Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges
Abstract
1. Introduction
2. Pathological Diagnosis and Molecular Features
2.1. Morphology and Neuroendocrine Features
2.2. Molecular Characterization and Subtyping
3. Staging
4. Prognostic Factors
5. Treatment
5.1. Early-Stage Disease
5.2. Locally-Advanced Disease
5.3. Advanced Disease
6. Future Perspectives
6.1. Targeted Therapies
6.2. Immunotherapy in LCNEC
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gustafsson, B.I.; Kidd, M.; Chan, A.; Malfertheiner, M.V.; Modlin, I.M. Bronchopulmonary neuroendocrine tumors. Cancer 2008, 113, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Takei, H.; Asamura, H.; Maeshima, A.; Suzuki, K.; Kondo, H.; Niki, T.; Yamada, T.; Tsuchiya, R.; Matsuno, Y. Large cell neuroendocrine carcinoma of the lung: A clinicopathologic study of eighty-seven cases. J. Thorac. Cardiovasc. Surg. 2002, 124, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Iyoda, A.; Hiroshima, K.; Toyozaki, T.; Haga, Y.; Fujisawa, T.; Ohwada, H. Clinical characterization of pulmonary large cell neuroendocrine carcinoma and large cell carcinoma with neuroendocrine morphology. Cancer 2001, 91, 1992–2000. [Google Scholar] [CrossRef]
- Travis, W.D.; Linnoila, R.I.; Tsokos, M.G.; Hitchcock, C.L.; Cutler, G.B.; Nieman, L.; Chrousos, G.; Pass, H.; Doppman, J. Neuroendocrine Tumors of the Lung With Proposed Criteria for Large-Cell Neuroendocrine Carcinoma. Am. J. Surg. Pathol. 1991, 15, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Müller-Hermelink, H.K.; Harris, C.C. (Eds.) Pathology & Genetics of Tumours of the Lung, Pleura, Thymus and Heart; IARC/Press: Lyon, France, 2004; p. 344. [Google Scholar]
- Filosso, P.L.; Ruffini, E.; Di Gangi, S.; Guerrera, F.; Bora, G.; Ciccone, G.; Galassi, C.; Solidoro, P.; Lyberis, P.; Oliaro, A.; et al. Prognostic factors in neuroendocrine tumours of the lung: A single-centre experience. Eur. J. Cardiothorac. Surg. 2014, 45, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Gazdar, A.F.; Savage, T.K.; Johnson, J.E.; Berns, A.; Sage, J.; Linnoila, R.I.; MacPherson, D.; McFadden, D.G.; Farago, A.; Jacks, T.; et al. The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung. J. Thorac. Oncol. 2015, 10, 553–564. [Google Scholar] [CrossRef]
- Govindan, R.; Page, N.; Morgensztern, D.; Read, W.; Tierney, R.; Vlahiotis, A.; Spitznagel, E.L.; Piccirillo, J. Changing Epidemiology of Small-Cell Lung Cancer in the United States Over the Last 30 Years: Analysis of the Surveillance, Epidemiologic, and End Results Database. J. Clin. Oncol. 2006, 24, 4539–4544. [Google Scholar] [CrossRef]
- Lantuejoul, S.; Fernandez-Cuesta, L.; Damiola, F.; Girard, N.; McLeer, A. New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Transl. Lung Cancer Res. 2020, 9, 2233–2244. [Google Scholar] [CrossRef]
- Derks, J.L.; Hendriks, L.E.; Buikhuisen, W.A.; Groen, H.J.M.; Thunnissen, E.; van Suylen, R.-J.; Houben, R.; Damhuis, R.A.; Speel, E.J.M.; Dingemans, A.-M.C. Clinical features of large cell neuroendocrine carcinoma: A population-based overview. Eur. Respir. J. 2016, 47, 615–624. [Google Scholar] [CrossRef]
- Lo Russo, G.; Pusceddu, S.; Proto, C.; Macerelli, M.; Signorelli, D.; Vitali, M.; Ganzinelli, M.; Gallucci, R.; Zilembo, N.; Platania, M.; et al. Treatment of lung large cell neuroendocrine carcinoma. Tumor Biol. 2016, 37, 7047–7057. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-M.; Ahn, M.-J.; Ahn, J.S.; Um, S.-W.; Kim, H.; Kim, H.K.; Choi, Y.S.; Han, J.; Kim, J.; Kwon, O.J.; et al. Chemotherapy for pulmonary large cell neuroendocrine carcinoma: Similar to that for small cell lung cancer or non-small cell lung cancer? Lung Cancer 2012, 77, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Rekhtman, N.; Pietanza, M.C.; Hellmann, M.D.; Naidoo, J.; Arora, A.; Won, H.; Halpenny, D.F.; Wang, H.; Tian, S.K.; Litvak, A.M.; et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin. Cancer Res. 2016, 22, 3618–3629. [Google Scholar] [CrossRef]
- George, J.; Walter, V.; Peifer, M.; Alexandrov, L.B.; Seidel, D.; Leenders, F.; Maas, L.; Müller, C.; Dahmen, I.; Delhomme, T.M.; et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat. Commun. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Seki, K.; Bychkov, A.; Fukuoka, J. Molecular Pathology of Pulmonary Large Cell Neuroendocrine Carcinoma: Novel Concepts and Treatments. Front. Oncol. 2021, 11, 1329. [Google Scholar] [CrossRef]
- Baine, M.K.; Rekhtman, N. Multiple faces of pulmonary large cell neuroendocrine carcinoma: Update with a focus on practical approach to diagnosis. Transl. Lung Cancer Res. 2020, 9, 860–878. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.L.; Rijnsburger, N.; Hermans, B.C.M.; Moonen, L.; Hillen, L.M.; von der Thüsen, J.H.; den Bakker, M.A.; van Suylen, R.J.; Speel, E.J.M.; Dingemans, A.M.C. Clinical-Pathologic Challenges in the Classification of Pulmonary Neuroendocrine Neoplasms and Targets on the Horizon for Future Clinical Practice. J. Thorac. Oncol. 2021, 16, 1632–1646. [Google Scholar] [CrossRef]
- Naidoo, J.; Santos-Zabala, M.L.; Iyriboz, T.; Woo, K.M.; Sima, C.S.; Fiore, J.J.; Kris, M.G.; Riely, G.J.; Lito, P.; Iqbal, A.; et al. Large Cell Neuroendocrine Carcinoma of the Lung: Clinico-Pathologic Features, Treatment, and Outcomes. Clin. Lung Cancer 2016, 17, e121–e129. [Google Scholar] [CrossRef]
- Fasano, M.; Della Corte, C.M.; Papaccio, F.; Ciardiello, F.; Morgillo, F. Pulmonary Large-Cell Neuroendocrine Carcinoma: From Epidemiology to Therapy. J. Thorac. Oncol. 2015, 10, 1133–1141. [Google Scholar] [CrossRef]
- Ionescu, D.N.; Treaba, D.; Gilks, C.B.; Leung, S.; Renouf, D.; Laskin, J.; Wood-Baker, R.; Gown, A.M. Nonsmall Cell Lung Carcinoma With Neuroendocrine Differentiation—An Entity of No Clinical or Prognostic Significance. Am. J. Surg. Pathol. 2007, 31, 26–32. [Google Scholar] [CrossRef]
- Thunnissen, E.; Borczuk, A.C.; Flieder, D.B.; Witte, B.; Beasley, M.B.; Chung, J.-H.; Dacic, S.; Lantuejoul, S.; Russell, P.A.; den Bakker, M.; et al. The Use of Immunohistochemistry Improves the Diagnosis of Small Cell Lung Cancer and Its Differential Diagnosis. An International Reproducibility Study in a Demanding Set of Cases. J. Thorac. Oncol. 2017, 12, 334–346. [Google Scholar] [CrossRef]
- Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.; Chmielecki, J.; Beer, D.G.; Cope, L.; Creighton, C.J.; Danilova, L.; et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar]
- Network, T.C.G.A.R. Cancer Genome Atlas Research Network Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular subtypes of small cell lung cancer: A synthesis of human and mouse model data. Nat. Rev. Cancer 2019, 19, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.-M.C.; Früh, M.; Ardizzoni, A.; Besse, B.; Faivre-Finn, C.; Hendriks, L.E.; Lantuejoul, S.; Peters, S.; Reguart, N.; Rudin, C.M.; et al. Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 839–853. [Google Scholar] [CrossRef]
- Noonan, K.; Derks, J.; Laskin, J.; Dingemans, A.-M.C. Neuroendocrine Tumors of the Lung Other Than Small Cell Lung Cancer. IASLC Thorac. Oncol. 2018, 555–568.e6. [Google Scholar] [CrossRef]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of advances since 2015. J. Thorac. Oncol. 2021, 17, 362–387. [Google Scholar] [CrossRef]
- Milione, M.; Maisonneuve, P.; Grillo, F.; Mangogna, A.; Centonze, G.; Prinzi, N.; Pusceddu, S.; Garzone, G.; Cattaneo, L.; Busico, A.; et al. Ki-67 Index of 55% Distinguishes Two Groups of Bronchopulmonary Pure and Composite Large Cell Neuroendocrine Carcinomas with Distinct Prognosis. Neuroendocrinology 2021, 111, 475–489. [Google Scholar] [CrossRef]
- Lamberti, G.; Spurr, L.F.F.; Li, Y.; Ricciuti, B.; Recondo, G.; Umeton, R.; Nishino, M.; Sholl, L.M.M.; Meyerson, M.L.L.; Cherniack, A.D.D.; et al. Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-L1) expression in nonsquamous non-small-cell lung cancer. Ann. Oncol. 2020, 31, 807–814. [Google Scholar] [CrossRef]
- Ricciuti, B.; Arbour, K.C.; Lin, J.J.; Vajdi, A.; Vokes, N.; Hong, L.; Zhang, J.; Tolstorukov, M.Y.; Li, Y.Y.; Spurr, L.F.; et al. Diminished Efficacy of Programmed Death-(Ligand)1 Inhibition in STK11- and KEAP1-Mutant Lung Adenocarcinoma Is Affected by KRAS Mutation Status. J. Thorac. Oncol. 2022, 17, 399–410. [Google Scholar] [CrossRef]
- Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Laheru, D.A.; Frampton, G.M.; et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019, 4, e126908. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Umemura, S.; Matsumura, Y.; Mimaki, S.; Tada, S.; Makinoshima, H.; Ishii, G.; Udagawa, H.; Matsumoto, S.; Yoh, K.; et al. Genomic profiling of large-cell neuroendocrine carcinoma of the lung. Clin. Cancer Res. 2017, 23, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Simbolo, M.; Mafficini, A.; Sikora, K.O.; Fassan, M.; Barbi, S.; Corbo, V.; Mastracci, L.; Rusev, B.; Grillo, F.; Vicentini, C.; et al. Lung neuroendocrine tumours: Deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J. Pathol. 2017, 241, 488–500. [Google Scholar] [CrossRef]
- Pelosi, G.; Bianchi, F.; Dama, E.; Simbolo, M.; Mafficini, A.; Sonzogni, A.; Pilotto, S.; Harari, S.; Papotti, M.; Volante, M.; et al. Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: Innovative findings skipping the current pathogenesis paradigm. Virchows Arch. 2018, 472, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Simbolo, M.; Barbi, S.; Fassan, M.; Mafficini, A.; Ali, G.; Vicentini, C.; Sperandio, N.; Corbo, V.; Rusev, B.; Mastracci, L.; et al. Gene Expression Profiling of Lung Atypical Carcinoids and Large Cell Neuroendocrine Carcinomas Identifies Three Transcriptomic Subtypes with Specific Genomic Alterations. J. Thorac. Oncol. 2019, 14, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Alcala, N.; Leblay, N.; Gabriel, A.A.G.; Mangiante, L.; Hervas, D.; Giffon, T.; Sertier, A.S.; Ferrari, A.; Derks, J.; Ghantous, A.; et al. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat. Commun. 2019, 10, 3407. [Google Scholar] [CrossRef]
- Zhuo, M.; Guan, Y.; Yang, X.; Hong, L.; Wang, Y.; Li, Z.; Chen, R.; Abbas, H.; Chang, L.; Gong, Y.; et al. The prognostic and therapeutic role of genomic subtyping by sequencing tumor or cell-free DNA in pulmonary large-cell neuroendocrine carcinoma. Clin. Cancer Res. 2019, 26, 892–901. [Google Scholar] [CrossRef]
- Oshiro, Y.; Kusumoto, M.; Matsuno, Y.; Asamura, H.; Tsuchiya, R.; Terasaki, H.; Takei, H.; Maeshima, A.; Murayama, S.; Moriyama, N. CT Findings of Surgically Resected Large Cell Neuroendocrine Carcinoma of the Lung in 38 Patients. Am. J. Roentgenol. 2004, 182, 87–91. [Google Scholar] [CrossRef]
- Lee, K.W.; Lee, Y.; Oh, S.W.; Jin, K.N.; Goo, J.M. Large cell neuroendocrine carcinoma of the lung: CT and FDG PET findings. Eur. J. Radiol. 2015, 84, 2332–2338. [Google Scholar] [CrossRef]
- Varlotto, J.M.; Medford-Davis, L.N.; Recht, A.; Flickinger, J.C.; Schaefer, E.; Zander, D.S.; Decamp, M.M. Should large cell neuroendocrine lung carcinoma be classified and treated as a small cell lung cancer or with other large cell carcinomas? J. Thorac. Oncol. 2011, 6, 1050–1058. [Google Scholar] [CrossRef]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Lowczak, A.; Kolasinska-Cwikla, A.; Osowiecka, K.; Glinka, L.; Palucki, J.; Rzepko, R.; Doboszynska, A.; Cwikla, J.B. Outcomes of Patients with Pulmonary Large Cell Neuroendocrine Carcinoma in I–IV Stage. Medicina 2021, 57, 118. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, H.; Wang, S.; Chen, Y. Prognostic nomogram predicts overall survival in pulmonary large cell neuroendocrine carcinoma. PLoS ONE 2019, 14, e0223275. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, Z.; Chen, X.; Zheng, L.; Yu, Y.; Zhao, X.; Chen, M.; Luo, B.; Wang, J.; Sun, J. Clinicopathological characteristics and prognostic factors of pulmonary large cell neuroendocrine carcinoma: A large population-based analysis. Thorac. Cancer 2019, 10, 751–760. [Google Scholar] [CrossRef]
- Roesel, C.; Welter, S.; Kambartel, K.O.; Weinreich, G.; Krbek, T.; Serke, M.; Ibrahim, M.; Alnajdawi, Y.; Plönes, T.; Aigner, C. Prognostic markers in resected large cell neuroendocrine carcinoma: A multicentre retrospective analysis. J. Thorac. Dis. 2020, 12, 466–476. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogawa, H.; Uchino, K.; Ohbayashi, C.; Maniwa, Y.; Nishio, W.; Nakao, A.; Yoshimura, M. Immunohistochemical studies of pulmonary large cell neuroendocrine carcinoma: A possible association between staining patterns with neuroendocrine markers and tumor response to chemotherapy. J. Thorac. Cardiovasc. Surg. 2013, 145, 839–846. [Google Scholar] [CrossRef][Green Version]
- Eichhorn, F.; Dienemann, H.; Muley, T.; Warth, A.; Hoffmann, H. Predictors of Survival After Operation Among Patients With Large Cell Neuroendocrine Carcinoma of the Lung. Ann. Thorac. Surg. 2015, 99, 983–989. [Google Scholar] [CrossRef]
- Iyoda, A.; Hiroshima, K.; Moriya, Y.; Sekine, Y.; Shibuya, K.; Iizasa, T.; Nakatani, Y.; Fujisawa, T. Prognostic impact of large cell neuroendocrine histology in patients with pathologic stage Ia pulmonary non–small cell carcinoma. J. Thorac. Cardiovasc. Surg. 2006, 132, 312–315. [Google Scholar] [CrossRef]
- Ferrara, M.G.; Stefani, A.; Simbolo, M.; Pilotto, S.; Martini, M.; Lococo, F.; Vita, E.; Chiappetta, M.; Cancellieri, A.; D’Argento, E.; et al. Large Cell Neuro-Endocrine Carcinoma of the Lung: Current Treatment Options and Potential Future Opportunities. Front. Oncol. 2021, 11, 650293. [Google Scholar] [CrossRef]
- Corbett, V.; Arnold, S.; Anthony, L.; Chauhan, A. Management of Large Cell Neuroendocrine Carcinoma. Front. Oncol. 2021, 11, 653162. [Google Scholar] [CrossRef]
- Paci, M.; Cavazza, A.; Annessi, V.; Putrino, I.; Ferrari, G.; De Franco, S.; Sgarbi, G. Large cell neuroendocrine carcinoma of the lung: A 10-year clinicopathologic retrospective study. Ann. Thorac. Surg. 2004, 77, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Iyoda, A.; Hiroshima, K.; Moriya, Y.; Iwadate, Y.; Takiguchi, Y.; Uno, T.; Nakatani, Y.; Yoshino, I. Postoperative recurrence and the role of adjuvant chemotherapy in patients with pulmonary large-cell neuroendocrine carcinoma. J. Thorac. Cardiovasc. Surg. 2009, 138, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Iyoda, A.; Hiroshima, K.; Toyozaki, T.; Haga, Y.; Baba, M.; Fujisawa, T.; Ohwada, H. Adjuvant chemotherapy for large cell carcinoma with neuroendocrine features. Cancer 2001, 92, 1108–1112. [Google Scholar] [CrossRef]
- Cao, L.; Li, Z.W.; Wang, M.; Zhang, T.T.; Bao, B.; Liu, Y.P. Clinicopathological characteristics, treatment and survival of pulmonary large cell neuroendocrine carcinoma: A SEER population-based study. PeerJ 2019, 2019, e6539. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Gong, D.; Wang, Y.; Chi, B.; Zhang, J.; Hu, S.; Min, L. The demographic and treatment options for patients with large cell neuroendocrine carcinoma of the lung. Cancer Med. 2019, 8, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Iyoda, A.; Makino, T.; Koezuka, S.; Otsuka, H.; Hata, Y. Treatment options for patients with large cell neuroendocrine carcinoma of the lung. Gen. Thorac. Cardiovasc. Surg. 2014, 62, 351–356. [Google Scholar] [CrossRef]
- Yang, C.-F.J.; Chan, D.Y.; Speicher, P.J.; Gulack, B.C.; Wang, X.; Hartwig, M.G.; Onaitis, M.W.; Tong, B.C.; D’Amico, T.A.; Berry, M.F.; et al. Role of Adjuvant Therapy in a Population-Based Cohort of Patients with Early-Stage Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 1057–1064. [Google Scholar] [CrossRef]
- Kujtan, L.; Muthukumar, V.; Kennedy, K.F.; Davis, J.R.; Masood, A.; Subramanian, J. The Role of Systemic Therapy in the Management of Stage I Large Cell Neuroendocrine Carcinoma of the Lung. J. Thorac. Oncol. 2018, 13, 707–714. [Google Scholar] [CrossRef]
- Sarkaria, I.S.; Iyoda, A.; Roh, M.S.; Sica, G.; Kuk, D.; Sima, C.S.; Pietanza, M.C.; Park, B.J.; Travis, W.D.; Rusch, V.W. Neoadjuvant and Adjuvant Chemotherapy in Resected Pulmonary Large Cell Neuroendocrine Carcinomas: A Single Institution Experience. Ann. Thorac. Surg. 2011, 92, 1180–1187. [Google Scholar] [CrossRef]
- Veronesi, G.; Morandi, U.; Alloisio, M.; Terzi, A.; Cardillo, G.; Filosso, P.; Rea, F.; Facciolo, F.; Pelosi, G.; Gandini, S.; et al. Large cell neuroendocrine carcinoma of the lung: A retrospective analysis of 144 surgical cases. Lung Cancer 2006, 53, 111–115. [Google Scholar] [CrossRef]
- Saji, H.; Tsuboi, M.; Matsubayashi, J.; Miyajima, K.; Shimada, Y.; Imai, K.; Kato, Y.; Usuda, J.; Kajiwara, N.; Uchida, O.; et al. Clinical response of large cell neuroendocrine carcinoma of the lung to perioperative adjuvant chemotherapy. Anticancer Drugs 2010, 21, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Raman, V.; Jawitz, O.K.; Yang, C.-F.J.; Tong, B.C.; D’Amico, T.A.; Berry, M.F.; Harpole, D.H. Adjuvant Therapy for Patients With Early Large Cell Lung Neuroendocrine Cancer: A National Analysis. Ann. Thorac. Surg. 2019, 108, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Wakeam, E.; Adibfar, A.; Stokes, S.; Leighl, N.B.; Giuliani, M.E.; Varghese, T.K.; Darling, G.E. Defining the role of adjuvant therapy for early-stage large cell neuroendocrine carcinoma. J. Thorac. Cardiovasc. Surg. 2020, 159, 2043–2054.e9. [Google Scholar] [CrossRef] [PubMed]
- Iyoda, A.; Hiroshima, K.; Moriya, Y.; Takiguchi, Y.; Sekine, Y.; Shibuya, K.; Iizasa, T.; Kimura, H.; Nakatani, Y.; Fujisawa, T. Prospective Study of Adjuvant Chemotherapy for Pulmonary Large Cell Neuroendocrine Carcinoma. Ann. Thorac. Surg. 2006, 82, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Kenmotsu, H.; Niho, S.; Tsuboi, M.; Wakabayashi, M.; Ishii, G.; Nakagawa, K.; Daga, H.; Tanaka, H.; Saito, H.; Aokage, K.; et al. Randomized Phase III Study of Irinotecan Plus Cisplatin Versus Etoposide Plus Cisplatin for Completely Resected High-Grade Neuroendocrine Carcinoma of the Lung: JCOG1205/1206. J. Clin. Oncol. 2020, 38, 4292–4301. [Google Scholar] [CrossRef]
- Kenmotsu, H.; Niho, S.; Tsuboi, M.; Wakabayashi, M.; Ishii, G.; Nakagawa, K.; Daga, H.; Tanaka, H.; Saito, H.; Aokage, K.; et al. Randomized phase III study of irinotecan/cisplatin (IP) versus etoposide/cisplatin (EP) for completely resected high-grade neuroendocrine carcinoma (HGNEC) of the lung: JCOG1205/1206. J. Clin. Oncol. 2020, 38, 9006. [Google Scholar] [CrossRef]
- Mazières, J.; Daste, G.; Molinier, L.; Berjaud, J.; Dahan, M.; Delsol, M.; Carles, P.; Didier, A.; Bachaud, J.-M. Large cell neuroendocrine carcinoma of the lung: Pathological study and clinical outcome of 18 resected cases. Lung Cancer 2002, 37, 287–292. [Google Scholar] [CrossRef]
- Raman, V.; Jawitz, O.K.; Yang, C.-F.J.; Voigt, S.L.; Tong, B.C.; D’Amico, T.A.; Harpole, D.H. Outcomes for Surgery in Large Cell Lung Neuroendocrine Cancer. J. Thorac. Oncol. 2019, 14, 2143–2151. [Google Scholar] [CrossRef]
- Lo, H.; Abel, S.; Finley, G.; Weksler, B.; Colonias, A.; Wegner, R.E. Surgical resection versus stereotactic body radiation therapy in early stage bronchopulmonary large cell neuroendocrine carcinoma. Thorac. Cancer 2020, 11, 305–310. [Google Scholar] [CrossRef]
- Cao, L.; Wu, H.-F.; Zhao, L.; Bai, Y.; Jiang, Z.; Yang, W.-J.; Liu, S. The role of radiotherapy in pulmonary large cell neuroendocrine carcinoma: Propensity score matching analysis. J. Radiat. Res. 2020, 61, 594–601. [Google Scholar] [CrossRef]
- Du, L.; Samson, P.P.; Waqar, S.N.; Carpenter, D.; Masood, A.; Devarakonda, S.; Robinson, C.G.; Govindan, R.; Puri, V.; Morgensztern, D. Stage III pulmonary large cell neuroendocrine carcinoma (LNEC). J. Clin. Oncol. 2016, 34, 8536. [Google Scholar] [CrossRef]
- Hautzel, H.; Alnajdawi, Y.; Fendler, W.P.; Rischpler, C.; Darwiche, K.; Eberhardt, W.E.; Umutlu, L.; Theegarten, D.; Stuschke, M.; Schuler, M.; et al. N-staging in large cell neuroendocrine carcinoma of the lung: Diagnostic value of [18F]FDG PET/CT compared to the histopathology reference standard. EJNMMI Res. 2021, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Sekine, I.; Matsuno, Y.; Takei, H.; Yamamoto, N.; Kunitoh, H.; Ohe, Y.; Tamura, T.; Kodama, T.; Asamura, H.; et al. Clinical responses of large cell neuroendocrine carcinoma of the lung to cisplatin-based chemotherapy. Lung Cancer 2005, 49, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Niho, S.; Ishii, G.; Hishida, T.; Yoshida, J.; Nishimura, M.; Yoh, K.; Goto, K.; Ohmatsu, H.; Ohe, Y.; et al. Clinical features of unresectable high-grade lung neuroendocrine carcinoma diagnosed using biopsy specimens. Lung Cancer 2012, 75, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Limonnik, V.; Abel, S.; Finley, G.G.; Long, G.S.; Wegner, R.E. Factors associated with treatment receipt and overall survival for patients with locally advanced large cell neuroendocrine carcinoma of the lung: A National Cancer Database analysis. Lung Cancer 2020, 150, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Aupérin, A.; Arriagada, R.; Pignon, J.-P.; Le Péchoux, C.; Gregor, A.; Stephens, R.J.; Kristjansen, P.E.G.; Johnson, B.E.; Ueoka, H.; Wagner, H.; et al. Prophylactic Cranial Irradiation for Patients with Small-Cell Lung Cancer in Complete Remission. N. Engl. J. Med. 1999, 341, 476–484. [Google Scholar] [CrossRef]
- Sun, A.; Hu, C.; Wong, S.J.; Gore, E.; Videtic, G.; Dutta, S.; Suntharalingam, M.; Chen, Y.; Gaspar, L.E.; Choy, H. Prophylactic Cranial Irradiation vs. Observation in Patients with Locally Advanced Non-Small Cell Lung Cancer: A Long-term Update of the NRG Oncology/RTOG 0214 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 847–855. [Google Scholar] [CrossRef]
- Prelaj, A.; Rebuzzi, S.E.; Del Bene, G.; Giròn Berrìos, J.R.; Emiliani, A.; De Filippis, L.; Prete, A.A.; Pecorari, S.; Manna, G.; Ferrara, C.; et al. Evaluation of the efficacy of cisplatin–etoposide and the role of thoracic radiotherapy and prophylactic cranial irradiation in LCNEC. ERJ Open Res. 2017, 3, 00128-2016. [Google Scholar] [CrossRef]
- Glisson, B.S.; Moran, C.A. Large-Cell Neuroendocrine Carcinoma: Controversies in Diagnosis and Treatment. J. Natl. Compr. Cancer Netw. 2011, 9, 1122–1129. [Google Scholar] [CrossRef]
- Le Treut, J.; Sault, M.C.; Lena, H.; Souquet, P.J.; Vergnenegre, A.; Le Caer, H.; Berard, H.; Boffa, S.; Monnet, I.; Damotte, D.; et al. Multicentre phase II study of cisplatin–etoposide chemotherapy for advanced large-cell neuroendocrine lung carcinoma: The GFPC 0302 study. Ann. Oncol. 2013, 24, 1548–1552. [Google Scholar] [CrossRef]
- Igawa, S.; Watanabe, R.; Ito, I.; Murakami, H.; Takahashi, T.; Nakamura, Y.; Tsuya, A.; Kaira, K.; Naito, T.; Endo, M.; et al. Comparison of chemotherapy for unresectable pulmonary high-grade non-small cell neuroendocrine carcinoma and small-cell lung cancer. Lung Cancer 2010, 68, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.L.; van Suylen, R.J.; Thunnissen, E.; Den Bakker, M.A.; Groen, H.J.; Smit, E.F.; Damhuis, R.A.; van den Broek, E.C.; Speel, E.-J.J.M.; Dingemans, A.-M.C.M.C. Chemotherapy for pulmonary large cell neuroendocrine carcinomas: Does the regimen matter? Eur. Respir. J. 2017, 49, 1601838. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.L.; Leblay, N.; Thunnissen, E.; van Suylen, R.J.; Den Bakker, M.; Groen, H.J.M.; Smit, E.F.; Damhuis, R.; van den Broek, E.C.; Charbrier, A.; et al. Molecular subtypes of pulmonary large-cell neuroendocrine carcinoma predict chemotherapy treatment outcome. Clin. Cancer Res. 2018, 24, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Cavazza, A.; Marchioni, A.; Longo, L.; Migaldi, M.; Sartori, G.; Bigiani, N.; Schirosi, L.; Casali, C.; Morandi, U.; et al. Role of Chemotherapy and the Receptor Tyrosine Kinases KIT, PDGFRα, PDGFRβ, and Met in Large-Cell Neuroendocrine Carcinoma of the Lung. J. Clin. Oncol. 2005, 23, 8774–8785. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Sekine, I.; Tsuta, K.; Ohe, Y.; Kunitoh, H.; Yamamoto, N.; Nokihara, H.; Yamada, K.; Tamura, T. Effect of Platinum Combined with Irinotecan or Paclitaxel against Large Cell Neuroendocrine Carcinoma of the Lung. Jpn. J. Clin. Oncol. 2007, 37, 482–486. [Google Scholar] [CrossRef]
- Niho, S.; Kenmotsu, H.; Sekine, I.; Ishii, G.; Ishikawa, Y.; Noguchi, M.; Oshita, F.; Watanabe, S.; Nakajima, R.; Tada, H.; et al. Combination Chemotherapy with Irinotecan and Cisplatin for Large-Cell Neuroendocrine Carcinoma of the Lung: A Multicenter Phase II Study. J. Thorac. Oncol. 2013, 8, 980–984. [Google Scholar] [CrossRef]
- Christopoulos, P.; Engel-Riedel, W.; Grohé, C.; Kropf-Sanchen, C.; von Pawel, J.; Gütz, S.; Kollmeier, J.; Eberhardt, W.; Ukena, D.; Baum, V.; et al. Everolimus with paclitaxel and carboplatin as first-line treatment for metastatic large-cell neuroendocrine lung carcinoma: A multicenter phase II trial. Ann. Oncol. 2017, 28, 1898–1902. [Google Scholar] [CrossRef]
- Ferrara, M.G.; Di Noia, V.; D’Argento, E.; Vita, E.; Damiano, P.; Cannella, A.; Ribelli, M.; Pilotto, S.; Milella, M.; Tortora, G.; et al. Oncogene-Addicted Non-Small-Cell Lung Cancer: Treatment Opportunities and Future Perspectives. Cancers 2020, 12, 1196. [Google Scholar] [CrossRef]
- De Pas, T.M.; Giovannini, M.; Manzotti, M.; Trifirò, G.; Toffalorio, F.; Catania, C.; Spaggiari, L.; Labianca, R.; Barberis, M. Large-Cell Neuroendocrine Carcinoma of the Lung Harboring EGFR Mutation and Responding to Gefitinib. J. Clin. Oncol. 2011, 29, e819–e822. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.H.; Ma, S.; Zhou, J. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report. Oncol. Lett. 2015, 10, 1575–1578. [Google Scholar] [CrossRef]
- Omachi, N.; Shimizu, S.; Kawaguchi, T.; Tezuka, K.; Kanazu, M.; Tamiya, A.; Asami, K.; Okishio, K.; Kitaichi, M.; Atagi, S. A Case of Large-Cell Neuroendocrine Carcinoma Harboring an EML4–ALK Rearrangement with Resistance to the ALK Inhibitor Crizotinib. J. Thorac. Oncol. 2014, 9, e40–e42. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Fujita, A.; Saikai, T.; Takabatake, H.; Sotoshiro, M.; Sekine, K.; Kawana, A. Large Cell Neuroendocrine Carcinoma Harboring an Anaplastic Lymphoma Kinase (ALK) Rearrangement with Response to Alectinib. Intern. Med. 2018, 57, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Atieh, T.; Huang, C.H. Treatment of Advanced-Stage Large Cell Neuroendocrine Cancer (LCNEC) of the Lung: A Tale of Two Diseases. Front. Oncol. 2021, 11, 667468. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Paz-Ares, L.G.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab ± tremelimumab + platinum-etoposide in first-line extensive-stage SCLC (ES-SCLC): Updated results from the phase III CASPIAN study. J. Clin. Oncol. 2020, 38, 9002. [Google Scholar] [CrossRef]
- Levra, M.G.; Mazieres, J.; Valette, C.A.; Molinier, O.; Planchard, D.; Frappat, V.; Ferrer, L.; Toffart, A.C.; Moro-Sibilot, D. P1.07-012 Efficacy of Immune Checkpoint Inhibitors in Large Cell Neuroendocrine Lung Cancer: Results from a French Retrospective Cohort. J. Thorac. Oncol. 2017, 12, S702–S703. [Google Scholar] [CrossRef]
- Sherman, S.; Rotem, O.; Shochat, T.; Zer, A.; Moore, A.; Dudnik, E. Efficacy of immune check-point inhibitors (ICPi) in large cell neuroendocrine tumors of lung (LCNEC). Lung Cancer 2020, 143, 40–46. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Baghdadi, T.A.; et al. A Phase II Basket Trial of Dual Anti–CTLA-4 and Anti–PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef]
- Gelsomino, F.; Lamberti, G.; Tiseo, M.; Rocco, D.; Pasello, G.; Cecere, F.L.; Chella, A.; Grilli, G.; Mandruzzato, M.; Tognetto, M.; et al. Atezolizumab in a CoHort of pretreated, advanced, non-small cell lung cancer patients with rare HistologiCal SubtypEs (CHANCE trial). Ther. Adv. Med. Oncol. 2020, 12, 1758835920915983. [Google Scholar] [CrossRef]
- Campana, D.; Walter, T.; Pusceddu, S.; Gelsomino, F.; Graillot, E.; Prinzi, N.; Spallanzani, A.; Fiorentino, M.; Barritault, M.; Dall’Olio, F.; et al. Correlation between MGMT promoter methylation and response to temozolomide-based therapy in neuroendocrine neoplasms: An observational retrospective multicenter study. Endocrine 2018, 60, 490–498. [Google Scholar] [CrossRef]
- Lamberti, G.; Andrini, E.; Sisi, M.; Federico, A.D.; Ricciuti, B. Targeting DNA damage response and repair genes to enhance anticancer immunotherapy: Rationale and clinical implication. Future Oncol. 2020, 16, 1751–1766. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Recondo, G.; Spurr, L.F.; Li, Y.Y.; Lamberti, G.; Venkatraman, D.; Umeton, R.; Cherniack, A.D.; Nishino, M.; Sholl, L.M.; et al. Impact of DNA Damage Response and Repair (DDR) Gene Mutations on Efficacy of PD-(L)1 Immune Checkpoint Inhibition in Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 4135–4142. [Google Scholar] [CrossRef] [PubMed]
- Komiya, T.; Powell, E. Role of immunotherapy in stage IV large cell neuroendocrine carcinoma of the lung. J. Clin. Oncol. 2020, 38, 9060. [Google Scholar] [CrossRef]
- Dudnik, E.; Kareff, S.; Moskovitz, M.; Kim, C.; Liu, S.V.; Lobachov, A.; Gottfried, T.; Urban, D.; Zer, A.; Rotem, O.; et al. Real-world survival outcomes with immune checkpoint inhibitors in large-cell neuroendocrine tumors of lung. J. Immunother. Cancer 2021, 9, e001999. [Google Scholar] [CrossRef] [PubMed]
- Agar, C.; Geier, M.; Léveiller, G.; Lamy, R.; Bizec, J.-L.; Tiercin, M.; Bernier, C.; Robinet, G.; Léna, H.; Ricordel, C.; et al. Brief Report on the Efficacy of Nivolumab in Patients With Previously Treated Advanced Large-Cell Neuroendocrine Cancer of the Lung. JTO Clin. Res. Rep. 2021, 2, 100129. [Google Scholar] [CrossRef]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 2021, 39, 346–360.e7. [Google Scholar] [CrossRef]
NSCLC | SCLC | LCNEC | |
---|---|---|---|
% of lung tumors | 76% | 15–20% | 2–3% |
Association with smoking | Variable | Strong | Strong |
Histopathological features | LUAD: glandular differentiation or mucin production LSCC: squamous cell differentiation (i.e., keratinization, keratin pearl formation and intercellular bridges) with moderate to abundant cytoplasm | Dense proliferation of small tumor cells, scant cytoplasm, finely granular chromatin, inconspicuous nucleoli, nuclear molding, extensive necrosis, crushing artifacts | Cell size 3× lymphocytes diameter Abundant cytoplasm Prominent nucleoli Frequent necrosis |
IHC | TTF-1 in LUAD (>85%) p40 in LSCC | TTF-1 (85–90%) Neuroendocrine markers (CgA, NCAM/CD56, Syn) | TTF-1 (40–50%) Variable expression of neuroendocrine markers (CgA, NCAM/CD56, Syn) |
Location of primary tumor | LUAD: peripheral LSCC: central | Central | Peripheral |
Molecular patterns | Oncogene-addicted (~30%) Six molecular subtypes in LUAD [23], four in LSCC [24] Non-oncogene addicted (~70%) | SCLC-A (ASCL1) SCLC-N (NEUROD1) SCLC-P (POU2F3) SCLC-Y/I (YAP1/Inflamed) [25] | Type I (TP53, KEAP1, STK11) Type II (TP53 and RB1 co-inactivation) |
Sensitivity to chemotherapy and standard first-line | Variable Platinum-based plus pembrolizumab TKI in oncogene-addicted | High Platinum plus etoposide [26] | Variable NSCLC chemotherapy for type I SCLC chemotherapy for type II |
Five-year survival rate | 25% | 7% | 15–57% |
Grade | WHO, IASLC | ||
---|---|---|---|
Low | Typical Carcinoid | <2 mitoses/10 HPF, no necrosis | Neuroendocrine carcinoma, G1 |
Intermediate | Atypical carcinoid | 2–10 mitoses/10 HPF, foci of necrosis | Neuroendocrine carcinoma, G2 |
High | Large-cell neuroendocrine carcinoma | 9–10 mitoses/10 HPF | Neuroendocrine carcinoma, G3 |
Small-cell carcinoma |
Author | Type of Study | n. of Patients | Treatment | Results |
---|---|---|---|---|
Veronesi et al. (2006) [61] | Retrospective | 144 | Neoadjuvant chemotherapy vs. adjuvant chemotherapy | 5 y OS of 42.5% |
Kujtan et al. (2018) [59] | Population analysis (NCDB) Stage I | 1232 | Surgery combined with adjuvant chemotherapy (275) vs. surgery alone (957) | Adjuvant chemotherapy better in OS Five y OS of 64.5% vs. 48.4% Stage IA HR 0.64, 95% CI [0.47–0.88] Stage IB HR 0.43, 95% CI [0.32–0.59] |
Raman et al. (2019) [63] | Population analysis (NCDB) Stage I | 2641 | Surgery combined with adjuvant chemotherapy (481) vs. surgery alone (2161) | Adjuvant chemotherapy better in OS mOS 81 vs. 65 m Stage IA HR 0.92, 95% CI [0.75–1.11] Stage IB HR 0.67, 95% CI [0.50–0.90] |
Cao et al. (2019) [55] | Population analysis (SEER) | 1530 | Segmentectomy/wedge resection Lobectomy/Bilobectomy Pneumonectomy Chemotherapy Radiation | HR: 0.526, 95% CI [0.413–0.669] HR: 0.357, 95% CI [0.290–0.440] HR: 0.491, 95% CI [0.355–0.679] HR: 0.442, 95% CI [0.389–0.503] HR: 0.837, 95% CI [0.738–0.949] |
Gu et al. (2019) [56] | Population analysis (SEER) | 2594 | Surgery combined with chemotherapy vs. surgery alone Surgery combined with chemotherapy vs. surgery with other treatments | p = 0.044 p = 0.033 |
Iyoda et al. (2006) [65] | Prospective (phase II, single arm) | 50 | cisplatin and etoposide vs. retrospective arm (surgery alone) | Adjuvant chemotherapy better in OS Five y OS of 88.9% vs. 47.4% (p = 0.0252) |
Kenmotsu et al. (2020) [67] | Prospective (phase III, two arms) | 221 | Cisplatin + Irinotecan vs. Cisplatin + Etoposide | Three y RFS 69% vs. 65%, 95% CI [0.66–1.7] |
Author | Type of Study | n. of Patients | Treatment | Results |
---|---|---|---|---|
Rossi et al. (2005) [85] | Retrospective | 83 LCNEC | Platinum–etoposide vs. other regimens | Best results with Platinum–etoposide ORR 29% (2 CR) mOS 51 m vs. 21 m |
Fujiwara et al. (2007) [86] | Retrospective | 22 LCNEC | Platinum-based or paclitaxel | Both irinotecan and paclitaxel may be active against LCNEC. mOS 10.3 m, 95% CI [5.8–14.8] vs. 10.3 m, 95% CI [0–21.8] |
Sun et al. (2012) [13] | Retrospective | 45 LCNEC | SCLC-based (11) vs. NSCLC-based (34) | SCLC-based therapy is more appropriate than an NSCLC-based one mOS for total population 11.1 m, 95% CI [8.4–13.9] mPFS 6.1 vs. 4.9 m (p = 0.41) mOS 16.5 vs. 9.2 m (p = 0.10) |
Shimada et al. (2012) [75] | Retrospective | 25 LCNEC vs. 180 SCLC | Platinum-based CT/CRT | Efficacy of chemotherapy and/or radiation therapy is similar between LCNEC and SCLC patients ORR 61 vs. 63% 1y OS 34 vs. 49% |
Niho et al. (2013) [87] | Prospective (phase II, single arm) | 30 LCNEC, 10 SCLC, 1 NSCLC | Cisplatin–irinotecan | Combination is active in LCNEC, but appears to be inferior compared to SCLC RR 46%, 95% CI [28.3–65.7%] vs. 80%, 95% CI [44.4–97.5%] mOS 12.6 m, 95% CI [9.3–16.0] vs. 17.3 m, 95% CI [11.2–23.3] |
Le Treut et al. (2013) [81] | Prospective (phase II, single arm) | 42 LCNEC | Cisplatin-etoposide | The outcomes are similar to those of SCLC mPFS 5.2 m, 95% CI [3.1–6.6] mOS 7.7 m, 95% CI [6.0–9.6] |
Christopoulos et al. (2017) [88] | Prospective (phase II, single arm) | 49 LCNEC | Carboplatin + Paclitaxel + everolimus | The combination is effective in first-line treatment ORR 45%, 95% CI [31–60%] DCR 74%, 95% CI [59–85%] mPFS 4.4 m, 95% CI [3.2–6] mOS 9.9 m, 95% CI [6.9–11.7] |
NCT | Phase | N | Tumors | Setting | Experimental Arm | Primary Endpoint | Status |
---|---|---|---|---|---|---|---|
NCT02834013 (DART SWOG 1609) | II | 818 | Rare tumors (including LCNEC) | Progressed during or after one line of chemotherapy | Arm 1: nivolumab + ipilimumab. Arm 2: nivolumab | ORR | Recruiting |
NCT03976518 (CHANCE) | II | 43 | NSCLCs of rare histology | Progressed during or after at least one line of chemotherapy | Atezolizumab | DCR | Recruiting |
NCT03728361 | II | 55 | Cohort 1: SCLC; Cohort 2: Metastatic NEC of any grade/primary site (including LCNEC) | Cohort 1: progressed or recurred after platinum-based chemotherapy with immunotherapy; Cohort 2: Any line | Nivolumab + temozolomide | ORR | Active, not recruiting |
Eudract 2020-005942-41 (DUPLE) | II | 49 | LCNEC | 1st-line | Durvalumab + carboplatin + etoposide × 4 → durvalumab | 1-year OS rate | Recruiting |
NCT05126433 (EMERGE-201) | II | 60 | Advanced or metastatic solid tumors (including LCNEC) | Progressed on platinum-based regimen (irrespective of number of prior lines) | Lurbinectidin every 3 weeks | ORR | Recruiting |
NCT03591731 (NIPINEC) | II | 180 | Poorly differentiated neuroendocrine tumors, including LCNEC | Progressed after one or two lines of treatment, including at least one line of platin-based chemotherapy | Arm A: Nivolumab Arm B: nivolumab + ipilimumab | ORR | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrini, E.; Marchese, P.V.; De Biase, D.; Mosconi, C.; Siepe, G.; Panzuto, F.; Ardizzoni, A.; Campana, D.; Lamberti, G. Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges. J. Clin. Med. 2022, 11, 1461. https://doi.org/10.3390/jcm11051461
Andrini E, Marchese PV, De Biase D, Mosconi C, Siepe G, Panzuto F, Ardizzoni A, Campana D, Lamberti G. Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges. Journal of Clinical Medicine. 2022; 11(5):1461. https://doi.org/10.3390/jcm11051461
Chicago/Turabian StyleAndrini, Elisa, Paola Valeria Marchese, Dario De Biase, Cristina Mosconi, Giambattista Siepe, Francesco Panzuto, Andrea Ardizzoni, Davide Campana, and Giuseppe Lamberti. 2022. "Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges" Journal of Clinical Medicine 11, no. 5: 1461. https://doi.org/10.3390/jcm11051461
APA StyleAndrini, E., Marchese, P. V., De Biase, D., Mosconi, C., Siepe, G., Panzuto, F., Ardizzoni, A., Campana, D., & Lamberti, G. (2022). Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges. Journal of Clinical Medicine, 11(5), 1461. https://doi.org/10.3390/jcm11051461