P | no/SG & CR | HM | VGG16 | yes | yes | 0.91/0.93/-/- | 0.89 | 0.91 | 0.88 |
2020 | [51] | COVID-chest X-ray | CXR | 3, C, P, N | no/IP | no | Inception-V3 | yes | yes | 1.00/0.99/0.99/0.99 | - | 0.99 | 0.99 |
COVID-chest X-ray | CT | 0.81/0.99/0.97/- | 0.95 | 0.88 | 0.96 | ||||||||
2020 | [52] | Daegu, South Korea | CT | 2, N, C | no/DA & IP | no | Xception | yes | no | 0.95/0.88/0.94/0.91 | 0.92 | 0.94 | 0.95 |
2020 | [53] | COVID-19 X-ray | CXR | 2, N, C | no/IP | no | OGA-ELM | no | yes | 0.97/0.95/0.95/0.97 | 0.98 | 0.96 | 0.96 |
Wuhan People’s Hospital | CT | 0.94/0.96/-/- | 0.98 | - | - | ||||||||
2020 | [54] | COVIDx | CXR | 3, C, P, NonP | no/IP | CAM | COVNet | yes | yes | 0.95/0.95/0.90/0.97 | - | 0.92 | 0.93 |
2020 | [55] | COVID-19 CT | CT | 2, C, N | no/UNet SG | no | DensNet-201 | yes | yes | 0.87/0.95/-/- | 0.97 | 0.92 | 0.92 |
2020 | [56] | COVID chest X-ray | CXR | 3, C, N, P | no/IP | no | ConvNet | yes | no | 0.94/0.99/0.93/0.99 | 0.96 | 0.94 | 0.98 |
2020 | [57] | COVID chest X-ray | CXR | 3, N, P, C | no/DA | no | VGG-16 | no | no | 0.94/0.94/1.00/0.84 | - | 0.97 | 0.91 |
2020 | [58] | PACS Union Hospital | CT | 2, C, N | yes | CAM | DeCoVNet | no | yes | 0.90/0.91/0.84/0.98 | 0.95 | 0.87 | 0.90 |
Link | Name | Origin | Type | Resolution | N. Patients | Classes | Sample Size | H.Per. | CNN Model |
---|---|---|---|---|---|---|---|---|---|
[68] | CC-CCII | National hospitals (China) | CT | 512 × 512 | 2742 | 3; C, P, N | 411,529 | 0.93 | CMT-CNN [41] |
[74] | MosMedData | Municipal hospitals in Moscow (Russia) | CT | 512 × 512 | 1110 | 4; ML, MD, SC, CC, N | - | 0.88 | ED-VGG16 [28] |
[79] | COVID-CT | medRxiv and bioRxiv (USA) | CT | 1853 × 1485 | 216 | 2; C, N | 812 | 0.98 | ConvLSTM [30] |
[75] | SARS-COV-2 CT Scan | Sao Paulo hospitals (Brazil) | CT | 327 × 307 | 1252 | 2; C, N | 2481 | 0.99 | PF-BAT FKNN [12] |
[76] | Harvard Dataverse | HSPM (Brazil), Metropolitan Hospital of Lapa (Brazil) | CT | - | 210 | 3; C, N, OLI | 4173 | 0.98 | VGG-11+Inceptionv3+ WideResnet-50 [39] |
[80] | LIDC-IDRI | Combined: NCI (Malaysia), FNIH and FDA (USA) | CT | 512 × 512 | 1010 | 4; nonP, CAP, Infl, C | 244,527 | 0.90 | DenseNet-121 [49] |
[47] | COVIDx CT 1 | CNCB (China), ITAC (Canada), LIDC-IDRI, Radiopaedia (Australia) | CT | 512 × 512 | 3745 | 3; N, CP, nonCP | 194,922 | 0.99 | ResNet-v2 [14] |
[81] | iCTCF | HUST-UH/HUST-LH (China) | CT | 512 × 512 | 1170 | 3; SC, nSC, N | 256,356 | 0.98 | GARCD [20] |
[82] | COVIDx-CT | CNCB (China), ITAC (Canada), LIDC-IDRI, Radiopaedia (Australia) | CT | 512 × 512 | 4501 | 3; N, CP, nonCP | 201,103 | 0.99 | ResNet-v2 [14] |
[91] | BIMCV-COVID19 | Medical Imaging Databank in Valencian Region MIB (Spain) | CT CXR | - | 1354 | 3; UD, N, P | 23,527 | 0.95 | MDA-BN [22] |
[84] | COVID-19 CXR | BMJ, Doctors Without Borders, Mount Sinai Health System (Canada) | CXR | 1594 × 1600 | 48 | 3; C, P, N | 55 | 0.96 | Xception [52] |
[85] | COVID-19 RD | SIRM (Italy), COVID-19 IDC (Canada), PadChest (Spain), RSNA (USA), COVID-CXNet | CXR | 299 × 299 | - | 3; C, N, VP | 3615 | 0.99 | CheXNet [32] |
[86] | ChestX-ray8 | National Institute of Health Clinical Center (USA) | CXR | 1024 × 1024 | 30,805 | 3; C, P, N | 112,120 | 0.99 | COVID-DeepNet [42] |
[87] | OCTaCXRI | Guangzhou Women and Children’s Medical Center (China) | CXR | different | - | 2; P, N | 5856 | 0.98 | Res-CovNet [38] |
[92] | Curated X-Ray Dataset | Indian Institute of Science, PES Uni., Ramaiah IT (India), Concordia Uni. (Canada) | CXR | 479 × 479 | - | 4; C, N, VP, BP | 9208 | 0.98 | DenseNet [93] |
[94] [84,88] | CXR (COVID-19 & Pneumonia) | COVID-19 IDC (Canada), Mendeley (UK), COVID-19 CXR (Canada) | CXR | 386 × 386 | - | 3; C, P, N | 6432 | 0.96 | HOG+CNN [40] |
[77] | Open-i CXR | Indiana University Hospital (USA) | CXR | - | - | 2; CovidP, OP | 7470 | 0.97 | DenseNet-161 [27] |
[89] | CT | BIMCV (Spain), RSNA PDC (USA), COVID-19 RD (Bangladesh) | CXR | 224 × 224 | - | 4; C, N, VP, BP | 120,968 | 0.95 | CSEN [11] |
[86] | RSNA PDC | Radiological Society of North America (USA) | CXR | - | 11,254 | 3; N, NLO, LO | 26684 | 0.94 | ResNet50 [17] |
[83] | COVIDx CT 2 | SIRM (Italy), COVID-19 IDC (Canada), Radiopaedia (Australia), COVID-19 CXR (Canada), Hannover Uni. (Germany) | CXR | 859 × 730 | 4501 | 3; CP, CAP, N | 201,103 | 0.95 | Fus-ResNet50 [44] |
[84,88] [84,95] [86] | COVIDx | COVID-19 IDC (Canada), MIDRC (USA), Actualmed (Spain), COVID-19 RD, RSNA PDC (USA), COVID-19 CXR (Canada) | CXR | - | 15100 | 2; C, NC | 16,000 | 0.97 | RCoNet [16] |
[88] | COVID-19 IDC | Radiopaedia (Australia), SIRM (Italy), RSNA PDC (USA), Eurorad (Germany), Coronacases (China), COVID-19 CXR (Canada) | CXR | 604 × 499 | 412 | 2; C, P | 679 | 0.98 | DWS-CNN [34] |
[90] | COVID-19 PL CXR I | unreported | CXR | - | - | 2; C, N | 98 | 0.97 | COVINet [96] |
[90] | CDGC | unreported | CXR | - | - | 2; VP, BP | 79 | 0.97 | COVINet [96] |
[78] | SIRM | Radiology Hospitals (Italy) | CXR | 356 × 338 | 115 | 1; C | 450 | 0.93 | DAM [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-H.; Shomanov, A.; Kudaibergenova, M.; Viderman, D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J. Clin. Med. 2023, 12, 3446. https://doi.org/10.3390/jcm12103446
Lee M-H, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. Journal of Clinical Medicine. 2023; 12(10):3446. https://doi.org/10.3390/jcm12103446
Chicago/Turabian StyleLee, Min-Ho, Adai Shomanov, Madina Kudaibergenova, and Dmitriy Viderman. 2023. "Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review" Journal of Clinical Medicine 12, no. 10: 3446. https://doi.org/10.3390/jcm12103446
APA StyleLee, M.-H., Shomanov, A., Kudaibergenova, M., & Viderman, D. (2023). Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. Journal of Clinical Medicine, 12(10), 3446. https://doi.org/10.3390/jcm12103446