Mechanical Hyperalgesia but Not Forward Shoulder Posture Is Associated with Shoulder Pain in Volleyball Players: A Cross-Sectional Study
Abstract
:1. Introduction
- To observe the differences in upper limb posture and mechanical hyperalgesia between volleyball players with and without shoulder pain;
- To observe if there is an association between the forward shoulder angle and the pectoralis minor index in volleyball players with and without shoulder pain;
- To observe if there is an association between shoulder posture and upper limb mechanical hyperalgesia in volleyball players with and without shoulder pain.
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Outcome Measures
2.3.1. Forward Shoulder Angle (Forward Shoulder Position)
2.3.2. Pectoralis Minor Length Measurements
2.3.3. Tissue Mechanosensitivity (Muscle and Nerve Trunks)
2.3.4. Pain Intensity
2.4. Sample Size
2.5. Data Analysis
3. Results
3.1. Participants and Descriptive Data
3.2. Comparison between Groups
3.3. Correlations
4. Discussion
- No association was found between the forward shoulder angle and the pectoralis minor index in volleyball players with and without shoulder pain;
- Results show that mechanical hyperalgesia is increased in players with shoulder pain versus those without, but there are no differences in forward shoulder posture or shortening of the pectoralis minor;
- There is a moderate negative association between shoulder forward angle with muscle mechanical hyperalgesia (Infraspinatus, Levator Scapulae and Pectoralis Major); and the pectoralis minor index with the mechanical hyperalgesia of the cubital nerve in volleyball players with shoulder pain. No such associations were found in volleyball players without shoulder pain.
4.1. Posture
4.2. Mechanical Hyperalgesia
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarsen, B.; Bahr, R.; Heymans, M.; Engedahl, M.; Midtsundstad, G.; Rosenlund, L.; Thorsen, G.; Myklebust, G. The prevalence and impact of overuse injuries in five Norwegian sports: Application of a new surveillance method. Scand. J. Med. Sci. Sports 2014, 25, 323–330. [Google Scholar] [CrossRef]
- Bahr, R.; Reeser, J.C.; Fédération Internationale de Volleyball. Injuries among world-class professional beach volleyball players. The Fédération Internationale de Volleyball beach volleyball injury study. Am. J. Sports Med. 2003, 31, 119–125. [Google Scholar] [CrossRef]
- Seminati, E.; Minetti, A.E. Overuse in volleyball training/practice: A review on shoulder and spine-related injuries. Eur. J. Sport Sci. 2013, 13, 732–743. [Google Scholar] [CrossRef]
- Frisch, K.E.; Clark, J.; Hanson, C.; Fagerness, C.; Conway, A.; Hoogendoorn, L. High Prevalence of Nontraumatic Shoulder Pain in a Regional Sample of Female High School Volleyball Athletes. Orthop. J. Sports Med. 2017, 5, 2325967117712236. [Google Scholar] [CrossRef]
- Lee, J.; Cynn, H.; Yoon, T.; Ko, C.; Choi, W.; Choi, S.; Choi, B. The effect of scapular posterior tilt exercise, pectoralis minor stretching, and shoulder brace on scapular alignment and muscles activity in subjects with round-shoulder posture. J. Electromyogr. Kinesiol. 2015, 25, 107–114. [Google Scholar] [CrossRef]
- Thigpen, C.A.; Padua, D.A.; Michener, L.A.; Guskiewicz, K.; Giuliani, C.; Keener, J.D.; Stergiou, N. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. J. Electromyogr. Kinesiol. 2010, 20, 701–709. [Google Scholar] [CrossRef]
- Martinez-Merinero, P.; Nuñez-Nagy, S.; Achalandabaso-Ochoa, A.; Fernandez-Matias, R.; Pecos-Martin, D.; Gallego-Izquierdo, T. Relationship between Forward Head Posture and Tissue Mechanosensitivity: A Cross-Sectional Study. J. Clin. Med. 2020, 9, 634. [Google Scholar] [CrossRef][Green Version]
- Kang, J.-H.; Park, R.-Y.; Lee, S.-J.; Kim, J.-Y.; Yoon, S.-R.; Jung, K.-I. The Effect of The Forward Head Posture on Postural Balance in Long Time Computer Based Worker. Ann. Rehabil. Med. 2012, 36, 98–104. [Google Scholar] [CrossRef][Green Version]
- Julius, A.; Lees, R.; Dilley, A.; Lynn, B. Shoulder posture and median nerve sliding. BMC Musculoskelet. Disord. 2004, 5, 23. [Google Scholar] [CrossRef][Green Version]
- Martínez-Merinero, P.; Lluch, E.; Gallezo-Izquierdo, T.; Pecos-Martin, D.; Manzano, G.P.; Nuñez-Nagy, S.; Falla, D. The influence of a depressed scapular alignment on upper limb neural tissue mechanosensitivity and local pressure pain sensitivity. Musculoskelet. Sci. Pract. 2017, 29, 60–65. [Google Scholar] [CrossRef][Green Version]
- Hunter, D.J.; A Rivett, D.; McKeirnan, S.; Smith, L.; Snodgrass, S.J. Relationship between Shoulder Impingement Syndrome and Thoracic Posture. Phys. Ther. 2019, 100, 677–686. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef][Green Version]
- Borstad, J.D.; Ludewig, P.M. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J. Orthop. Sports Phys. Ther. 2005, 35, 227–238. [Google Scholar] [CrossRef][Green Version]
- Weber, P.; Corrêa, E.C.R.; Milanesi, J.M.; Soares, J.C.; Trevisan, M.E. Craniocervical posture: Cephalometric and biophotogrammetric analysis. Braz. J. Oral Sci. 2012, 11, 416–421. [Google Scholar]
- Ruivo, R.M.; Pezarat-Correia, P.; Carita, A.I. Cervical and shoulder postural assessment of adolescents between 15 and 17 years old and association with upper quadrant pain. Braz. J. Phys. Ther. 2014, 18, 364–371. [Google Scholar] [CrossRef][Green Version]
- Borstad, J.D. Measurement of Pectoralis Minor Muscle Length: Validation and Clinical Application. J. Orthop. Sports Phys. Ther. 2008, 38, 169–174. [Google Scholar] [CrossRef][Green Version]
- Lewis, J.S.; Valentine, R.E. The pectoralis minor length test: A study of the intra-rater reliability and diagnostic accuracy in subjects with and without shoulder symptoms. BMC Musculoskelet. Disord. 2007, 8, 64. [Google Scholar] [CrossRef][Green Version]
- Walton, D.M.; MacDermid, J.C.; Nielson, W.; Teasell, R.W.; Chiasson, M.; Brown, L. Reliability, Standard Error, and Minimum Detectable Change of Clinical Pressure Pain Threshold Testing in People With and Without Acute Neck Pain. J. Orthop. Sports Phys. Ther. 2011, 41, 644–650. [Google Scholar] [CrossRef][Green Version]
- Sterling, M.; Treleaven, J.; Edwards, S.; Jull, G. Pressure pain thresholds of upper limb peripheral nerve trunks in asymptomatic subjects. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2000, 5, 220–229. [Google Scholar] [CrossRef]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. 11), S240–S252. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef][Green Version]
- Barrett, E.; O’Keeffe, M.; O’Sullivan, K.; Lewis, J.; McCreesh, K. Is thoracic spine posture associated with shoulder pain, range of motion and function? A systematic review. Man. Ther. 2016, 26, 38–46. [Google Scholar] [CrossRef][Green Version]
- Ozunlu, N.; Tekeli, H.; Baltaci, G. Lateral Scapular Slide Test and Scapular Mobility in Volleyball Players. J. Athl. Train. 2011, 46, 438–444. [Google Scholar] [CrossRef][Green Version]
- Brinjikji, W.; Luetmer, P.; Comstock, B.; Bresnahan, B.; Chen, L.; Deyo, R.; Halabi, S.; Turner, J.; Avins, A.; James, K.; et al. Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. Am. J. Neuroradiol. 2014, 36, 811–816. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Fernandez-Sanchez, M.; Struyf, F.; Suarez, A.L. Association of Both Scapular Upward Rotation and Scapulothoracic Muscle Lengths with Shoulder Pain, Function, and Range of Movement. J. Manip. Physiol. Ther. 2020, 43, 824–831. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Fernandez-Sanchez, M.; Luque-Suarez, A. Does the pectoralis minor length influence acromiohumeral distance, shoulder pain-function, and range of movement? Phys. Ther. Sport 2018, 34, 43–48. [Google Scholar] [CrossRef]
- Fathollahnejad, K.; Letafatkar, A.; Hadadnezhad, M. The effect of manual therapy and stabilizing exercises on forward head and rounded shoulder postures: A six-week intervention with a one-month follow-up study. BMC Musculoskelet. Disord. 2019, 20, 86. [Google Scholar] [CrossRef][Green Version]
- Lewis, J.S.; McCreesh, K.; Barratt, E.; Hegedus, E.J.; Sim, J. Inter-rater reliability of the Shoulder Symptom Modification Procedure in people with shoulder pain. BMJ Open Sport Exerc. Med. 2016, 2, e000181. [Google Scholar] [CrossRef][Green Version]
- Lewis, J.S.; Wright, C.; Green, A. Subacromial Impingement Syndrome: The Effect of Changing Posture on Shoulder Range of Movement. J. Orthop. Sports Phys. Ther. 2005, 35, 72–87. [Google Scholar] [CrossRef][Green Version]
- Chester, R.; Jerosch-Herold, C.; Lewis, J.; Shepstone, L. Psychological factors are associated with the outcome of physiotherapy for people with shoulder pain: A multicentre longitudinal cohort study. Br. J. Sports Med. 2016, 52, 269–275. [Google Scholar] [CrossRef][Green Version]
- Atreja, A.; Bellam, N.; Levy, S.R. Strategies to enhance patient adherence: Making it simple. MedGenMed Medscape Gen. Med. 2005, 7, 4. [Google Scholar]
- Rojas, V.; Pluma, A.; Pecos-Martín, D.; Achalandabaso-Ochoa, A.; Fernández-Matías, R.; Martinez-Merinero, P.; Nuñez-Nagy, S.; Gallego-Izquierdo, T. Relationship between Neuromuscular Mechanosensitivity and Chronic Neck Pain in Guitarists: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 2673. [Google Scholar] [CrossRef]
- Pacheco, J.; Raimundo, J.; Santos, F.; Ferreira, M.; Lopes, T.; Ramos, L.; Silva, A.G. Forward head posture is associated with pressure pain threshold and neck pain duration in university students with subclinical neck pain. Somatosens. Mot. Res. 2018, 35, 103–108. [Google Scholar] [CrossRef]
- Haik, M.N.; Evans, K.; Smith, A.; Henríquez, L.; Bisset, L. People with musculoskeletal shoulder pain demonstrate no signs of altered pain processing. Musculoskelet. Sci. Pract. 2018, 39, 32–38. [Google Scholar] [CrossRef]
- Hidalgo-Lozano, A.; Fernandez-De-Las-Penas, C.; Calderón-Soto, C.; Domingo-Camara, A.; Madeleine, P.; Arroyo-Morales, M. Elite swimmers with and without unilateral shoulder pain: Mechanical hyperalgesia and active/latent muscle trigger points in neck-shoulder muscles. Scand. J. Med. Sci. Sports 2011, 23, 66–73. [Google Scholar] [CrossRef]
- Simons, G.S.; Travell, J. Myofascial Pain and Dysfunction: Trigger Points Manual: Volume 1: Upper Half of Body, 2nd ed.; Willians & Wilkins: Philadelphia, PA, USA, 1999. [Google Scholar]
- Osborne, N.J.; Gatt, I.T. Management of shoulder injuries using dry needling in elite volleyball players. Acupunct. Med. J. Br. Med. Acupunct. Soc. 2010, 28, 42–45. [Google Scholar] [CrossRef]
- Leong, H.T.; Ng, G.Y.-F.; Chan, S.C.; Fu, S.N. Rotator cuff tendinopathy alters the muscle activity onset and kinematics of scapula. J. Electromyogr. Kinesiol. 2017, 35, 40–46. [Google Scholar] [CrossRef]
- Harrington, S.; Meisel, C.; Tate, A. A Cross-Sectional Study Examining Shoulder Pain and Disability in Division I Female Swimmers. J. Sport Rehabil. 2014, 23, 65–75. [Google Scholar] [CrossRef][Green Version]
- Reeser, J.C.; Joy, E.A.; Porucznik, C.A.; Berg, R.L.; Colliver, E.B.; Willick, S.E. Risk Factors for Volleyball-Related Shoulder Pain and Dysfunction. PMR 2010, 2, 27–36. [Google Scholar] [CrossRef]
- Sanders, R.J.; Annest, S.J. Pectoralis Minor Syndrome: Subclavicular Brachial Plexus Compression. Diagnostics 2017, 7, 46. [Google Scholar] [CrossRef][Green Version]
- Miura, K.; Tsuda, E.; Kogawa, M.; Ishibashi, Y. The effects of ball impact position on shoulder muscle activation during spiking in male volleyball players. JSES Int. 2020, 4, 302–309. [Google Scholar] [CrossRef]
- Jorge, J.G.; Moreira, V.M.; Hattori, W.T.; Dionisio, V.C. Hyperalgesia affects muscle activity and knee range of motion during a single-limb mini squat in individuals with knee osteoarthritis: A cross-sectional study. BMC Musculoskelet. Disord. 2021, 22, 45. [Google Scholar] [CrossRef]
- Bron, C.; Dommerholt, J.; Stegenga, B.; Wensing, M.; AB Oostendorp, R. High prevalence of shoulder girdle muscles with myofascial trigger points in patients with shoulder pain. BMC Musculoskelet. Disord. 2011, 12, 139. [Google Scholar] [CrossRef][Green Version]
- Hidalgo-Lozano, A.; Fernández-De-Las-Peñas, C.; Alonso-Blanco, M.C.; Ge, H.-Y.; Arendt-Nielsen, L.; Arroyo-Morales, M. Muscle trigger points and pressure pain hyperalgesia in the shoulder muscles in patients with unilateral shoulder impingement: A blinded, controlled study. Exp. Brain Res. 2010, 202, 915–925. [Google Scholar] [CrossRef]
Shoulder Pain Group (n = 28) | Control Group (n = 28) | p Value | |
---|---|---|---|
Age (years) | 21.5 (20 and 23.75) | 21.5 (18 and 26) | 0.74 |
Sex (female n, [%]) | 19 [67.9%] | 14 [50%] | - |
Weight (kg) | 63.5 (57 and 71.75) | 67.5 (57.25 and 76.75) | 0.66 |
Height (cm) | 170 (166.25 and 183.25) | 178 (167.75 and 180.75) | 0.25 |
BMI | 22.57 (20.44 and 23.71) | 21.85 (20.83 and 23.32) | 0.49 |
Dominant side (right n, [%]) | 26 [92.9%] | 21 [75%] | - |
VAS (0–10 cm) | 6.25 (6 and 7) | - | - |
Pain duration (months) | 1 (0 and 6.75) | - | - |
FSP (yes n, [%]) | 15 [53.6%] | 15 [53.6%] | - |
Shoulder Pain Group (n = 28) | Control Group (n = 28) | Mann–Whitney U Test (p Value) | ||
---|---|---|---|---|
FSA (degrees) | 49 (42.25 and 56.5) | 50.5 (48 and 57.5) | 0.33 | |
PMI (cm) | 13 (11.88 and 13.98) | 13.83 (12.25 and 14.51) | 0.29 | |
PPT (kg/cm2) | ||||
Serratus Anterior | 2.35 (1.6 and 3.07) | 2.72 (2.26 and 3.37) | 0.059 | |
Lower Trapezious | 2.52 (2.21 and 3.1) | 3 (2.72 and 3.8) | 0.019 * | |
Infraspinatus | 2.3 (2.02 and 2.85) | 3 (2.6 and 4) | <0.01 ** | |
Teres Minor | 2.25 (1.92 and 2.73) | 2.7 (2.3 and 4) | <0.01 ** | |
Levator scapulae | 2.2 (1.62 and 2.73) | 2.75 (1.8 and 3.37) | 0.06 | |
Upper Trapezius | 2.12 (1.6 and 2.43) | 2.42 (2.1 and 3.46) | 0.019 * | |
Pectoralis Major | 2.15 (1.55 and 2.57) | 2.7 (2 and 3.58) | 0.02 * | |
Median Nerve | 2.4 (2.1 and 3.13) | 2.77 (2.21 and 3.17) | 0.4 | |
Radial Nerve | 3 (2.18 and 3.67) | 3.62 (2.61 and 4.03) | 0.04 * | |
Cubital Nerve | 2.65 (2.46 and 3.47) | 3.32 (2.52 and 4) | 0.27 |
PMI | VAS | Serratus Anterior | Lower Trapezious | Infraspinatus | Teres Minor | Levator Scapulae | Upper Trapezius | Pectoralis Major | Median Nerve | Radial Nerve | Cubital Nerve | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FSA | 0.12 | −0.21 | −0.36 | −0.21 | −0.43 * | −0.33 | −0.55 * | −0.24 | −0.41 * | −0.2 | −0.14 | −0.13 |
PMI | 1 | −0.002 | −0.12 | 0.2 | −0.02 | −0.03 | −0.11 | 0.14 | −0.17 | −0.09 | −0.16 | −0.44 * |
PMI | VAS | Serratus Anterior | Lower Trapezious | Infraspinatus | Teres Minor | Levator Scapulae | Upper Trapezius | Pectoralis Major | Median Nerve | Radial Nerve | Cubital Nerve | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FSA | −0.29 | - | 0.01 | 0.98 | 0.11 | −0.08 | −0.02 | 0.21 | −0.2 | 0.06 | 0.05 | 0.02 |
PMI | 1 | - | 0.11 | −0.12 | −0.03 | −0.06 | −0.27 | −0.1 | 0.03 | −0.11 | 0 | −0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecos-Martín, D.; Patiño-Núñez, S.; Quintero-Pérez, J.; Cruz-Riesco, G.; Quevedo-Socas, C.; Gallego-Izquierdo, T.; Beltran-Alacreu, H.; Fernández-Carnero, J. Mechanical Hyperalgesia but Not Forward Shoulder Posture Is Associated with Shoulder Pain in Volleyball Players: A Cross-Sectional Study. J. Clin. Med. 2022, 11, 1472. https://doi.org/10.3390/jcm11061472
Pecos-Martín D, Patiño-Núñez S, Quintero-Pérez J, Cruz-Riesco G, Quevedo-Socas C, Gallego-Izquierdo T, Beltran-Alacreu H, Fernández-Carnero J. Mechanical Hyperalgesia but Not Forward Shoulder Posture Is Associated with Shoulder Pain in Volleyball Players: A Cross-Sectional Study. Journal of Clinical Medicine. 2022; 11(6):1472. https://doi.org/10.3390/jcm11061472
Chicago/Turabian StylePecos-Martín, Daniel, Sergio Patiño-Núñez, Jessica Quintero-Pérez, Gema Cruz-Riesco, Cintia Quevedo-Socas, Tomás Gallego-Izquierdo, Hector Beltran-Alacreu, and Josué Fernández-Carnero. 2022. "Mechanical Hyperalgesia but Not Forward Shoulder Posture Is Associated with Shoulder Pain in Volleyball Players: A Cross-Sectional Study" Journal of Clinical Medicine 11, no. 6: 1472. https://doi.org/10.3390/jcm11061472