Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 28 July 2022).
- Painter, G.R.; Natchus, M.G.; Cohen, O.; Holman, W.; Painter, W.P. Developing a direct acting, orally available antiviral agent in a pandemic: The evolution of molnupiravir as a potential treatment for COVID-19. Curr. Opin. Virol. 2021, 50, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Tchesnokov, E.P.; Schinazi, R.F.; Götte, M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J. Biol. Chem. 2021, 297, 100770. [Google Scholar] [CrossRef] [PubMed]
- Kabinger, F.; Stiller, C.; Schmitzová, J.; Dienemann, C.; Kokic, G.; Hillen, H.S.; Höbartner, C.; Cramer, P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 2021, 28, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Zhou, S.; Hill, C.S.; Sarkar, S.; Tse, L.V.; Woodburn, B.M.D.; Schinazi, R.F.; Sheahan, T.P.; Baric, R.S.; Heise, M.T.; Swanstrom, R. β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. J. Infect. Dis. 2021, 224, 415–419. [Google Scholar] [CrossRef]
- Food and Drug Administration. Fact Sheet for Healthcare Providers: Emergency Use Authorization For LAGEVRIO™ (molnupiravir) Capsules. Available online: https://www.fda.gov/media/155054/download (accessed on 21 July 2022).
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- McCreary, E.K.; Bariola, J.R.; Wadas, R.J.; Shovel, J.A.; Wisniewski, M.K.; Adam, M.; Albin, D.; Minnier, T.; Schmidhofer, M.; Meyers, R.; et al. Association of Subcutaneous or Intravenous Administration of Casirivimab and Imdevimab Monoclonal Antibodies With Clinical Outcomes in Adults With COVID-19. JAMA Netw. Open 2022, 5, e226920. [Google Scholar] [CrossRef]
- Streinu-Cercel, A.; Săndulescu, O.; Preotescu, L.L.; Kim, J.Y.; Kim, Y.S.; Cheon, S.; Jang, Y.R.; Lee, S.J.; Kim, H.K.; Chang, I.; et al. Efficacy and Safety of Regdanvimab (CT-P59): A Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Trial in Outpatients With Mild-to-Moderate Coronavirus Disease 2019. Open Forum. Infect. Dis. 2022, 9, ofac053. [Google Scholar] [CrossRef]
- Dougan, M.; Azizad, M.; Chen, P.; Feldman, B.; Frieman, M.; Igbinadolor, A.; Kumar, P.; Morris, J.; Potts, J.; Baracco, L.; et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. MedRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Chen, R.E.; Zhang, X.; Case, J.B.; Winkler, E.S.; Liu, Y.; VanBlargan, L.A.; Liu, J.; Errico, J.M.; Xie, X.; Suryadevara, N.; et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 2021, 27, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M.L.; Pruijssers, A.J.; Chappell, J.D.; Gribble, J.; Lu, X.; Andres, E.L.; Bluemling, G.R.; Lockwood, M.A.; Sheahan, T.; Sims, A.C.; et al. Small-Molecule Antiviral β-d- N 4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance. J. Virol. 2019, 93, e01348-19. [Google Scholar] [CrossRef]
- Grobler, J.; Strizki, J.; Murgolo, N.; Gao, W.; Cao, Y.; Zhang, Y.; Du, J.; Nair, M.; Huang, Y.; Luo, Y.; et al. 543 Molnupiravir Maintains Antiviral Activity Against SARS-CoV-2 Variants In Vitro and in Early Clinical Studies. Open Forum. Infect. Dis. 2021, 8, S373. [Google Scholar] [CrossRef]
- Merck. Merck and Ridgeback’s Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study. Available online: https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approximately-50-percent-compared-to-placebo-for-patients-with-mild-or-moderat/ (accessed on 21 June 2022).
- Medicines and Healthcare Products Regulatory Agency. Regulatory Approval of Lagevrio (molnupiravir). Available online: https://www.gov.uk/government/publications/regulatory-approval-of-lagevrio-molnupiravir (accessed on 8 June 2022).
- Mahase, E. COVID-19: UK becomes first country to authorise antiviral molnupiravir. BMJ 2021, 375, n2697. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain (accessed on 8 June 2022).
- European Medicines Agency. EMA Issues Advice on Use of Lagevrio (molnupiravir) for the Treatment of COVID-19. Available online: https://www.ema.europa.eu/en/news/ema-issues-advice-use-lagevrio-molnupiravir-treatment-covid-19 (accessed on 8 June 2022).
- Hayashi, K. Molnupiravir might be dangerous without clarification of its indications. BMJ 2022, 377, o1030. [Google Scholar] [CrossRef] [PubMed]
- Brophy, J.M. Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M. Re: Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. Available online: https://www.bmj.com/content/376/bmj.o443/rr-1 (accessed on 24 November 2022).
- Etminan, M. Re: Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. Available online: https://www.bmj.com/content/376/bmj.o443/rr-0 (accessed on 24 November 2022).
- Hama, R. Re: Molnupiravir’s authorisation was premature. BMJ 2022, 376, o443. Available online: https://www.bmj.com/content/376/bmj.o443/rr (accessed on 24 November 2022).
- Thorlund, K.; Sheldrick, K.; Meyerowitz-Katz, G.; Singh, S.; Hill, A. Making Statistical Sense of the Molnupiravir MOVe-OUT. Clin. Trial. Am. J. Trop Med. Hyg. 2022, 106, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Adverse Event Reporting System (FAERS) Public Dashboard. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (accessed on 16 June 2022).
- Alomar, M.J. Factors affecting the development of adverse drug reactions. Saudi Pharm. J. 2014, 22, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lavan, A.H.; Gallagher, P. Predicting risk of adverse drug reactions in older adults. Adv. Drug Saf. 2016, 7, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Puenpatom, A.; Moncada, P.A.; Burgess, L.; Duke, E.R.; Ohmagari, N.; Wolf, T.; Bassetti, M.; Bhagani, S.; Ghosn, J. Effect of Molnupiravir on Biomarkers, Respiratory Interventions, and Medical Services in COVID-19: A Randomized, Placebo-Controlled Trial. Ann. Intern. Med. 2022, 175, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev Med. Hyg. 2020, 61, E304–E312. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls Publishing: Treasure Island, CA, USA, 2022. [Google Scholar]
- UpToDate. COVID-19: Clinical Features. Available online: https://www.uptodate.com/contents/covid-19-clinical-features (accessed on 10 August 2022).
- National Institutes of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf (accessed on 12 December 2022).
- Yücel, H.E. A case of acute renal failure with COVID-19 under Molnupiravir treatment. Med. Sci. Discov. 2022, 9, 371–374. [Google Scholar] [CrossRef]
- Tarnawski, A.S.; Ahluwalia, A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J. Gastroenterol. 2022, 28, 275–289. [Google Scholar] [CrossRef]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef]
- Graham, E.L.; Koralnik, I.J.; Liotta, E.M. Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics 2022, 19, 1435–1466. [Google Scholar] [CrossRef]
- Louis, D.W.; Saad, M.; Vijayakumar, S.; Ilyas, S.; Kokkirala, A.; Aronow, H.D. The Cardiovascular Manifestations of COVID-19. Cardiol Clin. 2022, 40, 277–285. [Google Scholar] [CrossRef]
- Hashemian, S.M.R.; Jamaati, H.; Khalili-Pishkhani, F.; Roshanzamiri, S.; Eskandari, R.; Shafigh, N.; Ahmadi, A.; Dastan, F. Molnupiravir in Combination with Remdesivir for Severe COVID-19 Patients Admitted to Hospital: A Case Series. Microbes Infect. Chemother. 2022, 2, e1366. [Google Scholar] [CrossRef]
Age | Sex | Subtotal | % | Total | % |
---|---|---|---|---|---|
12–17 years | Female | 0 | 0.00 | 3 | 0.49 |
Male | 0 | 0.00 | |||
Unknown | 3 | 0.49 | |||
18–64 years | Female | 79 | 12.91 | 164 | 26.80 |
Male | 84 | 13.73 | |||
Unknown | 1 | 0.16 | |||
65–85 years | Female | 112 | 18.30 | 241 | 39.38 |
Male | 126 | 20.59 | |||
Unknown | 3 | 0.49 | |||
85+ years | Female | 68 | 11.11 | 119 | 19.44 |
Male | 46 | 7.52 | |||
Unknown | 5 | 0.82 | |||
Not Specified | Female | 42 | 6.86 | 85 | 13.89 |
Male | 25 | 4.08 | |||
Unknown | 18 | 2.94 | |||
Total | 612 | 100 | 612 | 100 |
Adverse Events | N | % |
---|---|---|
COVID-19 | 62 | 4.91 |
Diarrhoea | 57 | 4.51 |
Rash | 36 | 2.85 |
Nausea | 29 | 2.30 |
COVID-19 Pneumonia | 22 | 1.74 |
Maternal Exposure During Pregnancy | 22 | 1.74 |
Vomiting | 22 | 1.74 |
Dizziness | 21 | 1.66 |
Pneumonia | 19 | 1.50 |
Drug Ineffective | 17 | 1.35 |
Urticaria | 16 | 1.27 |
Pyrexia | 16 | 1.27 |
Feeling Abnormal | 15 | 1.19 |
Oxygen Saturation Decreased | 13 | 1.03 |
Death | 13 | 1.03 |
Pneumonia Aspiration | 12 | 0.95 |
Decreased Appetite | 12 | 0.95 |
Abdominal Pain | 12 | 0.95 |
Headache | 12 | 0.95 |
Condition Aggravated | 10 | 0.79 |
Drug Eruption | 9 | 0.71 |
Dehydration | 9 | 0.71 |
Dysphagia | 9 | 0.71 |
Pruritus | 9 | 0.71 |
Asthenia | 8 | 0.63 |
Dyspnoea | 7 | 0.55 |
Erythema | 7 | 0.55 |
Syncope | 7 | 0.55 |
Malaise | 6 | 0.48 |
Loss Of Consciousness | 6 | 0.48 |
Haematochezia | 5 | 0.40 |
Cough | 5 | 0.40 |
Seizure | 5 | 0.40 |
Tremor | 5 | 0.40 |
Pain | 5 | 0.40 |
Feeding Disorder | 4 | 0.32 |
Depressed Level Of Consciousness | 4 | 0.32 |
Bradycardia | 4 | 0.32 |
Hypotension | 4 | 0.32 |
Pancytopenia | 4 | 0.32 |
Insomnia | 4 | 0.32 |
Renal Impairment | 4 | 0.32 |
Cardiac Arrest | 4 | 0.32 |
Eczema | 3 | 0.24 |
International Normalised Ratio Increased | 3 | 0.24 |
Rash Pruritic | 3 | 0.24 |
Melaena | 3 | 0.24 |
Sepsis | 3 | 0.24 |
Pneumonia Bacterial | 3 | 0.24 |
Pallor | 3 | 0.24 |
Flushing | 3 | 0.24 |
Wheezing | 3 | 0.24 |
Deafness Unilateral | 3 | 0.24 |
Altered State Of Consciousness | 3 | 0.24 |
Burning Sensation | 3 | 0.24 |
Hallucination | 3 | 0.24 |
Rash Erythematous | 3 | 0.24 |
Respiratory Disorder | 3 | 0.24 |
Off Label Use | 3 | 0.24 |
Vision Blurred | 3 | 0.24 |
Blood Pressure Increased | 3 | 0.24 |
Arrhythmia | 3 | 0.24 |
Hepatic Function Abnormal | 3 | 0.24 |
Hypertension | 3 | 0.24 |
Neutropenia | 3 | 0.24 |
Fatigue | 3 | 0.24 |
Hyperhidrosis | 3 | 0.24 |
Palpitations | 3 | 0.24 |
Abdominal Pain Upper | 3 | 0.24 |
Chest Pain | 3 | 0.24 |
Abdominal Distension | 3 | 0.24 |
Cardiac Failure | 3 | 0.24 |
Pain In Extremity | 3 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi Laurini, G.; Montanaro, N.; Motola, D. Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data. J. Clin. Med. 2023, 12, 34. https://doi.org/10.3390/jcm12010034
Santi Laurini G, Montanaro N, Motola D. Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data. Journal of Clinical Medicine. 2023; 12(1):34. https://doi.org/10.3390/jcm12010034
Chicago/Turabian StyleSanti Laurini, Greta, Nicola Montanaro, and Domenico Motola. 2023. "Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data" Journal of Clinical Medicine 12, no. 1: 34. https://doi.org/10.3390/jcm12010034
APA StyleSanti Laurini, G., Montanaro, N., & Motola, D. (2023). Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data. Journal of Clinical Medicine, 12(1), 34. https://doi.org/10.3390/jcm12010034