Innovation of Surgical Techniques for Screw Fixation in Patients with Osteoporotic Spine
Abstract
:1. Introduction
2. Basic Principle of Pedicle Screw Fixation for Osteoporotic Spine
3. S2AI Screws
4. Intra-Sacral Buttress Screws
5. Cortical Bone Trajectory Screws
6. Penetrating Endplate Screws
7. Groove Entry Technique and Hooking Screw Technique
8. HA Stick and HA Granules
9. PMMA
10. Expandable Pedicle Screws
11. Sublaminar Band
12. Hook
13. Discussion
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Melton, L.J. Epidemiology of spinal osteoporosis. Spine 1997, 22, 2S–11S. [Google Scholar] [PubMed]
- DeWald, C.J.; Stanley, T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: Surgical considerations and treatment options in patients with poor bone quality. Spine 2006, 31, S144–S151. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, K.; Abe, E.; Suzuki, T.; Tamura, Y.; Chiba, M.; Sato, K. Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine 2000, 25, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, K.; Abe, E.; Suzuki, T.; Tamura, Y.; Chiba, M.; Sato, K. Influence of bone mineral density on pedicle screw fixation: A study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001, 1, 402–407. [Google Scholar] [CrossRef]
- Galbusera, F.; Volkheimer, D.; Reitmaier, S.; Berger-Roscher, N.; Kienle, A.; Wilke, H.-J. Pedicle screw loosening: A clinically relevant complication? Eur. Spine J. 2015, 24, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Esses, S.I.; Sachs, B.L.; Dreyzin, V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine 1993, 18, 2231–2238; discussion 2238–2239. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Tsai, K.-J.; Attallah-Wasif, E.S.; Yamazaki, K.; Shimamura, T.; Hutton, W.C. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation. Spine 2006, 31, 967–971. [Google Scholar] [CrossRef]
- Chiba, M.; McLain, R.F.; Yerby, S.A.; Moseley, T.A.; Smith, T.S.; Benson, D.R. Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation. Spine 1996, 21, 288–294. [Google Scholar] [CrossRef]
- Hasegawa, K.; Takahashi, H.E.; Uchiyama, S.; Hirano, T.; Hara, T.; Washio, T.; Sugiura, T.; Youkaichiya, M.; Ikeda, M. An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine. Spine 1997, 22, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Hongo, M.; Ilharreborde, B.; Gay, R.E.; Zhao, C.; Zhao, K.D.; Berglund, L.J.; Zobitz, M.; An, K.-N. Biomechanical evaluation of a new fixation device for the thoracic spine. Eur. Spine J. 2009, 18, 1213–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamasaki, T.; Tanaka, N.; Kim, J.; Okada, M.; Ochi, M.; Hutton, W.C. Pedicle screw augmentation with polyethylene tape: A biomechanical study in the osteoporotic thoracolumbar spine. J. Spinal Dis. Technol. 2010, 23, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kebaish, K.M. Sacropelvic fixation: Techniques and complications. Spine 2010, 35, 2245–2251. [Google Scholar] [CrossRef] [PubMed]
- O′Brien, J.R.; Matteini, L.; Yu, W.D.; Kebaish, K.M. Feasibility of minimally invasive sacropelvic fixation: Percutaneous S2 alar iliac fixation. Spine 2010, 35, 460–464. [Google Scholar] [CrossRef]
- Matsukawa, K.; Yato, Y.; Kato, T.; Imabayashi, H.; Asazuma, T.; Nemoto, K. Cortical bone trajectory for lumbosacral fixation: Penetrating S-1 endplate screw technique: Technical note. J. Neurosurg. Spine 2014, 21, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Minamide, A.; Akamaru, T.; Yoon, S.T.; Tamaki, T.; Rhee, J.M.; Hutton, W.C. Transdiscal L5-S1 screws for the fixation of isthmic spondylolisthesis: A biomechanical evaluation. J. Spinal Dis. Technol. 2003, 16, 144–149. [Google Scholar] [CrossRef]
- Ishikawa, T.; Ota, M.; Umimura, T.; Hishiya, T.; Katsuragi, J.; Sasaki, Y.; Ohtori, S. Penetrating Endplate Screw Fixation for Thoracolumbar Pathological Fracture of Diffuse Idiopathic Skeletal Hyperostosis. Case Rep. Orthop. 2022, 2022, 5584397. [Google Scholar] [CrossRef]
- Ishii, K.; Shiono, Y.; Funao, H.; Singh, K.; Matsumoto, M. A Novel Groove-Entry Technique for Inserting Thoracic Percutaneous Pedicle Screws. Clin. Spine Surg. 2017, 30, 57–64. [Google Scholar] [CrossRef]
- Elder, B.D.; Lo, S.-F.L.; Holmes, C.; Goodwin, C.R.; Kosztowski, T.A.; Lina, I.A.; Locke, J.E.; Witham, T.F. The biomechanics of pedicle screw augmentation with cement. Spine J. 2015, 15, 1432–1445. [Google Scholar] [CrossRef]
- Burval, D.J.; McLain, R.F.; Milks, R.; İnceoğlu, S. Primary Pedicle Screw Augmentation in Osteoporotic Lumbar Vertebrae. Spine 2007, 32, 1077–1083. [Google Scholar] [CrossRef]
- Matsuzaki, H.; Tokuhashi, Y.; Wakabayashi, K.; Okawa, A.; Hagiwara, H.; Iwahashi, M. Effects of hydroxyapatite solid granule (HA Stick) on pedicle screwing for osteoporotic patients. Clin. Orthop. Surg. 2001, 36, 529–534. (In Japanese) [Google Scholar]
- Kanno, H.; Aizawa, T.; Hashimoto, K.; Itoi, E. Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: A cadaveric biomechanical analysis. Eur. Spine J. 2021, 30, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kanno, H.; Aizawa, T.; Hashimoto, K.; Itoi, E. Enhancing percutaneous pedicle screw fixation with hydroxyapatite granules: A biomechanical study using an osteoporotic bone model. PLoS ONE 2019, 14, e0223106. [Google Scholar] [CrossRef]
- O′Brien, J.R.; Yu, W.; Kaufman, B.E.; Bucklen, B.; Salloum, K.; Khalil, S.; Gudipally, M. Biomechanical evaluation of S2 alar-iliac screws: Effect of length and quad-cortical purchase as compared with iliac fixation. Spine 2013, 38, E1250–E1255. [Google Scholar] [CrossRef] [PubMed]
- Helgeson, M.D.; Kang, D.G.; Lehman, R.A.; Dmitriev, A.E.; Luhmann, S.J. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J. 2013, 13, 957–965. [Google Scholar] [CrossRef]
- Zindrick, M.R.; Wiltse, L.L.; Widell, E.H.; Thomas, J.C.; Holland, W.R.; Field, B.T.; Spencer, C.W. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin. Orthop. Relat. Res. 1986, 15, 99–112. [Google Scholar] [CrossRef]
- Hirano, T.; Hasegawa, K.; Washio, T.; Hara, T.; Takahashi, H. Fracture risk during pedicle screw insertion in osteoporotic spine. J. Spinal Dis. 1998, 11, 493–497. [Google Scholar] [CrossRef]
- Lehman, R.A., Jr.; Polly, D.W., Jr.; Kuklo, T.R.; Cunningham, B.; Kirk, K.L.; Belmont, P.J., Jr. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: A biomechanical analysis. Spine 2003, 28, 2058–2065. [Google Scholar] [CrossRef]
- Lehman, R.A.; Kang, D.G.; Wagner, S.C. Management of osteoporosis in spine surgery. J. Am. Acad. Orthop. Surg. 2015, 23, 253–263. [Google Scholar] [CrossRef]
- De la Garza Ramos, R.; Nakhla, J.; Sciubba, D.M.; Yassari, R. Iliac screw versus S2 alar-iliac screw fixation in adults: A meta-analysis. J. Neurosurg. Spine 2018, 30, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.H.; Mason, J.R.; Shimer, A.L.; Arlet, V.M. Pelvic fixation for adult scoliosis. Eur. Spine J. 2013, 22 (Suppl. 2), 265–275. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, K.; Takemitsu, M.; Machida, M.; Asazuma, T. Lumbosacral fixation using sacroiliac buttress screws: A modification to the Jackson technique with intrasacral rods. Scoliosis 2014, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.P.; McManus, A.C. The iliac buttress. A computed tomographic study of sacral anatomy. Spine 1993, 18, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Santoni, B.G.; Hynes, R.A.; McGilvray, K.C.; Rodriguez-Canessa, G.; Lyons, A.S.; Henson, M.A.W.; Womack, W.J.; Puttlitz, C.M. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009, 9, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Kuraishi, K.; Umeda, Y.; Sano, T.; Tsuji, M.; Suzuki, H. Midline lumbar fusion with cortical bone trajectory screw. Neurol. Med. Chir. 2014, 54, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Matsukawa, K.; Yato, Y.; Nemoto, O.; Imabayashi, H.; Asazuma, T.; Nemoto, K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J. Spinal Dis. Technol. 2013, 26, E248–E253. [Google Scholar] [CrossRef]
- Baluch, D.A.; Patel, A.A.; Lullo, B.; Havey, R.M.; Voronov, L.I.; Nguyen, N.-L.; Carandang, G.; Ghanayem, A.J.; Patwardhan, A.G. Effect of Physiological Loads on Cortical and Traditional Pedicle Screw Fixation. Spine 2014, 39, E1297–E1302. [Google Scholar] [CrossRef]
- Perez-Orribo, L.; Kalb, S.; Reyes, P.M.; Chang, S.W.; Crawford, N.R. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine 2013, 38, 635–641. [Google Scholar] [CrossRef]
- Momin, A.A.; Steinmetz, M.P. Evolution of Minimally Invasive Lumbar Spine Surgery. World Neurosurg. 2020, 140, 622–626. [Google Scholar] [CrossRef]
- Sakaura, H.; Miwa, T.; Yamashita, T.; Kuroda, Y.; Ohwada, T. Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: Comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis. J. Neurosurg. Spine 2018, 28, 57–62. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, N.G.; Savardekar, A.; Nottmeier, E.W.; Pirris, S.; Reyes, P.M.; Newcomb, A.G.; Mendes, G.A.; Kalb, S.; Theodore, N.; Crawford, N.R. Biomechanics of transvertebral screw fixation in the thoracic spine: An in vitro study. J. Neurosurg. Spine 2016, 25, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collados-Maestre, I.; Lizaur-Utrilla, A.; Bas-Hermida, T.; Pastor-Fernandez, E.; Gil-Guillen, V. Transdiscal screw versus pedicle screw fixation for high-grade L5-S1 isthmic spondylolisthesis in patients younger than 60 years: A case-control study. Eur. Spine J. 2016, 25, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Nottmeier, E.W.; Pirris, S.M. Placement of thoracic transvertebral pedicle screws using 3D image guidance. J. Neurosurg. Spine 2013, 18, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekiguchi, I.; Takeda, N.; Ishida, N. Diagonal Trajectory Posterior Screw Instrumentation for Compromised Bone Quality Spine: Groove-Entry Technique/Hooking Screw Hybrid. Spine Surg. Relat. Res. 2018, 2, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Rim, D.-C.; Park, S.W.; Murovic, J.A.; Lim, J.; Park, J. Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine. World Neurosurg. 2015, 83, 976–981. [Google Scholar] [CrossRef]
- Spivak, J.M.; Neuwirth, M.G.; Labiak, J.J.; Kummer, F.J.; Ricci, J.L. Hydroxyapatite enhancement of posterior spinal instrumentation fixation. Spine 1994, 19, 955–964. [Google Scholar] [CrossRef]
- Hasegawa, K.; Yamamura, S.; Dohmae, Y. Enhancing screw stability in osteosynthesis with hydroxyapatite granules. Arch. Orthop. Trauma Surg. 1998, 117, 175–176. [Google Scholar] [CrossRef]
- Yerby, S.A.; Toh, E.; McLain, R.F. Revision of failed pedicle screws using hydroxyapatite cement. A biomechanical analysis. Spine 1998, 23, 1657–1661. [Google Scholar] [CrossRef]
- Spivak, J.M.; Hasharoni, A. Use of hydroxyapatite in spine surgery. Eur. Spine J. 2001, 10 (Suppl. 2), S197–S204. [Google Scholar] [CrossRef] [Green Version]
- Kanno, H. Answer to the Letter to the Editor of T. Morimoto et al. concerning Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: A cadaveric biomechanical analysis by Kanno; et al. [Eur. Spine J. 2021 Jan;30(1):71–78]. Eur. Spine J. 2022, 31, 212–213. [Google Scholar] [CrossRef]
- Kanno, H. Augmentation of percutaneous pedicle screw fixation: Novel method using hydroxyapatite granules and effectiveness of teriparatide. J. MIOS 2018, 87, 81–88. [Google Scholar]
- Becker, S.; Chavanne, A.; Spitaler, R.; Kropik, K.; Aigner, N.; Ogon, M.; Redl, H. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur. Spine J. 2008, 17, 1462–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.H.; Tai, C.L.; Lee, D.M.; Lai, P.L.; Lee, Y.C.; Niu, C.C.; Chen, W.J. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: A comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet. Dis. 2011, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Trungu, S.; Ricciardi, L.; Forcato, S.; Miscusi, M.; Raco, A. Percutaneous instrumentation with cement augmentation for traumatic hyperextension thoracic and lumbar fractures in ankylosing spondylitis: A single-institution experience. Neurosurg. Focus 2021, 51, E8. [Google Scholar] [CrossRef]
- Lieberman, I.H.; Togawa, D.; Kayanja, M.M. Vertebroplasty and kyphoplasty: Filler materials. Spine J. 2005, 5, S305–S316. [Google Scholar] [CrossRef]
- Derincek, A.; Wu, C.; Mehbod, A.; Transfeldt, E.E. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. J. Spinal Dis. Technol. 2006, 19, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Koller, H.; Zenner, J.; Hitzl, W.; Resch, H.; Stephan, D.; Augat, P.; Penzkofer, R.; Korn, G.; Kendell, A.; Meier, O.; et al. The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study. Spine J. 2013, 13, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Vishnubhotla, S.; McGarry, W.B.; Mahar, A.T.; Gelb, D.E. A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Spine J. 2011, 11, 777–781. [Google Scholar] [CrossRef]
- Wu, Z.-X.; Gong, F.-T.; Liu, L.; Ma, Z.-S.; Zhang, Y.; Zhao, X.; Yang, M.; Lei, W.; Sang, H.-X. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch. Orthop. Trauma Surg. 2012, 132, 471–476. [Google Scholar] [CrossRef]
- Jouve, J.-L.; de Gauzy, J.S.; Blondel, B.; Launay, F.; Accadbled, F.; Bollini, G. Use of the Universal Clamp for deformity correction and as an adjunct to fusion: Preliminary results in scoliosis. J. Child. Orthop. 2010, 4, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Gazzeri, R.; Faiola, A.; Galarza, M.; Tamorri, M. Universal Clamp system in thoracolumbar spinal fixation: Technical note. Acta Neurochir. 2009, 151, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Lenke, L.G.; Daubs, M.D.; Kim, Y.W.; Kim, Y.B.; Watanabe, K.; Stobbs, G. A central hook-rod construct for osteotomy closure: A technical note. Spine 2008, 33, 1149–1155. [Google Scholar] [CrossRef]
- Hyun, S.J.; Lenke, L.G.; Kim, Y.C.; Koester, L.A.; Blanke, K.M. Long-term radiographic outcomes of a central hook-rod construct for osteotomy closure: Minimum 5-year follow-up. Spine 2015, 40, E428–E432. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, K.; Sato, K.; Abe, E.; Inaba, H.; Shimada, Y.; Murai, H. Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability. Spine 1993, 18, 2240–2245. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Bridwell, K.H.; Lenke, L.G.; Park, M.S.; Song, K.S.; Piyaskulkaew, C.; Chuntarapas, T. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections. Spine 2014, 39, E576–E580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiji, R.; Takami, M.; Yukawa, Y.; Hashizume, H.; Minamide, A.; Nakagawa, Y.; Nishi, H.; Iwasaki, H.; Tsutsui, S.; Okada, M.; et al. A short-segment fusion strategy using a wide-foot-plate expandable cage for vertebral pseudarthrosis after an osteoporotic vertebral fracture. J. Neurosurg. Spine 2020, 62, 1–8. [Google Scholar] [CrossRef]
- Ohtori, S.; Inoue, G.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kishida, S.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; et al. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: Prospective study. Spine 2012, 37, E1464–E1468. [Google Scholar] [CrossRef]
- Ohtori, S.; Inoue, G.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kishida, S.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine 2013, 38, E487–E492. [Google Scholar] [CrossRef]
- Inoue, G.; Ueno, M.; Nakazawa, T.; Imura, T.; Saito, W.; Uchida, K.; Ohtori, S.; Toyone, T.; Takahira, N.; Takaso, M. Teriparatide increases the insertional torque of pedicle screws during fusion surgery in patients with postmenopausal osteoporosis. J. Neurosurg. Spine 2014, 21, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Ebata, S.; Takahashi, J.; Hasegawa, T.; Mukaiyama, K.; Isogai, Y.; Ohba, T.; Shibata, Y.; Ojima, T.; Yamagata, Z.; Matsuyama, Y.; et al. Role of Weekly Teriparatide Administration in Osseous Union Enhancement within Six Months After Posterior or Transforaminal Lumbar Interbody Fusion for Osteoporosis-Associated Lumbar Degenerative Disorders: A Multicenter, Prospective Randomized Study. J. Bone Jt. Surg. Am. 2017, 99, 365–372. [Google Scholar] [CrossRef]
Reinforcement Strategy | Surgical Technique |
---|---|
Optimal pedicle screw fixation | Appropriate screw diameter and length |
Undertapping | |
Pelvic fixation | Sacral alar iliac (S2AI) screws |
Intra-sacral buttress screws | |
Modified screw trajectory | Cortical bone trajectory (CBT) screws |
Penetrating endplate screws | |
Groove entry technique | |
Hooking screw technique | |
Placement of substances into the screw hole | Hydroxyapatite stick and granules |
Bone cement (e.g., PMMA) | |
Modification of screw shape | Expandable pedicle screws |
Hybrid posterior constructs | Sublaminar bands with pedicle screws Laminar hooks with pedicle screws |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanno, H.; Onoda, Y.; Hashimoto, K.; Aizawa, T.; Ozawa, H. Innovation of Surgical Techniques for Screw Fixation in Patients with Osteoporotic Spine. J. Clin. Med. 2022, 11, 2577. https://doi.org/10.3390/jcm11092577
Kanno H, Onoda Y, Hashimoto K, Aizawa T, Ozawa H. Innovation of Surgical Techniques for Screw Fixation in Patients with Osteoporotic Spine. Journal of Clinical Medicine. 2022; 11(9):2577. https://doi.org/10.3390/jcm11092577
Chicago/Turabian StyleKanno, Haruo, Yoshito Onoda, Ko Hashimoto, Toshimi Aizawa, and Hiroshi Ozawa. 2022. "Innovation of Surgical Techniques for Screw Fixation in Patients with Osteoporotic Spine" Journal of Clinical Medicine 11, no. 9: 2577. https://doi.org/10.3390/jcm11092577