Factors Influencing Driving following DBS Surgery in Parkinson’s Disease: A Single UK Centre Experience and Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Study Groups, and Data Collection
2.2. Imaging, Stereotactic Planning and Surgical Procedure
2.3. Outcome Assessment
Neuropsychological Evaluation
2.4. Review of the Literature
2.5. Statistical Analysis
3. Results
3.1. Preoperative Clinical Assessment
3.2. Postoperative Clinical Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.J.; Lozano, C.S.; Dallapiazza, R.F.; Lozano, A.M. Current and Future Directions of Deep Brain Stimulation for Neurological and Psychiatric Disorders. J. Neurosurg. 2019, 131, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middlebrooks, E.H.; Domingo, R.A.; Vivas-Buitrago, T.; Okromelidze, L.; Tsuboi, T.; Wong, J.K.; Eisinger, R.S.; Almeida, L.; Burns, M.R.; Horn, A.; et al. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. Am. J. Neuroradiol. 2020, 41, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Hariz, M.; Blomstedt, P.; Zrinzo, L. Future of Brain Stimulation: New Targets, New Indications, New Technology. Mov. Disord. 2013, 28, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, K.; Mirza, A.B.; Tambirajoo, K.; Furlanetti, L. Deep Brain Stimulation in the Management of Paediatric Neuropsychiatric Conditions: Current Evidence and Future Directions. Eur. J. Paediatr. Neurol. 2020, 33, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Charmley, A.R.; Kimber, T.; Mahant, N.; Lehn, A. Driving Restrictions Following Deep Brain Stimulation Surgery. BMJ Neurol. Open 2021, 3, e000210. [Google Scholar] [CrossRef] [PubMed]
- Buhmann, C.; Maintz, L.; Hierling, J.; Vettorazzi, E.; Moll, C.K.E.; Engel, A.K.; Gerloff, C.; Hamel, W.; Zangemeister, W.H. Effect of Subthalamic Nucleus Deep Brain Stimulation on Driving in Parkinson Disease. Neurology 2014, 82, 32–40. [Google Scholar] [CrossRef]
- Jankovic, J. Parkinson’s Disease and Movement Disorders: Moving Forward. Lancet Neurol. 2008, 7, 9–11. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Odin, P. The Challenge of Non-Motor Symptoms in Parkinson’s Disease. Prog. Brain Res. 2010, 184, 325–341. [Google Scholar] [CrossRef]
- Ranchet, M.; Broussolle, E.; Paire-Ficout, L. Longitudinal Executive Changes in Drivers with Parkinson’s Disease: Study Using Neuropsychological and Driving Simulator Tasks. Eur. Neurol. 2016, 76, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Crizzle, A.M.; Classen, S.; Uc, E.Y. Parkinson Disease and Driving: An Evidence-Based Review. Neurology 2012, 79, 2067–2074. [Google Scholar] [CrossRef]
- Crizzle, A.M.; Myers, A.M.; Roy, E.A.; Almeida, Q.J. Drivers with Parkinson’s Disease: Are the Symptoms of PD Associated with Restricted Driving Practices? J. Neurol. 2013, 260, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, R.M.; Gray, C.; Husted, D.; Busenbark, K.; Vetere-Overfield, B.; Wiltfong, D.; Parrish, D.; Koller, W.C. Driving in Parkinson’s Disease. Neurology 1991, 41, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Okun, M.S. Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2012, 367, 1529–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuepbach, W.M.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s Disease with Early Motor Complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Petry-Schmelzer, J.N.; Krause, M.; Dembek, T.A.; Horn, A.; Evans, J.; Ashkan, K.; Rizos, A.; Silverdale, M.; Schumacher, W.; Sack, C.; et al. Non-Motor Outcomes Depend on Location of Neurostimulation in Parkinson’s Disease. Brain 2019, 142, 3592–3604. [Google Scholar] [CrossRef]
- Klingelhoefer, L.; Samuel, M.; Chaudhuri, K.R.; Ashkan, K. An Update of the Impact of Deep Brain Stimulation on Non Motor Symptoms in Parkinson’s Disease. J. Parkinson’s Dis. 2014, 4, 289–300. [Google Scholar] [CrossRef]
- Diamond, A.; Jankovic, J. The Effect of Deep Brain Stimulation on Quality of Life in Movement Disorders. J Neurol Neurosurg Psychiatry 2005, 76, 1188–1193. [Google Scholar] [CrossRef] [Green Version]
- Klimkeit, E.I.; Bradshaw, J.L.; Charlton, J.; Stolwyk, R.; Georgiou-Karistianis, N. Driving Ability in Parkinson’s Disease: Current Status of Research. Neurosci. Biobehav. Rev. 2009, 33, 223–231. [Google Scholar] [CrossRef]
- Meindorfner, C.; Körner, Y.; Möller, J.C.; Stiasny-Kolster, K.; Oertel, W.H.; Krüger, H.-P. Driving in Parkinson’s Disease: Mobility, Accidents, and Sudden Onset of Sleep at the Wheel. Mov. Disord. 2005, 20, 832–842. [Google Scholar] [CrossRef]
- Devos, H.; Vandenberghe, W.; Nieuwboer, A.; Tant, M.; De Weerdt, W.; Dawson, J.D.; Uc, E.Y. Validation of a Screening Battery to Predict Driving Fitness in People with Parkinson’s Disease. Mov. Disord. 2013, 28, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Badenes, D.; Garolera, M.; Casas, L.; Cejudo-Bolivar, J.C.; Zaragoza, S.; Calzado, N.; Aguilar, M. Relationship between Neuropsychological Tests and Driver’s License Renewal Tests in Parkinson’s Disease. Traffic Inj. Prev. 2018, 19, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Stolwyk, R.J.; Charlton, J.L.; Triggs, T.J.; Iansek, R.; Bradshaw, J.L. Neuropsychological Function and Driving Ability in People with Parkinson’s Disease. J. Clin. Exp. Neuropsychol. 2006, 28, 898–913. [Google Scholar] [CrossRef] [PubMed]
- Amick, M.M.; Grace, J.; Ott, B.R. Visual and Cognitive Predictors of Driving Safety in Parkinson’s Disease Patients. Arch. Clin. Neuropsychol. 2007, 22, 957–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worringham, C.J.; Wood, J.M.; Kerr, G.K.; Silburn, P.A. Predictors of Driving Assessment Outcome in Parkinson’s Disease. Mov. Disord. 2006, 21, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Fuermaier, A.B.M.; Piersma, D.; de Waard, D.; Davidse, R.J.; de Groot, J.; Doumen, M.J.A.; Bredewoud, R.A.; Claesen, R.; Lemstra, A.W.; Scheltens, P.; et al. Driving Difficulties Among Patients with Alzheimer’s Disease and Other Neurodegenerative Disorders. J. Alzheimers Dis. 2019, 69, 1019–1030. [Google Scholar] [CrossRef]
- Ando, R.; Iwaki, H.; Tsujii, T.; Nagai, M.; Nishikawa, N.; Yabe, H.; Aiba, I.; Hasegawa, K.; Tsuboi, Y.; Aoki, M.; et al. The Clinical Findings Useful for Driving Safety Advice for Parkinson’s Disease Patients. Intern. Med. 2018, 57, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Cordell, R.; Lee, H.C.; Granger, A.; Vieira, B.; Lee, A.H. Driving Assessment in Parkinson’s Disease--a Novel Predictor of Performance? Mov Disord 2008, 23, 1217–1222. [Google Scholar] [CrossRef]
- Cubo, E.; Martinez Martin, P.; Gonzalez, M.; Bergareche, A.; Campos, V.; Fernández, J.M.; Alvárez, M.; Bayes, A.; Elep Group. What Contributes to Driving Ability in Parkinson’s Disease. Disabil. Rehabil. 2010, 32, 374–378. [Google Scholar] [CrossRef]
- Classen, S.; Witter, D.P.; Lanford, D.N.; Okun, M.S.; Rodriguez, R.L.; Romrell, J.; Malaty, I.; Fernandez, H.H. Usefulness of Screening Tools for Predicting Driving Performance in People with Parkinson’s Disease. Am. J. Occup. Ther. 2011, 65, 579–588. [Google Scholar] [CrossRef]
- Grace, J.; Amick, M.M.; D’Abreu, A.; Festa, E.K.; Heindel, W.C.; Ott, B.R. Neuropsychological Deficits Associated with Driving Performance in Parkinson’s and Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 2005, 11, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Radford, K.; Lincoln, N.; Lennox, G. The Effects of Cognitive Abilities on Driving in People with Parkinson’s Disease. Disabil. Rehabil. 2004, 26, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Buhmann, C.; Gerloff, C. Could Deep Brain Stimulation Help with Driving for Patients with Parkinson’s? Expert Rev. Med. Devices 2014, 11, 427–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assessing Fitness to Drive: A Guide for Medical Professionals. Available online: https://www.gov.uk/government/publications/assessing-fitness-to-drive-a-guide-for-medical-professionals (accessed on 2 July 2022).
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of Clinical Diagnosis of Idiopathic Parkinson’s Disease: A Clinico-Pathological Study of 100 Cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gorman, R.L.; Jarosz, J.M.; Samuel, M.; Clough, C.; Selway, R.P.; Ashkan, K. CT/MR Image Fusion in the Postoperative Assessment of Electrodes Implanted for Deep Brain Stimulation. Stereotact. Funct. Neurosurg. 2009, 87, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Furlanetti, L.; Hasegawa, H.; Oviedova, A.; Raslan, A.; Samuel, M.; Selway, R.; Ashkan, K. O-Arm Stereotactic Imaging in Deep Brain Stimulation Surgery Workflow: A Utility and Cost-Effectiveness Analysis. Stereotact. Funct. Neurosurg. 2021, 99, 93–106. [Google Scholar] [CrossRef]
- Lozano, A.M. Vim Thalamic Stimulation for Tremor. Arch. Med. Res. 2000, 31, 266–269. [Google Scholar] [CrossRef]
- Bielak, A.A.M.; Mansueti, L.; Strauss, E.; Dixon, R.A. Performance on the Hayling and Brixton Tests in Older Adults: Norms and Correlates. Arch. Clin. Neuropsychol. 2006, 21, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Rapport, L.J.; Millis, S.R.; Bonello, P.J. Validation of the Warrington Theory of Visual Processing and the Visual Object and Space Perception Battery. J. Clin. Exp. Neuropsychol. 1998, 20, 211–220. [Google Scholar] [CrossRef]
- Higginson, C.I.; Lanni, K.; Sigvardt, K.A.; Disbrow, E.A. The Contribution of Trail Making to the Prediction of Performance-Based Instrumental Activities of Daily Living in Parkinson’s Disease without Dementia. J. Clin. Exp. Neuropsychol. 2013, 35, 530–539. [Google Scholar] [CrossRef]
- Witt, K.; Pulkowski, U.; Herzog, J.; Lorenz, D.; Hamel, W.; Deuschl, G.; Krack, P. Deep Brain Stimulation of the Subthalamic Nucleus Improves Cognitive Flexibility but Impairs Response Inhibition in Parkinson Disease. Arch. Neurol. 2004, 61, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; Rogers, S.A.; Braaten, A.J.; Woods, S.P.; Tröster, A.I. Cognitive Sequelae of Subthalamic Nucleus Deep Brain Stimulation in Parkinson’s Disease: A Meta-Analysis. Lancet Neurol. 2006, 5, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Marie Dit Asse, L.; Fabrigoule, C.; Helmer, C.; Laumon, B.; Lafont, S. Automobile Driving in Older Adults: Factors Affecting Driving Restriction in Men and Women. J. Am. Geriatr. Soc. 2014, 62, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Schade-Brittinger, C.; Agid, Y.; EARLYSTIM Study Group. Neurostimulation for Parkinson’s Disease with Early Motor Complications. N. Engl. J. Med. 2013, 368, 2038. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.; Poulter, D.; Miles, C.; Solmi, M.; Veronese, N.; Carvalho, A.F.; Stubbs, B.; Uc, E.Y. Driving Impairment and Crash Risk in Parkinson Disease: A Systematic Review and Meta-Analysis. Neurology 2018, 91, e906–e916. [Google Scholar] [CrossRef]
- Buhmann, C.; Vesper, J.; Oelsner, H. Driving ability in Parkinson’s disease. Fortschr. Neurol. Psychiatr. 2018, 86, 43–48. [Google Scholar] [CrossRef]
- Uc, E.Y.; Rizzo, M.; Anderson, S.W.; Sparks, J.D.; Rodnitzky, R.L.; Dawson, J.D. Impaired Navigation in Drivers with Parkinson’s Disease. Brain 2007, 130, 2433–2440. [Google Scholar] [CrossRef]
- Yin, Z.; Bai, Y.; Guan, B.; Jiang, Y.; Wang, Z.; Meng, F.; Yang, A.; Zhang, J. A Quantitative Analysis of the Effect of Bilateral Subthalamic Nucleus-Deep Brain Stimulation on Subjective and Objective Sleep Parameters in Parkinson’s Disease. Sleep Med. 2021, 79, 195–204. [Google Scholar] [CrossRef]
- van Wouwe, N.C.; Ridderinkhof, K.R.; van den Wildenberg, W.P.M.; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A. Deep Brain Stimulation of the Subthalamic Nucleus Improves Reward-Based Decision-Learning in Parkinson’s Disease. Front. Hum. Neurosci. 2011, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Uc, E.Y.; Rizzo, M.; Anderson, S.W.; Dastrup, E.; Sparks, J.D.; Dawson, J.D. Driving under Low-Contrast Visibility Conditions in Parkinson Disease. Neurology 2009, 73, 1103–1110. [Google Scholar] [CrossRef]
- Chen, T.; Mirzadeh, Z.; Chapple, K.; Lambert, M.; Ponce, F.A. Complication Rates, Lengths of Stay, and Readmission Rates in “Awake” and “Asleep” Deep Brain Simulation. J. Neurosurg. 2017, 127, 360–369. [Google Scholar] [CrossRef] [PubMed]
n | % | |
---|---|---|
Age (mean) | 63.5 ± 8.4 | - |
Gender | ||
Male | 86 | 68.8 |
Female | 39 | 31.2 |
Hand dominance | ||
Right-handed | 108 | 86.4 |
Left-handed | 9 | 7.2 |
Onset of PD symptoms | ||
Right | 49 | 39.2 |
Left | 43 | 34.4 |
Bilateral | 7 | 5.6 |
N.A. | 26 | 20.8 |
PD subtype | ||
Akinetic | 94 | 75.2 |
Tremor-dominant | 23 | 18.4 |
Mixed | 8 | 6.4 |
H&Y at surgery (mean) | 2.1 ± 0.5 | - |
Timespan Diagnosis to Surgery (years) | 10.4 ± 4.7 | - |
Comorbidities | ||
>2 | 62 | 49.6 |
<2 | 30 | 24.0 |
none | 24 | 19.2 |
Working Status | ||
Retired | 55 | 44 |
Active | 40 | 32 |
% Improv. L-Dopa Challenge | - | 56.1 ± 0.16 |
Target | ||
STN | 103 | 82.4 |
VIM | 12 | 9.6 |
GPi | 10 | 8.0 |
Complication | ||
None | 83 | 66.4 |
Transient | 23 | 18.4 |
Persistent | 14 | 11.2 |
N.A. | 5 | 4.0 |
Driving prior to DBS | 77 | 61.6 |
Driving post-DBS | 27 | 21.6 |
LEDD (mg) | ||
Preoperative | 1096.0 ± 581.0 | - |
At last FU appointment | 845.2 ± 547.6 | - |
% Change LEDD at last FU | −11.4 ± 58.0 | |
FU time post DBS (months) | 129.9 ± 52.8 | - |
Preoperative | Postoperative | p Value | |
---|---|---|---|
mean ± Std | mean ± Std | ||
WAIS III (performance) | 100.4 ± 15.1 | 98.3 ± 14.8 | 0.00 |
WAIS III (verbal) | 102.1 ± 13.8 | 99.9 ± 14.2 | 0.02 |
WAIS III (full) | 105.0 ± 13.5 | 102.9 ± 13.3 | 0.04 |
Memory (words) | 44.2 ± 6.13 | 43.3 ± 6.27 | n.s. |
Memory (faces) | 42.6 ± 5.60 | 41.4 ± 5.72 | n.s. |
Naming | 21.4 ± 3.93 | 21.3 ± 4.04 | n.s. |
VOSP Letters | 19.0 ± 0.98 | 19.1 ± 0.80 | n.s. |
VOSP Objects | 17.4 ± 1.87 | 17.4 ± 1.86 | n.s. |
DKEFS Letters | n (%) | n (%) | n.s. |
Above average | 57 (45.6) | 30 (24.0) | |
Average | 25 (20.0) | 28 (22.4) | |
Below Average | 14 (11.2) | 22 (17.6) | |
N.A. | 29 (23.2) | 44 (35.2) | |
DKEFS Category | n.s. | ||
Above average | 36 (28.8) | 26 (20.8) | |
Average | 32 (25.6) | 27 (21.6) | |
Below Average | 26 (20.8) | 26 (20.8) | |
N.A. | 30 (24.0) | 46 (36.8) | |
Hayling Test | n.s. | ||
Above average | 4 (3.2) | 10 (8.0) | |
Average | 69 (55.2) | 50 (40.0) | |
Below Average | 29 (23.2) | 20 (16.0) | |
N.A. | 23 (18.4) | 45 (18.4) | |
Brixton Test | n.s. | ||
Above average | 22 (17.6) | 12 (9.6) | |
Average | 25 (20.0) | 28 (22.4) | |
Below Average | 55 (44.0) | 40 (32.0) | |
N.A. | 23 (28.4) | 45 (36%) |
n | Odds Ratio | 95% CI | p Value | R2 | |
---|---|---|---|---|---|
Age | 85 | 1.170 | 0.488–2.808 | 0.725 | 0.002 |
<50 years | 31 | ||||
50–69 years | 52 | ||||
>70 years | 2 | ||||
Profession | 65 | 0.359 | 0.120–1.074 | 0.067 | 0.074 |
Active | 31 | ||||
Retired | 34 | ||||
DBS target | 85 | 2.346 | 0.780–7.051 | 0.129 | 0.049 |
STN | 69 | ||||
VIM | 10 | ||||
GPi | 6 | ||||
Post-op complications | 81 | 1.354 | 0.541–3.391 | 0.517 | 0.008 |
None | 64 | ||||
Transient | 12 | ||||
Persistent | 5 | ||||
Implant revision | 85 | 1.442 | 0.272–7.661 | 0.667 | 0.003 |
Yes | 8 | ||||
No | 77 | ||||
Comorbidities | 85 | 0.995 | 0.399–2.481 | 0.991 | 0.000 |
≤2 | 41 | ||||
>2 | 44 | ||||
Laterality at PD onset | 71 | 1.045 | 0.481–2.271 | 0.911 | 0.000 |
Right | 36 | ||||
Left | 29 | ||||
PD subtype | 81 | 2.967 | 1.071–8.218 | 0.036 | 0.079 |
Tremor-dominant | 44 | ||||
Akinetic | 37 | ||||
LEDD | 82 | 0.584 | 0.201–1.698 | 0.323 | 0.017 |
Reduced | 56 | ||||
Increased | 26 | ||||
Driving preoperatively | 79 | 2.567 | 0.522–12.626 | 0.246 | 0.028 |
Yes | 66 | ||||
No | 13 | ||||
Psychiatric pre-op assessment | 71 | 2.153 | 0.681–6.807 | 0.191 | 0.036 |
Abnormal | 24 | ||||
Unremarkable | 47 | ||||
Psychiatric post-op assessment | 70 | 3.220 | 1.079–9.604 | 0.036 | 0.092 |
Abnormal | 39 | ||||
Unremarkable | 31 |
n | Odds Ratio | 95% CI | p Value | R2 | |
---|---|---|---|---|---|
Neuropsych Pre-op | 71 | 0.847 | 0.621–1.155 | 0.295 | 0.022 |
None | 40 | ||||
Mood disorders | 15 | ||||
ICB | 9 | ||||
Cognitive | 6 | ||||
Neuropsych Post-op | 69 | 0.767 | 0.526–1.120 | 0.169 | 0.041 |
None | 36 | ||||
Mood disorders | 9 | ||||
ICB | 4 | ||||
Cognitive | 13 | ||||
WAIS III (performance) | 57 | 1.111 | 0.369–3.346 | 0.851 | 0.001 |
Improved/stable | 28 | ||||
Worsened | 29 | ||||
WAIS III (verbal) | 57 | 0.729 | 0.241–2.199 | 0.574 | 0.008 |
Improved/stable | 27 | ||||
Worsened | 30 | ||||
Memory (words) | 44 | 0.406 | 0.111–1.490 | 0.174 | 0.059 |
Improved/stable | 23 | ||||
Worsened | 21 | ||||
Naming | 55 | 1.039 | 0.294–3.665 | 0.953 | 0.000 |
Improved/stable | 40 | ||||
Worsened | 15 | ||||
VOSP Letters | 55 | 2.143 | 0.596–7.703 | 0.243 | 0.034 |
Improved/stable | 42 | ||||
Worsened | 13 | ||||
DKEFS Letters | 47 | 2.036 | 0.599–6.922 | 0.255 | 0.038 |
Improved/stable | 26 | ||||
Worsened | 21 | ||||
DKEFS Category | 47 | 1.467 | 0.410–5.249 | 0.556 | 0.010 |
Improved/stable | 32 | ||||
Worsened | 15 | ||||
Hayling Test | 50 | 9.846 | 1.003–96.664 | 0.050 | 0.132 |
Improved/stable | 45 | ||||
Worsened | 5 | ||||
Brixton test | 51 | 3.556 | 0.692–18.282 | 0.129 | 0.063 |
Improved/stable | 44 | ||||
Worsened | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlanetti, L.; Baig Mirza, A.; Raslan, A.; Velicu, M.A.; Burford, C.; Akhbari, M.; German, E.; Saha, R.; Samuel, M.; Ashkan, K. Factors Influencing Driving following DBS Surgery in Parkinson’s Disease: A Single UK Centre Experience and Review of the Literature. J. Clin. Med. 2023, 12, 166. https://doi.org/10.3390/jcm12010166
Furlanetti L, Baig Mirza A, Raslan A, Velicu MA, Burford C, Akhbari M, German E, Saha R, Samuel M, Ashkan K. Factors Influencing Driving following DBS Surgery in Parkinson’s Disease: A Single UK Centre Experience and Review of the Literature. Journal of Clinical Medicine. 2023; 12(1):166. https://doi.org/10.3390/jcm12010166
Chicago/Turabian StyleFurlanetti, Luciano, Asfand Baig Mirza, Ahmed Raslan, Maria Alexandra Velicu, Charlotte Burford, Melika Akhbari, Elaine German, Romi Saha, Michael Samuel, and Keyoumars Ashkan. 2023. "Factors Influencing Driving following DBS Surgery in Parkinson’s Disease: A Single UK Centre Experience and Review of the Literature" Journal of Clinical Medicine 12, no. 1: 166. https://doi.org/10.3390/jcm12010166
APA StyleFurlanetti, L., Baig Mirza, A., Raslan, A., Velicu, M. A., Burford, C., Akhbari, M., German, E., Saha, R., Samuel, M., & Ashkan, K. (2023). Factors Influencing Driving following DBS Surgery in Parkinson’s Disease: A Single UK Centre Experience and Review of the Literature. Journal of Clinical Medicine, 12(1), 166. https://doi.org/10.3390/jcm12010166