Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 28 July 2022).
- Painter, G.R.; Natchus, M.G.; Cohen, O.; Holman, W.; Painter, W.P. Developing a direct acting, orally available antiviral agent in a pandemic: The evolution of molnupiravir as a potential treatment for COVID-19. Curr. Opin. Virol. 2021, 50, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Tchesnokov, E.P.; Schinazi, R.F.; Götte, M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J. Biol. Chem. 2021, 297, 100770. [Google Scholar] [CrossRef] [PubMed]
- Kabinger, F.; Stiller, C.; Schmitzová, J.; Dienemann, C.; Kokic, G.; Hillen, H.S.; Höbartner, C.; Cramer, P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 2021, 28, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Zhou, S.; Hill, C.S.; Sarkar, S.; Tse, L.V.; Woodburn, B.M.D.; Schinazi, R.F.; Sheahan, T.P.; Baric, R.S.; Heise, M.T.; Swanstrom, R. β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. J. Infect. Dis. 2021, 224, 415–419. [Google Scholar] [CrossRef]
- Food and Drug Administration. Fact Sheet for Healthcare Providers: Emergency Use Authorization For LAGEVRIO™ (molnupiravir) Capsules. Available online: https://www.fda.gov/media/155054/download (accessed on 21 July 2022).
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- McCreary, E.K.; Bariola, J.R.; Wadas, R.J.; Shovel, J.A.; Wisniewski, M.K.; Adam, M.; Albin, D.; Minnier, T.; Schmidhofer, M.; Meyers, R.; et al. Association of Subcutaneous or Intravenous Administration of Casirivimab and Imdevimab Monoclonal Antibodies With Clinical Outcomes in Adults With COVID-19. JAMA Netw. Open 2022, 5, e226920. [Google Scholar] [CrossRef]
- Streinu-Cercel, A.; Săndulescu, O.; Preotescu, L.L.; Kim, J.Y.; Kim, Y.S.; Cheon, S.; Jang, Y.R.; Lee, S.J.; Kim, H.K.; Chang, I.; et al. Efficacy and Safety of Regdanvimab (CT-P59): A Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Trial in Outpatients With Mild-to-Moderate Coronavirus Disease 2019. Open Forum. Infect. Dis. 2022, 9, ofac053. [Google Scholar] [CrossRef]
- Dougan, M.; Azizad, M.; Chen, P.; Feldman, B.; Frieman, M.; Igbinadolor, A.; Kumar, P.; Morris, J.; Potts, J.; Baracco, L.; et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. MedRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Chen, R.E.; Zhang, X.; Case, J.B.; Winkler, E.S.; Liu, Y.; VanBlargan, L.A.; Liu, J.; Errico, J.M.; Xie, X.; Suryadevara, N.; et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 2021, 27, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M.L.; Pruijssers, A.J.; Chappell, J.D.; Gribble, J.; Lu, X.; Andres, E.L.; Bluemling, G.R.; Lockwood, M.A.; Sheahan, T.; Sims, A.C.; et al. Small-Molecule Antiviral β-d- N 4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance. J. Virol. 2019, 93, e01348-19. [Google Scholar] [CrossRef] [Green Version]
- Grobler, J.; Strizki, J.; Murgolo, N.; Gao, W.; Cao, Y.; Zhang, Y.; Du, J.; Nair, M.; Huang, Y.; Luo, Y.; et al. 543 Molnupiravir Maintains Antiviral Activity Against SARS-CoV-2 Variants In Vitro and in Early Clinical Studies. Open Forum. Infect. Dis. 2021, 8, S373. [Google Scholar] [CrossRef]
- Merck. Merck and Ridgeback’s Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study. Available online: https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approximately-50-percent-compared-to-placebo-for-patients-with-mild-or-moderat/ (accessed on 21 June 2022).
- Medicines and Healthcare Products Regulatory Agency. Regulatory Approval of Lagevrio (molnupiravir). Available online: https://www.gov.uk/government/publications/regulatory-approval-of-lagevrio-molnupiravir (accessed on 8 June 2022).
- Mahase, E. COVID-19: UK becomes first country to authorise antiviral molnupiravir. BMJ 2021, 375, n2697. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain (accessed on 8 June 2022).
- European Medicines Agency. EMA Issues Advice on Use of Lagevrio (molnupiravir) for the Treatment of COVID-19. Available online: https://www.ema.europa.eu/en/news/ema-issues-advice-use-lagevrio-molnupiravir-treatment-covid-19 (accessed on 8 June 2022).
- Hayashi, K. Molnupiravir might be dangerous without clarification of its indications. BMJ 2022, 377, o1030. [Google Scholar] [CrossRef] [PubMed]
- Brophy, J.M. Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M. Re: Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. Available online: https://www.bmj.com/content/376/bmj.o443/rr-1 (accessed on 24 November 2022).
- Etminan, M. Re: Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. Available online: https://www.bmj.com/content/376/bmj.o443/rr-0 (accessed on 24 November 2022).
- Hama, R. Re: Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. Available online: https://www.bmj.com/content/376/bmj.o443/rr (accessed on 24 November 2022).
- Thorlund, K.; Sheldrick, K.; Meyerowitz-Katz, G.; Singh, S.; Hill, A. Making Statistical Sense of the Molnupiravir MOVe-OUT. Clin. Trial. Am. J. Trop Med. Hyg. 2022, 106, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Adverse Event Reporting System (FAERS) Public Dashboard. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (accessed on 16 June 2022).
- Alomar, M.J. Factors affecting the development of adverse drug reactions. Saudi Pharm. J. 2014, 22, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavan, A.H.; Gallagher, P. Predicting risk of adverse drug reactions in older adults. Adv. Drug Saf. 2016, 7, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Puenpatom, A.; Moncada, P.A.; Burgess, L.; Duke, E.R.; Ohmagari, N.; Wolf, T.; Bassetti, M.; Bhagani, S.; Ghosn, J. Effect of Molnupiravir on Biomarkers, Respiratory Interventions, and Medical Services in COVID-19: A Randomized, Placebo-Controlled Trial. Ann. Intern. Med. 2022, 175, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev Med. Hyg. 2020, 61, E304–E312. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls Publishing: Treasure Island, CA, USA, 2022. [Google Scholar]
- UpToDate. COVID-19: Clinical Features. Available online: https://www.uptodate.com/contents/covid-19-clinical-features (accessed on 10 August 2022).
- National Institutes of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf (accessed on 12 December 2022).
- Yücel, H.E. A case of acute renal failure with COVID-19 under Molnupiravir treatment. Med. Sci. Discov. 2022, 9, 371–374. [Google Scholar] [CrossRef]
- Tarnawski, A.S.; Ahluwalia, A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J. Gastroenterol. 2022, 28, 275–289. [Google Scholar] [CrossRef]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef]
- Graham, E.L.; Koralnik, I.J.; Liotta, E.M. Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics 2022, 19, 1435–1466. [Google Scholar] [CrossRef]
- Louis, D.W.; Saad, M.; Vijayakumar, S.; Ilyas, S.; Kokkirala, A.; Aronow, H.D. The Cardiovascular Manifestations of COVID-19. Cardiol Clin. 2022, 40, 277–285. [Google Scholar] [CrossRef]
- Hashemian, S.M.R.; Jamaati, H.; Khalili-Pishkhani, F.; Roshanzamiri, S.; Eskandari, R.; Shafigh, N.; Ahmadi, A.; Dastan, F. Molnupiravir in Combination with Remdesivir for Severe COVID-19 Patients Admitted to Hospital: A Case Series. Microbes Infect. Chemother. 2022, 2, e1366. [Google Scholar] [CrossRef]
Age | Sex | Subtotal | % | Total | % |
---|---|---|---|---|---|
12–17 years | Female | 0 | 0.00 | 3 | 0.49 |
Male | 0 | 0.00 | |||
Unknown | 3 | 0.49 | |||
18–64 years | Female | 79 | 12.91 | 164 | 26.80 |
Male | 84 | 13.73 | |||
Unknown | 1 | 0.16 | |||
65–85 years | Female | 112 | 18.30 | 241 | 39.38 |
Male | 126 | 20.59 | |||
Unknown | 3 | 0.49 | |||
85+ years | Female | 68 | 11.11 | 119 | 19.44 |
Male | 46 | 7.52 | |||
Unknown | 5 | 0.82 | |||
Not Specified | Female | 42 | 6.86 | 85 | 13.89 |
Male | 25 | 4.08 | |||
Unknown | 18 | 2.94 | |||
Total | 612 | 100 | 612 | 100 |
Adverse Events | N | % |
---|---|---|
COVID-19 | 62 | 4.91 |
Diarrhoea | 57 | 4.51 |
Rash | 36 | 2.85 |
Nausea | 29 | 2.30 |
COVID-19 Pneumonia | 22 | 1.74 |
Maternal Exposure During Pregnancy | 22 | 1.74 |
Vomiting | 22 | 1.74 |
Dizziness | 21 | 1.66 |
Pneumonia | 19 | 1.50 |
Drug Ineffective | 17 | 1.35 |
Urticaria | 16 | 1.27 |
Pyrexia | 16 | 1.27 |
Feeling Abnormal | 15 | 1.19 |
Oxygen Saturation Decreased | 13 | 1.03 |
Death | 13 | 1.03 |
Pneumonia Aspiration | 12 | 0.95 |
Decreased Appetite | 12 | 0.95 |
Abdominal Pain | 12 | 0.95 |
Headache | 12 | 0.95 |
Condition Aggravated | 10 | 0.79 |
Drug Eruption | 9 | 0.71 |
Dehydration | 9 | 0.71 |
Dysphagia | 9 | 0.71 |
Pruritus | 9 | 0.71 |
Asthenia | 8 | 0.63 |
Dyspnoea | 7 | 0.55 |
Erythema | 7 | 0.55 |
Syncope | 7 | 0.55 |
Malaise | 6 | 0.48 |
Loss Of Consciousness | 6 | 0.48 |
Haematochezia | 5 | 0.40 |
Cough | 5 | 0.40 |
Seizure | 5 | 0.40 |
Tremor | 5 | 0.40 |
Pain | 5 | 0.40 |
Feeding Disorder | 4 | 0.32 |
Depressed Level Of Consciousness | 4 | 0.32 |
Bradycardia | 4 | 0.32 |
Hypotension | 4 | 0.32 |
Pancytopenia | 4 | 0.32 |
Insomnia | 4 | 0.32 |
Renal Impairment | 4 | 0.32 |
Cardiac Arrest | 4 | 0.32 |
Eczema | 3 | 0.24 |
International Normalised Ratio Increased | 3 | 0.24 |
Rash Pruritic | 3 | 0.24 |
Melaena | 3 | 0.24 |
Sepsis | 3 | 0.24 |
Pneumonia Bacterial | 3 | 0.24 |
Pallor | 3 | 0.24 |
Flushing | 3 | 0.24 |
Wheezing | 3 | 0.24 |
Deafness Unilateral | 3 | 0.24 |
Altered State Of Consciousness | 3 | 0.24 |
Burning Sensation | 3 | 0.24 |
Hallucination | 3 | 0.24 |
Rash Erythematous | 3 | 0.24 |
Respiratory Disorder | 3 | 0.24 |
Off Label Use | 3 | 0.24 |
Vision Blurred | 3 | 0.24 |
Blood Pressure Increased | 3 | 0.24 |
Arrhythmia | 3 | 0.24 |
Hepatic Function Abnormal | 3 | 0.24 |
Hypertension | 3 | 0.24 |
Neutropenia | 3 | 0.24 |
Fatigue | 3 | 0.24 |
Hyperhidrosis | 3 | 0.24 |
Palpitations | 3 | 0.24 |
Abdominal Pain Upper | 3 | 0.24 |
Chest Pain | 3 | 0.24 |
Abdominal Distension | 3 | 0.24 |
Cardiac Failure | 3 | 0.24 |
Pain In Extremity | 3 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi Laurini, G.; Montanaro, N.; Motola, D. Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data. J. Clin. Med. 2023, 12, 34. https://doi.org/10.3390/jcm12010034
Santi Laurini G, Montanaro N, Motola D. Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data. Journal of Clinical Medicine. 2023; 12(1):34. https://doi.org/10.3390/jcm12010034
Chicago/Turabian StyleSanti Laurini, Greta, Nicola Montanaro, and Domenico Motola. 2023. "Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data" Journal of Clinical Medicine 12, no. 1: 34. https://doi.org/10.3390/jcm12010034