Adjunct Non-Elastic Hip Taping Improves Gait Stability in Cane-Assisted Individuals with Chronic Stroke: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Study Design
2.3. Participants
2.4. Intervention
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Wit, L.; Theuns, P.; Dejaeger, E.; Devos, S.; Gantenbein, A.R.; Kerckhofs, E.; Schuback, B.; Schupp, W.; Putman, K. Long-term Impact of Stroke on Patients’ Health-related Quality of Life. Disabil. Rehabil. 2017, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- De Bartolo, D.; Morone, G.; Lupo, A.; Aloise, F.; Baricich, A.; Di Francesco, D.; Calderone, C.; Cisari, C.; Verdecchia, G.; Sandrini, G.; et al. From Paper to Informatics: The Post Soft Care-App, An Easy-to-use and Fast Tool to Help Therapists Identify Unmet Needs in Stroke Patients. Funct. Neurol. 2018, 33, 200–205. [Google Scholar]
- Hesse, S. Recovery of Gait and Other Motor Functions after Stroke: Novel Physical and Pharmacological Treatment Strategies. Restor. Neurol. Neurosci. 2004, 22, 359–369. [Google Scholar] [PubMed]
- Mansfield, A.; Inness, E.L.; McIlroy, W.E. Chapter 13: Stroke. In Handbook of Clinical Neurology; Day, B.L., Lord, S.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 205–228. [Google Scholar]
- Medley, A.; Thompson, M.; French, J. Predicting the Probability of Falls in Community Dwelling Persons with Brain Injury: A Pilot Study. Brain Inj. 2006, 20, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.R.; Ada, L.; Teixeira-Salmela, L.F. The Provision of A Cane Provides Greater Benefit to Community-dwelling People after Stroke with A Baseline Walking Speed between 0.4 and 0.8 Metres/second: An Experimental Study. Physiotherapy 2016, 102, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Buurke, J.H.; Hermens, H.J.; Erren-Wolters, C.V.; Nene, A.V. The Effect of Walking Aids on Muscle Activation Patterns During Walking in Stroke Patients. Gait Posture 2005, 22, 164–170. [Google Scholar] [CrossRef]
- Chen, C.L.; Chen, H.C.; Wong, M.K.; Tang, F.T.; Chen, R.S. Temporal Stride and Force Analysis of Cane-assisted Gait in People with Hemiplegic Stroke. Arch. Phys. Med. Rehabil. 2001, 82, 43–48. [Google Scholar] [CrossRef]
- Hamzat, T.K.; Kobiri, A. Effects of Walking with A Cane on Balance and Social Participation among Community-dwelling Post-stroke Individuals. Eur. J. Phys. Rehabil. Med. 2008, 44, 121–126. [Google Scholar]
- Sorensen, H.V.; Lendal, S.; Schultz-Larsen, K.; Uhrskov, T. Stroke Rehabilitation: Assistive Technology Devices and Environmental Modifications Following Primary Rehabilitation in Hospital—A Therapeutic Perspective. Assist. Technol. 2003, 15, 39–48. [Google Scholar] [CrossRef]
- Maguire, C.C.; Sieben, J.M.; de Bie, R.A. The Influence of Walking-aids on The Plasticity of Spinal Interneuronal Networks, Central-pattern-generators and The Recovery of Gait Post-stroke. A Literature Review and Scholarly Discussion. J. Bodyw. Mov. Ther. 2017, 21, 422–434. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Shaughnessy, M. The Effects of Exercise-based Rehabilitation on Balance and Gait for Stroke Patients: A Systematic Review. J. Neurosci. Nurs. 2011, 43, 298–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; MacKay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J.; et al. Physical Activity and Exercise Recommendations for Stroke Survivors: A Statement for Healthcare Professionals from The American Heart Association/American Stroke Association. Stroke 2014, 45, 2532–2553. [Google Scholar] [CrossRef] [Green Version]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait Post-stroke: Pathophysiology and Rehabilitation Strategies. Neurophysiol. Clin. 2015, 45, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Francica, J.V.; Bigongiari, A.; Mochizuki, L.; Miranda, M.L.; Rodrigues, B. Aerobic Program in Persons with Stroke: A Systematic Review. Acta Med. Port. 2014, 27, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, D.K.; Nadeau, S.E.; Wu, S.S.; Tilson, J.K.; Dobkin, B.H.; Pei, Q.; Duncan, P.W. Locomotor Training and Strength and Balance Exercises for Walking Recovery After Stroke: Response to Number of Training Sessions. Phys. Ther. 2017, 97, 1066–1074. [Google Scholar] [CrossRef]
- Guerra, Z.F.; Lucchetti, A.L.G.; Lucchetti, G. Motor Imagery Training After Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef]
- De Bartolo, D.; Belluscio, V.; Vannozzi, G.; Morone, G.; Antonucci, G.; Giordani, G.; Santucci, S.; Resta, F.; Marinozzi, F.; Bini, F.; et al. Sensorized Assessment of Dynamic Locomotor Imagery in People with Stroke and Healthy Subjects. Sensors 2020, 20, 4545. [Google Scholar] [CrossRef]
- Jung, K.; Kim, Y.; Cha, Y.; In, T.S.; Hur, Y.G.; Chung, Y. Effects of Gait Training with A Cane and An Augmented Pressure Sensor for Enhancement of Weight Bearing over the Affected Lower Limb in Patients with Stroke: A Randomized Controlled Pilot Study. Clin. Rehabil. 2015, 29, 135–142. [Google Scholar] [CrossRef]
- Kang, Y.S.; Oh, G.B.; Cho, K.H. Walking Training with a Weight Support Feedback Cane Improves Lower Limb Muscle Activity and Gait Ability in Patients with Chronic Stroke: A Randomized Controlled Trial. Med. Sci. Monit. 2021, 27, e931565. [Google Scholar] [CrossRef]
- Kang, M.H.; Choi, S.H.; Oh, J.S. Postural Taping Applied to The Low Back Influences Kinematics and EMG Activity During Patient Transfer in Physical Therapists with Chronic Low Back Pain. J. Electromyogr. Kinesiol. 2013, 23, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Chinn, L.; Dicharry, J.; Hart, J.M.; Saliba, S.; Wilder, R.; Hertel, J. Gait Kinematics after Taping in Participants with Chronic Ankle Instability. J. Athl. Train. 2014, 49, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilbreath, S.L.; Perkins, S.; Crosbie, J.; McConnell, J. Gluteal Taping Improves Hip Extension During Stance Phase of Walking Following Stroke. Aust. J. Physiother. 2006, 52, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Maguire, C.; Sieben, J.M.; Frank, M.; Romkes, J. Hip Abductor Control in Walking Following Stroke—The Immediate Effect of Canes, Taping and TheraTogs on Gait. Clin. Rehabil. 2010, 24, 37–45. [Google Scholar] [CrossRef]
- Chen, J.L.; Wang, R.Y.; Lee, C.S.; Chen, Y.J.; Yang, Y.R. Immediate Effect of Hip Taping on Balance and Walking Ability in Cane-dependent Ambulators with Chronic Stroke: A Randomized Controlled Trial. Eur. J. Phys. Rehabil. Med. 2019, 55, 156–161. [Google Scholar] [CrossRef]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of The Optogait Photoelectric System for The Assessment of Spatiotemporal Gait Parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent Validity and Test-retest Reliability of The OPTOGait Photoelectric Cell System for The Assessment of Spatio-temporal Parameters of The Gait of Young Adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Blazkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of Four Methods of Calculating the Symmetry of Spatial-temporal Parameters of Gait. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring Balance in The Elderly: Validation of An Instrument. Can. J. Public Health 1992, 83 (Suppl 2), S7–S11. [Google Scholar]
- Mao, H.F.; Hsueh, I.P.; Tang, P.F.; Sheu, C.F.; Hsieh, C.L. Analysis and Comparison of The Psychometric Properties of Three Balance Measures for Stroke Patients. Stroke 2002, 33, 1022–1027. [Google Scholar] [CrossRef]
- Fulk, G.D.; Echternach, J.L.; Nof, L.; O’Sullivan, S. Clinometric Properties of The Six-minute Walk Test in Individuals Undergoing Rehabilitation Poststroke. Physiother. Theory Pract. 2008, 24, 195–204. [Google Scholar]
- Kwan, M.M.; Tsang, W.W.; Close, J.C.; Lord, S.R. Development and Validation of a Chinese Version of The Falls Efficacy Scale International. Arch. Gerontol. Geriatr. 2013, 56, 169–174. [Google Scholar]
- Iosa, M.; De Bartolo, D.; Morone, G.; Boffi, T.; Mammucari, E.; Vannozzi, G.; Bini, F.; Marinozzi, F.; Antonucci, G.; Paolucci, S. Gait Phase Proportions in Different Locomotion Tasks: The Pivot Role of Golden Ratio. Neurosci. Lett. 2019, 699, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.; Stergiou, N. Chapter 7: The basics of gait analysis. In Biomechanics and Gait Analysis; Stergiou, N., Ed.; Elsevier: London, UK, 2020; pp. 225–250. [Google Scholar]
- Olney, S.J.; Richards, C. Hemiparetic Gait Following Stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Karthikbabu, S.; Chakrapani, M.; Ganesan, S.; Ellajosyla, R. Pelvic Alignment in Standing, and Its Relationship with Trunk Control and Motor Recovery of Lower Limb after Stroke. Neurol. Clin. Neurosci. 2017, 5, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Karthikbabu, S.; Chakrapani, M.; Ganesan, S.; Ellajosyula, R. Relationship between Pelvic Alignment and Weight-bearing Asymmetry in Community-dwelling Chronic Stroke Survivors. J. Neurosci. Rural. Pract. 2016, 7 (Suppl 1), S37–S40. [Google Scholar] [CrossRef]
- Shin, Y.J.; Choi, E.H.; Choe, Y.W.; Peng, C.; Kim, M.K. Immediate Effects of Posterior Pelvic Tilting Taping on Gait Ability of Chronic Stroke Patients: A Randomized Controlled Trial. J. Exp. Stroke Trans. Med. 2017, 10, 1–10. [Google Scholar]
- Ploughman, M.; Shears, J.; Quinton, S.; Flight, C.; O'brien, M.; MacCallum, P.; Kirkland, M.C.; Byrne, J.M. Therapists' Cues Influence Lower Limb Muscle Activation and Kinematics During Gait Training in Subacute Stroke. Disabil. Rehabil. 2018, 40, 3156–3163. [Google Scholar] [CrossRef]
- Abraira, V.E.; Ginty, D.D. The Sensory Neurons of Touch. Neuron 2013, 79, 618–639. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, C.K.; Bowden, M.G.; Neptune, R.R.; Kautz, S.A. Relationship between Step Length Asymmetry and Walking Performance in Subjects with Chronic Hemiparesis. Arch. Phys. Med. Rehabil. 2007, 88, 43–49. [Google Scholar] [CrossRef]
- Han, P.; Zhang, W.; Kang, L.; Ma, Y.; Fu, L.; Jia, L.; Yu, H.; Chen, X.; Hou, L.; Wang, L.; et al. Clinical Evidence of Exercise Benefits for Stroke. Adv. Exp. Med. Biol. 2017, 1000, 131–151. [Google Scholar] [PubMed]
Characteristics | Experimental Group (n = 11) | Control Group (n = 10) | p |
---|---|---|---|
Age (years) | 62.27 ± 10.10 | 63.30 ± 7.05 | 0.58 |
Gender (male/female) | 8/3 | 7/3 | 0.63 |
Height (cm) | 166.32 ± 7.23 | 165.80 ± 6.82 | 0.97 |
Weight (kg) | 67.44 ± 14.25 | 65.80 ± 10.06 | 0.86 |
Affected side (right/left) | 5/6 | 5/5 | 0.61 |
Time since stroke (months) | 32.55 ± 33.84 | 60.90 ± 61.98 | 0.28 |
Duration of cane use (months) | 29.27 ± 34.36 | 57.00 ± 61.79 | 0.31 |
Measures | Experimental Group (n = 11) | Control Group (n = 10) | ||||
---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Follow-Up | Pre-Intervention | Post-Intervention | Follow-Up | |
Velocity (m/s) | 0.45 ± 0.24 | 0.48 ± 0.29 | 0.48 ± 0.27 | 0.41 ± 0.25 | 0.40 ± 0.29 | 0.44 ± 0.26 |
Change value | 0.03 ± 0.14 | 0.03 ± 0.11 | −0.01 ± 0.12 | 0.04 ± 0.10 | ||
Double-support time (%) | 34.71 ± 3.96 | 26.32 ± 5.05 * | 31.29 ± 2.86 * | 32.42 ± 10.05 | 29.96 ± 6.36 | 32.86 ± 9.80 |
Change value | −8.39 ± 3.27 † | −3.41 ± 2.50 | −2.45 ± 6.29 | 0.44 ± 7.56 | ||
Spatial symmetry index (%) | 15.49 ± 9.10 | 9.80 ± 5.45 * | 7.54 ± 7.93 * | 14.10 ± 12.09 | 14.87 ± 6.43 | 11.71 ± 7.63 |
Change value | −5.70 ± 7.21 | −7.95 ± 8.66 | 0.77 ± 13.34 | −2.39 ± 14.48 | ||
Temporal symmetry index (%) | 20.35 ± 14.13 | 28.26 ± 15.52 | 16.39 ± 8.73 | 24.38 ± 20.29 | 20.30 ± 14.37 | 20.45 ± 11.23 |
Change value | 7.91 ± 12.64 | −3.96 ± 15.08 | −18.28 ± 48.23 | −3.93 ± 20.77 |
Measures | Experimental Group (n = 11) | Control Group (n = 10) | ||||
---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Follow-Up | Pre-Intervention | Post-Intervention | Follow-Up | |
Berg Balance Scale | 42.27 ± 3.90 | 50.22 ± 3.34 * | 48.47 ± 4.22 * | 40.40 ± 5.72 | 48.40 ± 5.38 * | 47.80 ± 5.71 * |
Change value | 7.95 ± 2.87 | 6.19 ± 2.55 | 8.00 ± 3.23 | 7.40 ± 3.06 | ||
6-min walk test (m) | 178.55 ± 85.18 | 200.50 ± 84.88 * | 199.43 ± 86.77 * | 174.81 ± 89.29 | 201.16 ± 113.95 * | 204.56 ± 118.29 * |
Change value | 21.95 ± 31.88 | 20.89 ± 33.65 | 26.35 ± 36.75 | 29.75 ± 40.94 | ||
Fall Efficacy Scale | 33.91 ± 8.17 | 22.22 ± 3.46 * | 21.89 ± 3.08 * | 33.50 ± 7.58 | 25.00 ± 8.01 * | 25.50 ± 7.21 * |
Change value | −11.69 ± 6.37 | −12.02 ± 6.23 | −8.50 ± 5.10 | −8.00 ± 6.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.-Y.; Lin, C.-Y.; Chen, J.-L.; Lee, C.-S.; Chen, Y.-J.; Yang, Y.-R. Adjunct Non-Elastic Hip Taping Improves Gait Stability in Cane-Assisted Individuals with Chronic Stroke: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 1553. https://doi.org/10.3390/jcm11061553
Wang R-Y, Lin C-Y, Chen J-L, Lee C-S, Chen Y-J, Yang Y-R. Adjunct Non-Elastic Hip Taping Improves Gait Stability in Cane-Assisted Individuals with Chronic Stroke: A Randomized Controlled Trial. Journal of Clinical Medicine. 2022; 11(6):1553. https://doi.org/10.3390/jcm11061553
Chicago/Turabian StyleWang, Ray-Yau, Chieh-Yu Lin, Jyue-Liang Chen, Chun-Shou Lee, Yun-Ju Chen, and Yea-Ru Yang. 2022. "Adjunct Non-Elastic Hip Taping Improves Gait Stability in Cane-Assisted Individuals with Chronic Stroke: A Randomized Controlled Trial" Journal of Clinical Medicine 11, no. 6: 1553. https://doi.org/10.3390/jcm11061553
APA StyleWang, R.-Y., Lin, C.-Y., Chen, J.-L., Lee, C.-S., Chen, Y.-J., & Yang, Y.-R. (2022). Adjunct Non-Elastic Hip Taping Improves Gait Stability in Cane-Assisted Individuals with Chronic Stroke: A Randomized Controlled Trial. Journal of Clinical Medicine, 11(6), 1553. https://doi.org/10.3390/jcm11061553