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Abstract: SARS-CoV-2 is a novel virus that has been affecting the global population by spreading
rapidly and causing severe complications, which require prompt and elaborate emergency treatment.
Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists
and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and
monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the
state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are
methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-
based classification approaches is presented. The reviewed papers have presented a variety of CNN
models and architectures that were developed to provide an accurate and quick automatic tool
to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic
review, we focused on the critical components of the deep learning approach, such as network
architecture, model complexity, parameter optimization, explainability, and dataset/code availability.
The literature search yielded a large number of studies over the past period of the virus spread,
and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and
weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely
implement current AI studies in medical practice.

Keywords: artificial intelligence; deep learning; systematic review; X-ray; computerized tomography;
COVID-19

1. Introduction

The novel coronavirus (SARS-CoV-2) emerged in early December 2019 and has since
become a global pandemic threatening humanity [1]. COVID-19, the disease caused by
this virus, presents with non-specific symptoms such as cough, fever, myalgia, headache,
gastrointestinal dysfunction, and other flu-like symptoms, thereby making it challenging
to differentiate from other viral upper respiratory diseases, especially in the early stages [2].
However, the timely diagnosis and management of affected patients could reduce mortality
and the spread of COVID-19 [1,2].

The standard diagnostic tests used to confirm COVID-19 diagnosis are real-time
RT-PCR and the reverse transcription polymerase chain reaction (RT-PCR) [3,4]. Chest-
computed tomography (CCT) is a radiological diagnostic tool used to detect the pulmonary
manifestations and complications of COVID-19, such as pneumonia and acute respiratory
distress syndrome. The main radiological features of COVID-19 are asymmetric peripheral
ground-glass opacities (GGOs) in the absence of pleural effusions [5]. However, given
the high volume of cases that radiologists need to analyze, the manual interpretation
of chest CT scans can be monotonous, tedious, and prone to diagnostic errors. This is
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where automated artificial intelligence tools can come in handy by facilitating and double-
checking physicians’ tasks, as well as reducing the likelihood of diagnostic errors.

Recent advances in artificial intelligence, especially deep learning (DL) algorithms,
have shown great potential in accurately interpreting medical images, including chest CT
scans [6]. CNN, one of the DL algorithms, can learn the most important representations
through layer-by-layer feature analysis [7] and has been successfully adapted to analyze
chest CT images for COVID-19 detection [8,9].

Although the characteristics of the current CNN models have been widely tested and
described in the literature, there is no systematic review and meta-analysis focusing on
the application of CNN in the detection of pulmonary involvement in COVID-19 patients.
Therefore, the aim of this systematic review is to study the performance, benefits, and risks
of CNN for the detection of pulmonary manifestations in COVID-19 patients.

One of the major challenges in developing CNN models for COVID-19 detection
is the limited size of medical datasets, especially in COVID-19 cases. To address this
issue, advanced augmentation approaches based on conventional generative adversarial
networks (GANs) have been successfully applied to acquire a sufficient number of clinical
data samples. Recently, publicly available datasets have been created by many research
foundations, and CNN architecture with data-invariant performance has become one of
the most challenging issues in clinical CNN study.

Another challenge is constructing a parameter-invariant CNN framework that as-
sures robust performance on the variations of medical imaging data. Techniques such as
semi-automated image processing software or CNN-based segmentation have been devel-
oped to overcome this issue by extracting the region of interest. More recent end-to-end
CNN architectures have shown comparable or even superior performance to conventional
pipeline systems.

For the performance evaluation, we utilized popular CNN architectures designed
primarily for the computer vision field as our baseline models. These models included VGG,
Inception, DenseNet, GoogLeNet, ResNet, and more extensive versions of the individual
networks. Diverse state-of-the-art CNN models have been proposed, which vary in terms
of model structures such as activation functions, filter/kernel size, model parameters,
and depth of the network. These models aim to improve the representational ability
of feature maps to overcome known problems such as overfitting, vanishing gradient,
computational cost, etc. Transfer learning, ensemble metal-classifiers, and fine-tuning
based on pre-trained CNN models have been successfully implemented in clinical imaging
data. However, the lack of a common framework, as well as a benchmark dataset, make it
challenging to provide a reliable comparison of the state-of-art methodologies.

Meanwhile, ensuring the reliability of the network’s decision making through quanti-
tative evaluation is critical in clinical studies. Therefore, interpretable AI, which can visually
represent how and why a CNN makes certain decisions at a human-understandable level,
is an essential part of clinical applications. Most recent studies have implemented a class
activation map (CAM) to provide visual explanations of CNN output by representing a
heatmap that can highlight the decision-relevant regions on the input image.

Our study aims to systematically review published studies that applied deep learning
approaches for the diagnosis and prognosis of COVID-19 based on CT and X-ray images.
The main contributions of our systematic review are as follows:

We analyzed publicly available CT and X-ray imaging datasets for COVID-19 cases
and evaluated their overall performance with conventional and state-of-the-art CNN
approaches. We provided a detailed description of CNN architecture in terms of the
structural network design and its pros and cons. We examined visualization models
that can quantitatively evaluate CNN model decisions. We identified further challenging
issues based on our findings of the review to be importantly addressed in the medical AI
community to advance the field.

This review is structured as follows. In Section 2, we present the methodology used
to carry out the review protocol, search strategy, and data extraction. In Section 3, we
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provide a summarization of the results in terms of the research perspectives identified
in the previous section. Section 4 discusses the limitations of this literature review and
suggests future research directions. We believe that this review will aid clinical practice
by informing future research and development about improved diagnostic and treatment
techniques for patients with COVID-19.

2. Methodology
2.1. Protocol and Literature Search

The scope of this review included articles reporting the use of convolutional neu-
ral network (CNN) methods for chest-computed tomography and X-ray imaging in-
terpretation in COVID-19 patients. We conducted this scoping review in accordance
with the PRISMA guidelines [10]: Patient population—critical/intensive care patients;
Intervention/diagnostic tools—deep learning models; Comparison—non-deep learning
prediction models; Outcomes—prediction of mortality (in ICU); Secondary—the value of
deep learning methods in decision making, characteristics of deep learning models, and
resources, including data and code availability, AI mode/approach, DL structure, transfer
learning, end-to-end learning, explainability, pulmonary involvement (injury) measure-
ment, pulmonary involvement classification, deep learning architectures used in biomedical
image analysis, image processing techniques, and the opinions of certified radiologists.

The main goals of this systematic review are: (1) to analyze the original studies and
publicly available datasets reporting the application of deep learning in the analysis of
COVID-19-related lung involvement, (2) to provide a comprehensive analysis of detection
of COVID-19-related pneumonia and segmentation methods based on deep learning, (3) to
discuss advantages and disadvantages of the methods and DL methods used (4) to discuss
recommendations and future challenges based on the results of the systematic review,
and (5) to summarize the limitations of the study and the significance of the application of
the deep learning.

Inclusion and exclusion criteria were as follows:

1. The included studies must have assessed the diagnostic or prognostic potential using
deep learning algorithms in COVID-19 patients with pulmonary manifestations.

2. Only original studies were included in the systematic review.
3. Abstracts, case reports, case series, invited reviews, narrative and systematic reviews,

meta-analyses, animal studies, editorials, letters to the editors, conference papers,
commentaries, comparative studies, and expert views were excluded.

4. Articles in non-English language were excluded.
5. Studies that examined non-deep learning applications for diagnosis of pulmonary

manifestations in COVID-19 patients were also excluded;
6. The review study excluded papers that did not present sufficient information on

related classification performance metrics.
7. Finally, we also excluded studies focusing on non-radiological methods of diagnosis

of pulmonary manifestations in COVID-19 patients, even if deep learning methods
were used.

The literature search resulted in 1116 citations. Following the removal of duplicates
and screening of titles with abstracts, as well as reading the full articles, we analyzed
74 articles in the final version of our systematic review (as depicted in Figures 1 and 2).

The screening of the potential studies was conducted by three reviewers (DV, AS, and
MHL). After removal of duplicated titles, we screened the titles and abstracts. The data
extraction process was conducted by two reviewers (AS and ML). The discrepancies were
resolved by consensus.

We performed a literature search in the following databases: PubMed, EMBASE,
and Google Scholar. We used the following free text and medical subject headings (MeSH)
terms: ‘lung’, ‘respiratory system’, ‘pneumonia’, ‘respiratory complications’, ‘classification’,
‘artificial intelligence’, and ‘tomography’. The terms were combined with the following
words: ‘convolutional neural network’, ‘CNN’, ‘deep learning’, ‘COVID-19’, ‘pneumonia’,
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‘detection’, and ‘diagnosis’. We considered all original studies that have been published
from inception to May 2022. Articles that did not meet the review criteria were excluded.
We examined and cross-referenced bibliographies to identify additional papers of relevance.
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Figure 1. Illustration of meta-analysis based on published papers from January 2020 to May 2022.
The systematic review included COVID-19 classification studies based on DNN approach for the CT
and chest X-ray imaging dataset.

1116 PubMed and Google Scholar

Identification

Screening

1116 relevant citations screened 
by title and keywords

Eligibility

270 articles identified for data 
evaluation/extraction

Inclusion

74 articles were included in the 
review and analyzed
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- Animal and 
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cadaver studies;

criteria;
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Figure 2. PRISMA flowchart for systematic review and meta-Analysis with the keywords used in the
literature review.

In our systematic review, we covered a wide range of attributes related to CT/CXR
datasets and DNN approaches. The DNN approaches can be categorized into two di-
rections: image segmentation and classification. Segmentation of chest CXR/CT images
involves the automatic localization of boundaries that limit the area of pulmonary involve-
ment (pathological part of the lung), which is then separated from the intact part of the
image for further analysis. Image classification entails the ability to capture pixel-level fea-
tures that may not be easily detected by human eyes. This includes feature representation,
pixel-level heatmap visualization, and validation of decoding accuracy.

2.2. Specification of Public Dataset

The growth of the deep learning approach has been further facilitated by the creation
of large, annotated open datasets. In our review, we focused on deep learning classification
models for COVID-19 based on available CT and X-ray scan datasets. We conducted a
literature review of papers that used both publicly available open datasets and private
datasets. From dataset descriptions, we extracted information on their origin, data types,
sample size, image resolutions, populations, available links, and the highest performance
achieved in the current research with their CNN approach. Patient scans and other ma-
terials included in datasets were typically collected from various sources, such as public
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domains, hospitals, and physicians, with the collection and distribution of patient informa-
tion regulated by the ethics review board in each of the reviewed studies. Authors in the
reviewed studies reported the use of annotated datasets in which each slice of the CT or
X-ray scan was labeled with various classes, including binary classification of COVID-19
pneumonia/normal, COVID-19 pneumonia/bacterial pneumonia, as well as studies report-
ing multi-class classifications, including three cases of COVID-19, normal, and bacterial
pneumonia. For studies reporting the use of public datasets for COVID-19 classification,
information on RT-CPR confirmed COVID-19, or radiologist-verified inclusion criteria
were checked.

The sample size of datasets varied significantly across different studies. Generally,
models fit on smaller datasets showed poor generalization compared to large datasets.
Nevertheless, some models were able to achieve high accuracy even on small/moderate-
sized datasets.

2.3. Performance Evaluation and Baseline Models

Performance evaluation metrics, such as accuracy, sensitivity, specificity, positive
predicted value (PPV), negative predicted value (NPV), the area under the curve (AUC),
and F-score were extracted. Individual papers presented several baseline models for
comparing the performance with the actual proposed model. For review purposes, these
evaluation results were recorded for the best-performed baseline models. In some studies,
authors only reported a subset of the presented metrics. For some of the studies that
reported the performance metrics, we were able to recover the missing value of the metric
with the aid of the reported confusion matrix. In the reviewed papers, we additionally
gathered information on the evaluation strategy. The evaluation strategy included the
subdivision of the dataset into training, validation, and testing subsets. We looked at the
percentage proportion of the dataset splits. Another approach that we focused on during
the review was selecting information about the cross-validation approach to evaluate
the performance. These approaches most commonly included 5-fold and 10-fold cross-
validation procedures.

The actual review study excluded the papers in which an insufficient amount of
information on related classification performance metrics was presented. Among other
factors, we have not included, in the review, studies that only presented segmentation
results in their studies.

2.4. CNN Architecture

Our systematic review covers various aspects related to neural network structures,
including the CNN model, end-to-end learning, explainability, and transfer learning. We
examined the features of different CNN architectures, such as layerwise components,
parameter size, preprocessing algorithms, optimization techniques, and so on. Feature
representation methods helped us to gain insight into the manifold space by transforming
the non-linear and high-dimensional feature space into a subspace dimension where we
could visually observe the feature distribution for each class. In this context, explainable
models were essential to consider, as they allowed us to intuitively understand the CNN
decision by highlighting the contribution score on the input medical image at the pixel level.

Other crucial aspects of our survey were transfer learning and fine-tuning approaches.
Medical image data have high resolutions, but small sample sizes compared to the computer
vision domain, which could lead to overfitting or generalization problems. Transfer learning
has been reported to have a significant impact on knowledge transfer across domains, as it
allows for the sharing of equivalent convolution filters and the optimal setting of initial
parameters in the network, thus resulting in superior performance.

Therefore, our study includes relevant information regarding model explainability and
knowledge transfer perspective as well. The results of the included studies are summarized
in Table 1 (see Figure 1). Based on the reviewed papers, we compiled a comprehensive
table that summarizes the key details of the most notable approaches published before
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2022. The table includes the following information, which we believe represents the main
contributions of the reviewed studies:

• CNN architecture, i.e., the main underlying baseline model.
• Imaging modality, i.e., CT scan or X-ray.
• The prediction classes, i.e., COVID-19, normal, and pneumonia.
• Pre-processing steps, i.e., data augmentation, image processing methods, feature

extraction, and image segmentation.
• Explainability, i.e., the activation heatmaps and grad-CAM visualization.
• Availability of code.
• Performance evaluation metrics, including accuracy, sensitivity, specificity, F-score,

AUC, and others.
• Use of transfer learning techniques.
• Specific details of the datasets used.

The reviewed articles included a wide range of network architectures, with specific de-
scriptions of models and their fine-tuning parameters. The most widely used models were
ResNet-50, DenseNet-161, VGG-16, ConvLSTM, 3D ResNet-50, InceptionV3, and DenseNet-
201. These models were presented as backbone models or as modified architectures with
transformations to the model architecture or to the high-level optimization hyperparameters.

Deep learning is often considered a black box, because it is difficult to understand
how a neural network arrives at a certain classification choice. To gain insight into the
underlying features that contribute to the decision-making of neural networks, the authors
of the reviewed papers analyzed the output of the neural networks using visualization
methods that mapped regions of the input images. These methods allowed the prediction
score of each pixel in the image to be depicted, thus showing how it contributed to the
classification decision. The authors relied on techniques such as grad-CAM, AM, RISE,
and OS.
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Table 1. List of selected publications for CNN classification of CT/X-ray scans.

Publication Dataset CNN Architecture Performance Evaluation

Year Study Source Imaging Classes End-to-End Expl Structure TL Code Sens/Spec/PPV/NPV AUC F1 Acc.

2021 [11] QaTa-Cov19 CXR 4, BP, VP, N, C no/DA no CSEN yes no 0.98/0.95/0.64/0.99 - 0.77 0.95

2021 [12] SARS CoV-2 CT CT 2, C, N no/DA OS PF-BAT FKNN yes no 0.99/0.99/0.99/0.99 0.99 0.99 0.99

2021 [13] AIIMS CXR 2, C, N yes RISE CovidAid_V2 no yes 0.88/0.94/0.88/0.94 - 0.88 0.92

2021 [14] COVIDx CT-2A CT 3, C, P, N no/DA CAM ResNet-v2 yes no 0.98/0.99/0.98/0.99 - - 0.99

2021 [13] Shahid Beheshti
University of MS CT 2, C, N no/FE no NASNet no no 0.99/0.98/0.99/0.99 - 0.99 0.99

2021 [15] Yeungnam
University CT 2, P, C no/DA AM DA-CMIL no no 1/0.97/0.96/1 0.98 0.98 0.98

2021 [16] COVIDx CXR 3, C, P , N no/DA no RCoNet no no 0.97/0.98/0.97/- - 0.97 0.97

2021 [17] COVID-19 IDL,
RSNA, CXR DI CXR 3, C, P, N no/DA CAM ResNet50 yes no 0.92/0.97/0.98/- 0.98 - 0.94

2021 [18] Guangzhou, Hebei CT 2, C, N no/DA no ResUNet no no 0.91/0.90/0.89/0.92 0.90 - 0.91

2021 [19] Covid-ct-dataset,
Guangxi Univ. CT 2, C, N no/IP HM ResNet50 yes no 0.93/0.92/-/- 0.93 0.92 0.93

2021 [20] NLMMC CT 2, C, N no/DA no GARCD yes no 0.967/0.912/-/- 0.98 - -

2021 [21] Kaggle Chest X-ray CXR 2,C, N no/DA no COVINet no no 0.98/0.96/0.98/- 0.98 0.98 0.97

2021 [22] 6 Public datasets CT,CXR 2, C, N yes CAM MDA-BN no no 0.98/0.92/0.93/0.98 0.98 0.95 0.95

2021 [23] COVIDx, 5 US and
4 SK hospitals CXR 3, C, P, N no/SG AM DL CBIR no no 0.85/-/0.95/- 0.83 - 0.83

2021 [24] 4 CH, 2 GH, China CT 2, C, N no/IP no COVIDNet no yes 0.93/0.95/0.93/0.94 0.98 0.93 0.94

2021 [25] Jihan Infectious
Disease Hospital CT 2, C, P no/FE no DL-MLP no no 0.87/0.90/0.80/- 0.92 0.84 0.89

2021 [26] the Second
Xiangya Hospital CT 2, SC, nSC no/CR AM MIL no no 0.93/0.96/-/- 0.98 0.89 0.95

2021 [27] COVID chest X-ray,
Chest X-ray14 CXR 2, C, CP no/IP & DA CAM DenseNet-161 yes no 0.80/1/0.8/0.96 - 0.98 0.97
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Table 1. Cont.

Publication Dataset CNN Architecture Performance Evaluation

Year Study Source Imaging Classes End-to-End Expl Structure TL Code Sens/Spec/PPV/NPV AUC F1 Acc.

2021 [28] MosMed, LUNA16 CT 2, C, N no/IP CAM VGG16 yes no 0.97/0.82/0.79/0.97 - 0.89 0.88

2021 [29]

COVID-chest X-ray,
CoronaHack
COVID-19
radiography

CXR 3, N, P, C no/IP CAM DenseCapsNet no no 1.00/0.95/0.91/1.00 - 0.91 0.91

COVID-CT CT 0.94/0.99/0.99/0.96 0.96 0.98 0.98
2021 [30]

Covid Chest X-ray CXR
2, C, N no/DA no ConvLSTM no no

0.97/0.98/0.98/0.98 0.81 0.98 0.95

2021 [31] COVID-CT CT 2, C,N no/IP no DNN no no 0.94/0.96/0.96/0.95 - 0.95 0.95

2021 [32] COVID-19 RD CXR 2, C, N no/DA no CheXNet yes no 0.99/1.00/1.00/0.99 - 0.99 0.99

SIRM, COVID-19
X-ray CXR 0.92/0.97/0.89/0.96 - 0.90 0.93

2021 [33] COVID-CT,
Radiopedia CT

3, N, C, P no/DA HM EATC no no
0.86/0.97/0.90/0.89 - 0.88 0.87

2021 [34] Covid Chest Xray CXR 2, C, N no/FE no DWS-CNN no no 0.98/0.98/-/- - 0.98 0.98

2021 [35] Multi-center
dataset CT 2, C, N yes CAM 3D-CNN yes yes 0.90/0.98/0.96/0.94 0.88 0.93 0.88

2021 [36] UCSD (California) 505050
CXR 3, N, C, P no/IP no ANN no no 1.00/0.98/0.96/1.00 0.77 0.98 0.94

2021 [37] Wuhan Pulmonary
Hospital CT 2, SC, nSC yes AM 3D ResNet yes yes 0.86/0.88/-/- 0.92 - 0.88

2021 [38] Guangzhou W&C
MC CXR 4, N, C, BP, VP no no Res-CovNet yes no 0.97/-/0.97/- - 0.98 0.98

SARS-COV-2 CT 0.98/0.98/0.98/0.99 0.98 0.98 0.98
2021 [39]

Harvard Dataverse CT
2, C, N yes no

VGG-11+Inceptionv3+

WideResnet-50
yes yes

0.99/0.99/.0.98/0.98 0.98 0.98 0.98

2021 [40] Kaggle Chest X-ray CXR 3, N, P, C no no HOG+CNN no no 0.96/0.99/0.94/0.99 0.99 0.99 0.96

CC-CCII Dataset CT 0.90/0.90/-/- 0.89 - 0.93
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Table 1. Cont.

Publication Dataset CNN Architecture Performance Evaluation

Year Study Source Imaging Classes End-to-End Expl Structure TL Code Sens/Spec/PPV/NPV AUC F1 Acc.

2021 [41] COVID-19
IDL,HwaMei
Hospital

CXR
3, N, P, C no/IP AM CMT-CNN no yes

0.92/0.91/-/- 0.92 - 0.97

COVID-19 IDL,
Chest
X-ray-NIHCC

CXR 0.99/0.99/0.99/0.99 - 0.99 0.97

2021 [42] Curated X-ray
Dataset CXR

3, N, C, P yes no COVID-DeepNet no no
0.97/0.98/0.97/0.98 0.99 0.99 0.98

2021 [43] COVID-19 RD,
Mendeley CXR 3, C, VP, N no no Cov19-CNnet no no 0.94/0.96/0.98/1.00 - 0.94 0.98

2021 [44] BIMCV, COVIDx,
COVID-CXNet CXR 3, N, C, P no/IP CAM Fus-ResNet50 no no 0.95/0.99/0.94/0.99 - 0.95 0.95

2020 [45]
IEEE8023,
COVID-CT,
CORD-19

CT 2, C, N no/FE no DeepSense no no 0.97/0.97/-/- - 0.92 0.98

2020 [46] COVID-chestxray,
CORD-19 CXR 2, C, P no/SG & IP AM DarkNet-19 no yes 1.00/0.97/-/- - - 0.98

2020 [47] COVIDx-CT CT 3, NC,
NCP,CP no/CR no COVIDNet-CT no no 0.97/0.99/0.99/0.99 - 0.98 0.99

2020 [48]
Honghu and
Nanchang
hospitals

CT 3, NS, S, DP no/CR no ResNet34 yes yes 0.98/0.83/0.85/0.97 0.95 0.91 0.90

2020 [49] LIDC 505050
CT 2, N, C no/CR CAM DenseNet-121 no yes 0.91/0.93/0.85/0.95 0.94 0.88 0.90

2020 [50] COVID-19 CXR CT 3, N, C, P no/SG & CR HM VGG16 yes yes 0.91/0.93/-/- 0.89 0.91 0.88

2020 [51] COVID-chest X-ray CXR 3, C, P, N no/IP no Inception-V3 yes yes 1.00/0.99/0.99/0.99 - 0.99 0.99

COVID-chest X-ray CT 0.81/0.99/0.97/- 0.95 0.88 0.96
2020 [52] Daegu, South

Korea CT
2, N, C no/DA & IP no Xception yes no

0.95/0.88/0.94/0.91 0.92 0.94 0.95
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Table 1. Cont.

Publication Dataset CNN Architecture Performance Evaluation

Year Study Source Imaging Classes End-to-End Expl Structure TL Code Sens/Spec/PPV/NPV AUC F1 Acc.

2020 [53] COVID-19 X-ray CXR 2, N, C no/IP no OGA-ELM no yes 0.97/0.95/0.95/0.97 0.98 0.96 0.96

Wuhan People’s
Hospital CT 0.94/0.96/-/- 0.98 - -

2020 [54]
COVIDx CXR

3, C, P, NonP no/IP CAM COVNet yes yes
0.95/0.95/0.90/0.97 - 0.92 0.93

2020 [55] COVID-19 CT CT 2, C, N no/UNet SG no DensNet-201 yes yes 0.87/0.95/-/- 0.97 0.92 0.92

2020 [56] COVID chest X-ray CXR 3, C, N, P no/IP no ConvNet yes no 0.94/0.99/0.93/0.99 0.96 0.94 0.98

2020 [57] COVID chest X-ray CXR 3, N, P, C no/DA no VGG-16 no no 0.94/0.94/1.00/0.84 - 0.97 0.91

2020 [58] PACS Union
Hospital CT 2, C, N yes CAM DeCoVNet no yes 0.90/0.91/0.84/0.98 0.95 0.87 0.90
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3. Results
3.1. Definition of the Classification Target Classes

The presented models exhibited variability in target class definitions. The majority
of publications used two or three target classes, with COVID-19 (C) and non-COVID-19
(N) classes being the most commonly used. Some studies opted for four classes, thereby
aiming to distinguish between smaller subcategories of diseases. For instance, in their
work [38], the authors used a transfer learning approach based on the ResNet architecture to
classify chest X-ray images into four categories, namely, COVID-19 (C), non-COVID-19 (N),
bacterial pneumonia (BP), and viral pneumonia (VP). Some studies focused on pneumonia
cases and classified scan images into COVID-19 pneumonia (CP) versus non-COVID-19
pneumonia (nCP).

3.2. Overall Performance

The main tasks used to train CNN models included detecting, classifying, and seg-
menting chest CT and chest X-ray images of COVID-19 patients. Most studies defined
the classification problem as binary decoding, i.e., COVID-19 (C) vs. non-COVID-19
(N), and also used more specific disease definitions such as bacterial pneumonia (BP),
viral pneumonia (VP), COVID-19 pneumonia (CP), non-COVID-19 pneumonia (nCP),
COVID-19 stage (ML), medium COVID-19 stage (MD), severe stage of COVID-19 (SC),
and non-COVID-19 stage (N).

In our review, the evaluation factor performances ranged from 0.57 to 1.0 for sensitivity,
0.58 to 0.99 for specificity, 0.55 to 0.99 for positive predictive value (PPV), 0.67 to 1.0 for
area under the curve (AUC), and 0.7 to 1.0 for the F-score. There was inconsistency in using
the assessment phases, with most authors reporting using the training phase followed by
validation and testing. Others reported training and validation or training and testing only.
The proportion and volume of data used for each of these phases also varied widely.

Several authors reported high performance. For instance, Serte et al. [59] developed
a ResNet-50 deep learning model to detect COVID-19 in 3D chest CT scan images and
compared it with other deep learning models. The proposed ResNet-50 outperformed
all other models with a sensitivity of 100%, specificity of 0.98% (0.95), and AUC value of
96% for detecting COVID-19. Sharifrazi et al. [60] proposed a COVID-19 detection model
using X-ray images that were fed to a CNN deep learning model followed by ten-fold
cross-validation by an SVM classifier. The proposed CNN-SVM model with a Sobel filter
(CNN-SVM + Sobel) achieved the highest classification sensitivity of 100%, specificity of
95.23%, and accuracy of 99.02%.

3.3. Evaluation of DNN Architectures

Interestingly, only 20% of CNN studies implemented an end-to-end learning frame-
work, with many studies instead suggesting the use of diverse machine learning tech-
niques on raw imaging data, such as data augmentation (DA), feature extraction (FE),
segmentation (SG), or image processing (IP). Table 1 displays reported CNN architectures
that have demonstrated superior performance on certain datasets, including CNN and
its various modifications (Inception V3, Xception, ResNeXt, CFRCF, 2D-CNN, 3D-CNN,
ResNet-50, VGG-16, FBSED, EfficientNetB0-3, Inception_resnet_v2, Xception convolutional
auto-encoder neural network, DenseCapsNet (DenseNet + CapsNet), MWSR, CTnet-10,
AlexNet, CTnet-10, and CovidAid_V2).

In general, the authors reported improved classification accuracy by combining models
with advanced pre-processing methods, using an ensemble of classifiers, or employing
advanced fine-tuning to the model architecture. We can categorize the contributions that led
to superior performance in the reviewed studies into the following types: (1) Preprocessing
and data augmentation, (2) Transfer learning and fine-tuning, (3) Ensemble learning, etc.

Several studies combined two or more approaches in their works. For instance, in [61],
the authors used an ensemble of 15 pre-trained models (EfficientNets(B0-B5), NasNetLarge,
NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50,
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and Inception_resnet_v2) in conjunction with data augmentation (DA) for the binary
classification task of COVID-19 on a relatively small dataset.

3.4. Ensemble Learning

The purpose of an ensemble system is to correct errors made by other classifiers within
the system, and, thus, the diversity of the classifiers is crucial [62]. If all classifiers give the
same output, the ensemble system would provide no additional benefit. Therefore, it is
essential that the individual classifiers within an ensemble system make different errors in
different instances to reduce the total error by accounting for the different errors of each
classifier in the ensemble.

Several studies suggested and applied the ensemble learning approach to improve
classification accuracy [61,63]. This approach involves combining multiple distinct CNN
models to provide more reliable results. The results reported by these studies indicate that
the ensemble approach is highly successful in solving the COVID-19 classification problem.
One example of the success of the ensemble approach is that it can learn complex non-linear
boundaries by combining the classification results of several linear models. For instance,
one study used a stacked ensemble of CNN classifiers consisting of ResNet50, ResNet101,
VGG16, VGG19, Xception, MobileNetV1, MobileNetV2, DenseNet121, and DenseNet169
models and achieved 99.31% accuracy. In another study, the authors utilized a differ-
ent ensemble approach that calculated the fuzzy membership values of InceptionV3,
DenseNet121, and VGG19 classifiers.

3.5. Transfer Learning and Data Augmentation

There have been numerous DNN models used for COVID-19 detection, including
pre-trained and novel architectures. The former and the latter are the two most common
approaches for addressing the issue. When pre-trained features need to be preserved,
transfer learning is used by freezing the convolution part (in the case of a CNN) and
unfreezing the dense or classification part of the architecture. Several well-known CNN
architectures, such as ResNet, Inception, VGG, AlexNet, DenseNet, ConvNet, DarkNet,
3D-CNN, and LSTM, have been adapted using transfer learning for COVID-19 detection
(see Table 1) [64]. On the other hand, fine-tuning is used by freezing the classification
part of the architecture and unfreezing the convolution part of the model. Models such as
AlexNet, GoogleNet, and SqueezeNet were fine-tuned for COVID-19 detection [65].

The second most common approach is creating a new model specifically for COVID-
19 recognition. Models such as CSEn, PF-BAT FKNN, NASNet, DeepSense, DeCoVNet,
and ConvLSTM were proposed for the problem. Additionally, popular architectures such
as Xception with auto-encoder, DenseCapsNet (DenseNet + CapsNet), DWS-CNN+Deep
SVM, VGG-16+nCOV-NET, DenseNet-161+nCOV, ResNet-50+nCOV-NET, UNet+SCOAT,
27-layer 3D-CNN, MobileNetV2+FKNN, and MobileNetV2+FKNN were modified for
COVID-19 detection (see Table 1). However, according to Pham [65], the fine-tuned models,
such as AlexNet, GoogleNet, and SqueezeNet, outperformed new models proposed for
COVID-19 detection, such as CoroNet, CovidGAN, and DarkCovidNet.

Many studies employed additional pre-processing steps before feeding data into deep
CNN models, which typically provided better classification results. Data augmentation
(DA) methods were used in nearly half of the surveyed studies, with most reporting high
accuracy scores after their application. For example, authors [14] reported a 99% accuracy
for the ternary classification task (non-COVID-19, COVID-19, pneumonia) using ResNet-V2
architecture by applying a set of augmentations based on the random segmentation of
original scans to 480 ˆ 480 pixels, followed by random horizontal flips and normalization.
Additionally, many studies employed different approaches for lung segmentation, such as
the “snake” technique used by Saad et al. [66], which involves segmenting the lung section
to detach the pixels of interest from noise and other unnecessary areas.
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3.6. Explainability of CNN Model

To add transparency to the proposed models, the majority of reviewed papers im-
plemented visualization techniques. The gradient-weighted class activation mapping
(grad-CAM) [67] approach has been the most commonly used method for model explain-
ability. This approach utilizes the gradient information received by the last convolutional
layer in a CNN to comprehend the importance of each neuron during the decision-making
process [67].

In [12], the authors utilized the occlusion sensitivity (OS) method for visualization
purposes. According to the authors, this method provides a clear illustration of the lung re-
gions that are the most crucial for COVID-19 prediction. They concluded that the occlusion
sensitivity visualization method they used provided evidence of significant lung regions
clearly within the lungs, thereby avoiding sensitivity on corners or edges.

In [13], studies showed the effectiveness of RISE visualization when applied to X-ray
images. The results indicated that the RISE technique successfully emphasizes the changes
in lung X-ray images caused by COVID-19 infection.

Multiple studies in this survey paper used the activation map visualization technique.
In [15], the authors used a spatial activation map which, as they suggested, successfully
identified key areas relevant to infected regions in their proposed DA-CMIL model.

In [23], activation maps were also used to illustrate the infected lung regions. To demon-
strate the effectiveness of the method, they compared the images obtained using an acti-
vation map with the RALE score of those X-ray images. The RALE score represents the
severity of the disease. The authors concluded that the visual representation of infected
regions obtained by the activation map matched perfectly with the RALE score that had
been calculated.

Several papers reviewed did not provide a detailed description of the specific explain-
able model, and, thus, their approaches were marked as a heat map (HM). In 46% of the
papers, the visualization results were provided by highlighting the pixel-level confidence
score on the 2D-CXR or 3D-CT image. The heat maps in these studies showed convinc-
ing results, as the intra-zone and middle-zone of the pulmonary region have the greatest
influence on the decision process.

3.7. Performance Enhancement: Novel CNN Strategy

The heterogeneity of the dataset plays a crucial role in the classification performance
of state-of-the-art DNN models, as evidenced by the CC-CCII dataset [68]. The highest
accuracy achieved on this dataset was 93% by a certain CNN model [41], which is good,
but not the best result, for the same task compared to DNN models on other large datasets.
Our survey suggests that the differences in classifier performances are related to model
structure and resource availability.

To overcome the limitations of unimodal CNN architecture and achieve general per-
formance on diverse datasets, ensemble learning has been proposed. Ensemble learning
combines multiple distinct CNN models to represent complex non-linear features and
robust decision boundaries. The goal is to reduce total error by strategically combining the
model outputs, which is similar to the low pass filtering of noise. For example, one study
proposed a stacked ensemble of CNN classifiers consisting of ResNet50, VGG16, Xception,
MobileNetV1, and DenseNet169, while other studies used a different ensemble approach
by calculating the fuzzy membership values from InceptionV3, DenseNet121, and VGG19
models. Ensemble learning approaches have achieved superior performance compared to
a sole CNN model.

Recent studies have proposed various CNN approaches to boost performance by com-
bining several classification strategies and machine learning techniques. For instance, [69]
suggested transfer learning and parameter optimization to simultaneously classify X-ray
and CT images in a hierarchical architecture, and [61] proposed transferring an ensemble
of 15 pre-trained models with data augmentation techniques.
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Gupta et al. [70] claimed the effectiveness of CNN models and proposed COVID-
WideNet, which is a capsule network with 20 times fewer trainable parameters that are
computationally less expensive while preserving model performance. Feature optimization,
channel boosting, and recurrent units such as RNN or LSTM have also reported enhanced
performance in studies by [71] (Advanced Squirrel Search Optimization Algorithm), [72]
(CB-STM-RENet), and [73] (Gated Recurrent Unit).

3.8. Open COVID19 Dataset

Radiological images such as chest X-ray (CXR) and chest computed tomography
(CT) are often captured at different resolutions, with some of the most common being
512 ˆ 512, 580 ˆ 335, 333 ˆ 308, 299 ˆ 299, 1024 ˆ 1024, 333 ˆ 308, 1766 ˆ 1349, 224 ˆ 224,
and 1857 ˆ 1317. These images were obtained from various sources, including intrinsic
hospital data sets such as the Wuhan Pulmonary Hospital (China) [37], Honghu and
Nanchang hospitals (China) [48], National China Hospitals [68], municipal hospitals in
Moscow (Russia) [74], Sao Paulo hospitals (Brazil) [75], the Metropolitan Hospital of Lapa
(Brazil) [76], the Indiana University Hospital (USA) [77], and radiology hospitals (Italy) [78].

Additionally, the study utilized open datasets such as the “China Consortium of Chest
CT Image Investigation (CC-CCII) Dataset” [68], MosMedData [74], COVID-CT [79], SARS-
COV-2 CT Scan [75], Harvard Dataverse [76], LIDC-IDRI [80], iCTCF [81], three versions
of COVIDx-CT [47,82,83], COVID-19-CXR [84], COVID-19 RD [85], ChestX-ray8 [86], CXR
(COVID-19 and pneumonia) [84,87,88], CT [89], RSNA PDC [86], COVID-19 IDC [88],
CDGC [90], and SIRM [78]. Population information, gender ratio, sample size, classes,
resolution, and links to public datasets were extracted from the descriptions of these
datasets, as are summarized in Table 2.

The majority of datasets and codes are readily accessible and available (see Tables 1 and 2).
Among the surveyed datasets of CT and X-ray scans, the largest in terms of sample size
and patient populations were CC-CCII (with 411529 CT slices), CT (with 120968 chest X-ray
images), iCTCF (with 256356 CT slices), LIDC-IDRI (with 244527 CT slices), COVIDNet-CT
(with 194922 CT slices), COVIDx-CT (with 201103 CT slices), and ChestX-ray8 (with 112120
chest X-ray images).

A certain proportion of these datasets included a combined collection of images from
several open-source COVID-19-related or other pulmonary conditions datasets. For exam-
ple, the CT dataset consisted of multi-source chest X-ray data from the BIMCV, COVID-19
RD, and RSNA PDC datasets. Other large-scale dataset collections were mostly a product of
multi-hospital efforts to provide an appropriate and urgent solution to analyze the rapidly
growing scan collections within a certain country or region. For instance, the CC-CCII
(China Consortium of Chest CT Image Investigation) dataset included patient CT scans
from CC-Sun Yat-sen Memorial Hospital, the Third Affiliated Hospital of Sun Yat-sen Uni-
versity, the First Affiliated Hospital of Anhui Medical University, the West China Hospital,
the Nanjing Renmin Hospital, the Yichang Central People’s Hospital, and the Renmin
Hospital of Wuhan University in China.
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Table 2. CT/X-ray public datasets and state-of-the-art performance.

Link Name Origin Type Resolution N. Patients Classes Sample Size H.Per. CNN Model

[68] CC-CCII National hospitals (China) CT 512 ˆ 512 2742 3; C, P, N 411,529 0.93 CMT-CNN [41]

[74] MosMedData Municipal hospitals in Moscow (Russia) CT 512 ˆ 512 1110 4; ML, MD, SC,
CC, N - 0.88 ED-VGG16 [28]

[79] COVID-CT medRxiv and bioRxiv (USA) CT 1853 ˆ 1485 216 2; C, N 812 0.98 ConvLSTM [30]
[75] SARS-COV-2 CT Scan Sao Paulo hospitals (Brazil) CT 327 ˆ 307 1252 2; C, N 2481 0.99 PF-BAT FKNN [12]

[76] Harvard Dataverse HSPM (Brazil),
Metropolitan Hospital of Lapa (Brazil)

CT - 210 3; C, N, OLI 4173 0.98 VGG-11+Inceptionv3+
WideResnet-50 [39]

[80] LIDC-IDRI Combined: NCI (Malaysia),
FNIH and FDA (USA)

CT 512 ˆ 512 1010 4; nonP, CAP,
Infl, C 244,527 0.90 DenseNet-121 [49]

[47] COVIDx CT 1
CNCB (China),
ITAC (Canada),
LIDC-IDRI,
Radiopaedia (Australia)

CT 512 ˆ 512 3745 3; N, CP, nonCP 194,922 0.99 ResNet-v2 [14]

[81] iCTCF HUST-UH/HUST-LH (China) CT 512 ˆ 512 1170 3; SC, nSC, N 256,356 0.98 GARCD [20]

[82] COVIDx-CT
CNCB (China),
ITAC (Canada),
LIDC-IDRI,
Radiopaedia (Australia)

CT 512 ˆ 512 4501 3; N, CP, nonCP 201,103 0.99 ResNet-v2 [14]

[91] BIMCV-COVID19 Medical Imaging Databank
in Valencian Region MIB (Spain)

CT
CXR

- 1354 3; UD, N, P 23,527 0.95 MDA-BN [22]

[84] COVID-19 CXR BMJ, Doctors Without Borders,
Mount Sinai Health System (Canada)

CXR 1594 ˆ 1600 48 3; C, P, N 55 0.96 Xception [52]

[85] COVID-19 RD
SIRM (Italy), COVID-19 IDC (Canada),
PadChest (Spain), RSNA (USA),
COVID-CXNet

CXR 299 ˆ 299 - 3; C, N, VP 3615 0.99 CheXNet [32]

[86] ChestX-ray8 National Institute of
Health Clinical Center (USA)

CXR 1024 ˆ 1024 30,805 3; C, P, N 112,120 0.99 COVID-DeepNet [42]

[87] OCTaCXRI Guangzhou Women and Children’s
Medical Center (China)

CXR different - 2; P, N 5856 0.98 Res-CovNet [38]
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Table 2. Cont.

Link Name Origin Type Resolution N. Patients Classes Sample Size H.Per. CNN Model

[92] Curated X-Ray
Dataset

Indian Institute of Science,
PES Uni., Ramaiah IT (India),
Concordia Uni. (Canada)

CXR 479 ˆ 479 - 4; C,N,VP,BP 9208 0.98 DenseNet [93]

[94]
[84,88]

CXR (COVID-19
& Pneumonia)

COVID-19 IDC (Canada),
Mendeley (UK),
COVID-19 CXR (Canada)

CXR 386 ˆ 386 - 3; C, P, N 6432 0.96 HOG+CNN [40]

[77] Open-i CXR Indiana University Hospital (USA) CXR - - 2; CovidP, OP 7470 0.97 DenseNet-161 [27]

[89] CT
BIMCV (Spain),
RSNA PDC (USA),
COVID-19 RD (Bangladesh)

CXR 224 ˆ 224 - 4; C,N,VP,BP 120,968 0.95 CSEN [11]

[86] RSNA PDC Radiological Society of
North America (USA)

CXR - 11,254 3; N, NLO, LO 26684 0.94 ResNet50 [17]

[83] COVIDx CT 2
SIRM (Italy), COVID-19 IDC (Canada),
Radiopaedia (Australia),
COVID-19 CXR (Canada),
Hannover Uni. (Germany)

CXR 859 ˆ 730 4501 3; CP,CAP,N 201,103 0.95 Fus-ResNet50 [44]

[84,88]
[84,95]
[86]

COVIDx
COVID-19 IDC (Canada), MIDRC (USA),
Actualmed (Spain), COVID-19 RD,
RSNA PDC (USA), COVID-19 CXR (Canada)

CXR - 15100 2; C, NC 16,000 0.97 RCoNet [16]

[88] COVID-19 IDC
Radiopaedia (Australia), SIRM (Italy),
RSNA PDC (USA), Eurorad (Germany),
Coronacases (China), COVID-19 CXR (Canada)

CXR 604 ˆ 499 412 2; C, P 679 0.98 DWS-CNN [34]

[90] COVID-19 PL CXR I unreported CXR - - 2; C, N 98 0.97 COVINet [96]
[90] CDGC unreported CXR - - 2; VP, BP 79 0.97 COVINet [96]
[78] SIRM Radiology Hospitals (Italy) CXR 356 ˆ 338 115 1; C 450 0.93 DAM [33]
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New variants of the SARS-CoV-2 virus have emerged in addition to the original strain
causing COVID-19. The most prevalent ones are the delta variant, which emerged in late
2020, and the omicron variant, which emerged in late 2022. While all currently available
datasets provide CT and CXR images of typical COVID-19 disease, there is a dearth of
datasets featuring its variants. In one study [97], an open-access dataset featuring two
classes of data—CT scans [98] and X-rays [99]—of the delta and omicron variants was
used. For the initial phase of their framework, the researchers used an X-ray database
obtained from Kaggle [100,101], along with a limited local database to test it. They also
collected a comprehensive database of CT scan images from the radiology centers of Tehran
University Hospitals to train and test the model’s second phase, thereby making it entirely
native. The definitive status of the cases in this dataset was determined after conducting
PCR tests. Another dataset featuring CT scan images of children with delta variant cases
is available upon contacting the corresponding author of the paper [102], but it is not
open-access. In their study, the authors analyzed delta variant cases in children without
using CNN classification.

3.9. Review of the Validity and Applicability of the DL Models

The majority of studies across all specialties were deemed high risk according to the
’Quality Assessment of Diagnostic Accuracies Studies 2’ (QUADAS-2) due to significant
deficiencies in patient selection, flow, and timing. The PROBAST assessment tool [103]
also revealed that all included studies had a high risk of bias, thereby indicating that the
model’s performance in practice may be lower than reported. Most studies did not provide
specific details about patients and interventions, thus resulting in a high-risk rating for the
participant domain.

4. Discussion and Conclusions

From the original articles analyzed in this systematic review, automated AI-aided
radiological image interpretation has become increasingly useful in highly active and
low-resource clinical settings. The reviewed models demonstrated high performance and
reliability in detecting pulmonary manifestations of COVID-19 and their differentiations
from non-COVID-19 pneumonia.

This study aimed to (1) estimate the diagnostic or/and predictive performance of
DL algorithms to identify distinct radiological features of the pulmonary manifestation of
COVID-19 using chest CT and chest X-ray images; and to (2) review the variation in the
study reporting DL in radiological diagnosis in the published studies. We found that DL
algorithms demonstrate a high diagnostic and predictive performance and are acceptable to
be used in clinical settings. The high diagnostic and predictive accuracy of DL approaches
was identified in all articles, thus suggesting that DL algorithms can be deployed and used
for assistance in overloaded clinical settings.

DL models can provide valuable support to doctors in making an accurate diagnosis
and facilitate heavy workloads, especially when the healthcare system is overloaded or in
resource-constrained regions with a shortage of radiologists [104]. However, the diagnostic
accuracy of DL is not significantly higher compared with experienced radiologists. The time
spent per CT image interpretation and description was 10 s per scan, while experienced
radiologists spent about 10 min for the same task [104].

One study showed that it was feasible to rapidly develop reliable lung segmentation
for COVID-19 using deep CNN. Satisfactory results were achieved with less than 50
cases used for training. Deep CNN was successful in developing the fully automated
quantification of pulmonary manifestations of COVID-19. The authors trained the deep
CNN-based segmentation algorithm and implemented a threshold-based quantification
assessing lung opacity load into the clinical practice [105].

One research group tested the performance of 17 neural networks including AlexNet,
ResNet-50, DarkNet-53, DarkNet-19, SqueezNet, GoogleNet, Place365-GoogLeNet, MobileNet-
v2, ShuffleNet, NasNet-Mobile, Xception, Inception-ResNet-v28, Inception-v3, DenseNet-
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201, ResNet-18, VGG-19, and ResNet-101. The authors reported that DarkNet-19 outper-
formed other neural networks in the interpretation of chest X-ray imaging of COVID-19
patients. DarkNet-19 achieved an accuracy value of 94.28% on 5854 X-ray images [106].

The next research group developed a multiple-instance learning method (based on
a deep learning method) to accurately predict the disease severity of COVID-19 using
quantitative CT data. This model was efficient in identifying patients at high risk for
progression in the early phase of COVID-19, which was useful in preventing disease
progression and decreasing mortality. The authors recommended that COVID-19 patients
undergo CT screening after admittance to the hospital to identify patients at high risk
before disease progression [48].

COVIDNet-CT is a deep CNN architecture customized for the detection of pulmonary
injury in COVID-19 patients using chest CT images through machine-driven design. The au-
thors created COVIDx-CT, a CT image dataset containing 104,009 images from 1489 pa-
tients [47]. Nevertheless, because of high heterogeneity across studies, there was substantial
uncertainty of the diagnostic accuracy estimates.

Although CT scanning has shown high performance in the diagnosis of COVID-19,
chest X-ray also has many benefits. Thus, it is an easily available approach that can assist
radiologists in emergency clinical settings and those widely used worldwide throughout
the pandemic. The model has been reported to diagnose COVID-19 for several seconds.
Despite the high performance of CT, it is expensive and not widely accessible in low-
resource settings. Moreover, the dose of radiation is higher in CT.

Chest X-rays can enable the rapid triaging of patients with pulmonary manifestation
and can be performed simultaneously with other laboratory tests to assist medical staff
in identifying COVID-19 patients among the large numbers of patients [107]. Existing
evidence showed that the chest X-ray plays a fundamental role in the diagnosis of COVID-
19. Although the radiological features of pulmonary manifestations in COVID-19 patients
and non-COVID-19 pneumonia may have some similarities, key radiological patterns allow
clinicians to differentiate between these two diseases [107].

Chest X-rays patterns in COVID-19 patients include (1) ground-glass opacities (usually
bilateral, multifocal, peripheral subpleural, medial, basal, and posterior location), (2) a
crazy paving appearance (ground-glass opacities with inter- or/and intra-lobular septal
thickening), (3) traction bronchiectasis, (4) air space consolidation, and (5) bronchovascular
thickening (in the lesion). Chest X-ray features of pneumonia include (1) ground-glass
opacities (however, they are opposite to COVID-19 central distribution and unilateral),
(2) distribution more along the bronchovascular bundle, (3) vascular thickening, (4) reticular
opacity, and (5) bronchial wall thickening. A wide variety of models and solutions have
been proposed. One of the proposed models was completely automated and did not require
manual feature extraction. The reported accuracy was 98.08% for binary and 87.02% for
multi-class tasks [107]. The best and the most commonly used framework for automated
classification and detection of the pulmonary manifestations of COVID-19 using chest CT
and chest X-ray is the detection and classification CNN.

Chest X-rays are mostly used for detection, while CT scans are mostly used for classi-
fication tasks. The segmentation of radiological patterns is primarily executed using CT
scans [108]. Transfer learning has been used to accelerate model learning and diminish the
requirement for large training data sets by using pre-trained CNN models [108]. Sekeroglu
et al. demonstrated that a CNN with minimized fully connected convolutional layers was
capable of identifying COVID-19 within two classes with mean ROC AUC scores of higher
than 96.0% [56].

Dansana et al. also achieved high performance of the models by using the least
computationally intensive deep learning architecture models to detect COVID-19 on chest
X-ray images. The VGG-16 model achieved the highest precision of 100% [57]. The next
group developed and assessed an AI model using a large dataset including more than ten
thousand CT volumes from patients with different pulmonary pathologies (COVID-19,
non-COVID-19 viral pneumonia, such as influenza-A/B, non-viral community-acquired
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pneumonia, and non-pneumonia). This deep CNN model achieved an area under the curve
on two publicly available datasets of 92.99% on CC-CCII and 93.25% on MosMedData.
The AI model outperformed radiologists [109].

Heidari et al. developed a transfer deep-learning-based CNN model to classify pul-
monary involvement in COVID-19 patients using chest X-ray images. The image prepro-
cessing generated better input image data for developing deep learning models. The au-
thors achieved high classification performance, which can be further optimized to detect
COVID-19 cases and validated using large and diverse image datasets [110].

The next research group used a decision fusion approach combining the predictions of
each of the individual deep CNN models to improve the predictive performance. Such an
approach achieved an F1-Score of 0.853 and ROC AUC of 0.824 and reduced false positives.
The performance of this model could be further boosted by applying image augmentation
transfer learning and feature level fusion [111].

Afshar et al. developed and evaluated a capsule network framework for the diagnosis
of COVID-19 using X-ray images. The framework consisted of several capsules and
convolutional layers. The model achieved excellent performance with a low number of
used parameters. The pre-training process improved the accuracy, specificity, and AUC.
The model achieved a sensitivity of 90%, a specificity of 95.8%, an accuracy of 95.7%, and an
area under the curve of 0.97. The model is publically available [112].

Jin et al. developed an AI system consisting of five main networks: (1) pulmonary
segmentation, (2) slice diagnosis, (3) COVID-infectious slice location, (4) visualization,
and (5) image phenotype analysis [109]. The system showed excellent performance on
the test sets, with an AUC of 0.9745 for COVID-19, 0.9804 for community-acquired pneu-
monia, 0.9885 for influenza, and 0.9752 for non-pneumonia. Moreover, for diagnosing
COVID-19, the sensitivity was 0.8703, the specificity was 0.9660, and the multi-way AUC
was 0.9781. The authors also performed radiomics 36 feature extraction from the atten-
tional regions and identified 665-dimensional imaging features to find the twelve most
discriminative features to differentiate COVID-19 from other types of pneumonia. However,
there was no significant difference in radiomics features in differentiating influenza from
COVID-19 [109].

Although hypoxemic COVID-19 patients share the same etiologic factor (SARS-CoV-
2), for severely hypoxemic patients, despite sharing a single etiology (SARS-CoV-2), their
pulmonary manifestations can be quite different from one another. The spectrum of
respiratory failure can vary from normal breathing (“silent” hypoxemia) to markedly
dyspneic, as well as from responsive to certain treatments, such as nitric oxide or prone
positioning, to not. Therefore, even the same disease can be characterized by heterogeneous
clinical manifestation. The same disease actually presents itself with impressive difference.
Two phenotypes (L and H) were proposed, which are best differentiated by CT. Therefore,
artificial intelligence can potentially be useful in phenotype identification and can assist in
understanding pathophysiology, which is crucial to establish appropriate treatment [113].
Even though PCR is being used globally for COVID-19 diagnostics and tracking, CCT
processed by CNN showed much better diagnostic accuracy. Thus, Lacerda et al. developed
a CNN model that achieved a sensitivity of 97%, precision of 82%, and an accuracy of
88%, thereby outperforming the diagnostic accuracy of human experts (72%) based on CCT
interpretation and the sensitivity of the PCR tests (53–88%) [28].

4.1. Limitations of CNN in COVID-19 Detection

A majority of studies did not perform an external validation of the algorithm on a
separate test dataset and used results from the internal validation data. This might have
led to an overestimation of the diagnostic performance. The overfitting was well described
across many studies [111].

Although some studies reported high model performance values, they had been
validated (tested) using the intrinsic database, whereas the true performance value of
the algorithms can be ultimately concluded after the use of external validation (test) on
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separate external test datasets with previously unused data from representatives of the
target population. Another limitation was an imbalance between the study groups, as well
as a small sample size of the severe patients included in the study [114].

CNN models require large datasets that have all possible variants of data for achieving
the highest accuracy. The shortage of available datasets is a barrier to their training.
A majority of models have been trained and validated on small datasets [108]. To counteract
the inefficiency of the training datasets and increase their size, several authors reported
using GAN models for data augmentation. Such data augmentation made the model
more robust to overfitting [108]. Another limitation includes the so-called “black box”,
which is the basic feature of deep neural networks. Even though attention maps assist in
interpretation by highlighting the dominant areas, they are not fully sufficient to visualize
the unique features used by CNNs to differentiate between COVID-19 and non-COVID-19
pneumonia. Since the majority of studies primarily focused on radiological diagnostics
(chest CT and X-ray), clinical information was not included [108].

There was also an extensive variation in the terminology, study methodology, data
interpretability, and outcome. It was very difficult to formally assess the performance
of algorithms due to the variation in reporting. The variability in study methodology
and reporting can be partially explained by the fact that these studies were conducted by
researchers from different specialties, including medical specialists (intensivists, emergency
physicians, pulmonologists, radiologists), information technology specialists, and engineers.
Therefore, the study goals and the experience of researchers also varied from study to study.
Even though DL algorithms showed high diagnostic accuracy in medical imaging, it is, at
present, difficult to determine if they are fully applicable in real clinical settings.

4.2. Potential for Future Research

The presence of large image datasets is necessary to improve generalizability and
limit overfitting in training CNNs. Although techniques have improved learning on small
datasets, large medical datasets are essential. The majority of achievements of CNNs are
mainly based on a large amount of data.

Therefore, creating large datasets of radiological images is one of the main challenges
that must be addressed by the research community of clinicians and computer scientists,
as well as hospital administrators and other staff involved in AI research. Although
building large clinical datasets is expensive and requires enormous work by specialists,
an international collaborative effort of the medical network is necessary to advance this field.
Such collaborative work should follow common guidelines for the systematic acquirement
and annotation of radiological images without interfering with the clinical routine [115].

Medical datasets should ideally be annotated by certified radiologists, and this process
is very time-consuming. Applications such as GTCreator [116] can contribute to ground
truth creation and facilitate image annotations, sharing, and revising conclusions among
different radiologists [115]. It is generally recommended to establish a bootstrapping
methodology for testing sets, indicating the number of images, which images should be
considered in each iteration, and the sample size and repetitions [115]. Further improve-
ment of the diagnostic performance of the DL models could be achieved of including
clinical and laboratory data.

Building large clinical datasets is expensive and requires enormous work by specialists.
It is an essential procedure in the DNN approach for model reliability. The international
collaborative effort of the medical network is necessary to advance this field. A more
effective method is to use a generative adversarial network for generating new CT/CXR
images that can contribute to the continuation of the network learning.

While numerous models have been developed, the inter-exchange of data between the
sources would result in achieving better performance. Moreover, the customization of these
models according to the local patient population using regionally collected data would also
improve the models’ performance. Finally, the most important task for the future would be
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shifting from research-based model development and testing to actual implementation and
continuation of testing such models in the real-world environment.

Although deep learning is currently one of the fastest developing fields in medicine
with the potential to improve the diagnosis of pulmonary manifestations in COVID-19
patients, some conclusions about its superiority over clinicians seem to be over-promising.
Moreover, since the beginning of the pandemic, hundreds of studies have been conducted;
however, the evidence on the implementation of deep learning models into real-world
clinical settings and the assessment if their value is still missing. Almost all studies
reported excellent performance, and some of them even outperformed certified radiologists
in making image-based diagnoses. However, many studies either did not describe exactly
how they assessed DL models against doctors, or the process of assessment was not rigorous
enough to support the conclusions. One study reported the opinions of radiologists about
the DL models, but these opinions were rather subjective and not standardized. Despite
there being a massive explosion of research focusing on DL in the diagnosis of COVID-
19, there is not enough evidence of the actual deployment of these models in clinical
practice. A few questions should be addressed before these models get actively used in
clinical practice:

1. Can these models actually take over radiologist, or should their usage be strictly
limited to a doctor’s assistantship, second opinions, or double-checking?

2. How deeply can healthcare workers rely on these models depending on the level of
hospital and doctor availability? Can these models be used without the radiologist’s
opinion or only in the case that the radiologist is absolutely unavailable? Or, in this
case, should a radiologist definitely double-check the model-made diagnosis?

3. Can these models be used in the region where a particular model has not been
validated or accustomed?

Therefore, the conduction of high-quality studies with transparent reporting of the
results is necessary to avoid hype, assist healthcare workers, and reduce or avoid harm to
patients. Future research should be focused on post-deployment, region-specific validation,
and safety in clinical settings. The additional potential pathway that should be considered for
achieving advancements in the field is solving patients’ privacy and ethical requirements.
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