Cardiopulmonary Exercise Performance and Endothelial Function in Convalescent COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Procedures
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vane, J.R.; Anggard, E.E.; Botting, R.M. Regulatory functions of the vascular endothelium. N. Engl. J. Med. 1990, 323, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, E.; Moraleda, J.M.; Iacobelli, M.; Jara, R.; Vlodavsky, I.; O’Gorman, P.; Pagliuca, A.; Mo, C.; Baron, R.M.; Aghemo, A.; et al. COVID-19-induced endotheliitis: Emerging evidence and possible therapeutic strategies. Br. J. Haematol. 2021, 193, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Bruno, R.M.; Van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Rinaldo, R.F.; Mondoni, M.; Parazzini, E.M.; Pitari, F.; Brambilla, E.; Luraschi, S.; Balbi, M.; Papa, G.F.S.; Sotgiu, G.; Guazzi, M.; et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021, 58, 2100870. [Google Scholar] [CrossRef]
- Skjørten, I.; Ankerstjerne, O.A.W.; Trebinjac, D.; Brønstad, E.; Rasch-Halvorsen, Ø.; Einvik, G.; Lerum, T.V.; Stavem, K.; Edvardsen, A.; Ingul, C.B. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur. Respir. J. 2021, 58, 2100996. [Google Scholar] [CrossRef]
- Bai, C.; Chotirmall, S.H.; Rello, J.; Alba, G.A.; Ginns, L.C.; Krishnan, J.A.; Rogers, R.; Bendstrup, E.; Burgel, P.-R.; Chalmers, J.D.; et al. Updated guidance on the management of COVID-19: From an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020). Eur. Respir. Rev. 2020, 29, 200287. [Google Scholar] [CrossRef]
- World Health Organization. WHO COVID-19 Clinical Management: Living Guidance. 2021. Available online: https://apps.who.int/iris/handle/10665/338882 (accessed on 3 December 2021).
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef]
- MacIntyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; Van Der Grinten, C.P.M.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, P.; Molino, A.; Calcaterra, I.; Formisano, R.; Stufano, S.; Spedicato, G.; Motta, A.; Papa, A.; Di Minno, M.; Maniscalco, M. Clinical Assessment of Endothelial Function in Convalescent COVID-19 Patients Undergoing Multidisciplinary Pulmonary Rehabilitation. Biomedicines 2021, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Weisman, I.M.; Marciniuk, D.; Martinez, F.J.; Sciurba, F.; Sue, D.; Myers, J.; Casaburi, R.; Marciniuk, D.; Beck, K.; Zeballos, J.; et al. ATS/ACCP statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 focused update: Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 2018, 9, 1144–1161. [Google Scholar] [CrossRef]
- Weber, K.T.; Janicki, J.S.; McElroy, P.A. Determination of aerobic capacity and the severity of chronic cardiac and circulatory failure. Circulation 1987, 76, VI40–VI45. [Google Scholar]
- Radtke, T.; Vogiatzis, I.; Urquhart, D.S.; Laveneziana, P.; Casaburi, R.; Hebestreit, H. Standardization of cardiopulmonary exercise testing in chronic lung diseases: Summary of key findings from the ERS task force. Eur. Respir. J. 2019, 54, 1901441. [Google Scholar] [CrossRef]
- Dorelli, G.; Braggio, M.; Gabbiani, D.; Busti, F.; Caminati, M.; Senna, G.; Girelli, D.; Laveneziana, P.; Ferrari, M.; Sartori, G.; et al. Importance of Cardiopulmonary Exercise Testing amongst Subjects Recovering from COVID-19. Diagnostics 2021, 11, 507. [Google Scholar] [CrossRef]
- Mancini, D.M.; Brunjes, D.L.; Lala, A.; Trivieri, M.G.; Contreras, J.P.; Natelson, B.H. Use of Cardiopulmonary Stress Testing for Patients With Unexplained Dyspnea Post-Coronavirus Disease. JACC Heart Fail 2021, 9, 927–937. [Google Scholar] [CrossRef]
- Crisafulli, E.; Dorelli, G.; Sartori, G.; Dalle Carbonare, L. Exercise ventilatory inefficiency may be a relevant CPET-feature in COVID-19 survivors. Int. J. Cardiol. 2021, 343, 200. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, R.; Geng, Q.; Mo, X.; Zhan, C.; Jian, W.; Li, S.; Zheng, J. Cardiopulmonary exercise testing might be helpful for interpretation of impaired pulmonary function in recovered COVID-19 patients. Eur. Respir. J. 2021, 57, 2004265. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Lupoli, R.; Iervolino, S.; De Felice, A.; Pappone, N.; Storino, A.; Di Minno, M.N.D. Clinical assessment of endothelial function in patients with chronic obstructive pulmonary disease: A systematic review with meta-analysis. Intern. Emerg. Med. 2017, 12, 877–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosino, P.; Calcaterra, I.; Molino, A.; Moretta, P.; Lupoli, R.; Spedicato, G.; Papa, A.; Motta, A.; Maniscalco, M.; Di Minno, M. Persistent Endothelial Dysfunction in Post-Acute COVID-19 Syndrome: A Case-Control Study. Biomedicines 2021, 9, 957. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- McCracken, I.R.; Saginc, G.; He, L.; Huseynov, A.; Daniels, A.; Fletcher, S.; Peghaire, C.; Kalna, V.; Andaloussi-Mae, M.; Muhl, L.; et al. Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation 2021, 143, 865–868. [Google Scholar] [CrossRef]
- Matsuishi, Y.; Mathis, B.; Shimojo, N.; Subrina, J.; Okubo, N.; Inoue, Y. Severe COVID-19 Infection Associated with Endothelial Dysfunction Induces Multiple Organ Dysfunction: A Review of Therapeutic Interventions. Biomedicines 2021, 9, 279. [Google Scholar] [CrossRef]
- Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pao, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020, 136, 1330–1341. [Google Scholar] [CrossRef]
- Green, S.J. Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect. 2020, 22, 149–150. [Google Scholar] [CrossRef]
- Ruhl, L.; Pink, I.; Kühne, J.F.; Beushausen, K.; Keil, J.; Christoph, S.; Sauer, A.; Boblitz, L.; Schmidt, J.; David, S.; et al. Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduct. Target Ther. 2021, 6, 418. [Google Scholar] [CrossRef]
- Piotrowicz, K.; Gasowski, J.; Michel, J.P.; Veronese, N. Post-COVID-19 acute sarcopenia: Physiopathology and management. Aging Clin. Exp. Res. 2021, 33, 2887–2898. [Google Scholar] [CrossRef]
- Coupé, M.; Fortrat, J.O.; Larina, I.; Gauquelin-Koch, G.; Gharib, C.; Custaud, M.A. Cardiovascular deconditioning: From autonomic nervous system to microvascular dysfunctions. Respir. Physiol. Neurobiol. 2009, 169, S10–S12. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Maiorana, A.J.; O’Driscoll, G.; Cable, N.T.; Hopman, M.T.E.; Green, D.J. Impact of inactivity and exercise on the vasculature in humans. Eur. J. Appl. Physiol. 2010, 108, 845–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demiot, C.; Dignat-George, F.; Fortrat, J.O.; Sabatier, F.; Gharib, C.; Larina, I.; Gauquelin-Koch, G.; Hughson, R.; Custaud, M.A. WISE 2005: Chronic bed rest impairs microcirculatory endothelium in women. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3159–H3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, G.A.; Golino, M.; Villano, A.; Lanza, O.; Lamendola, P.; Fusco, A.; Leggio, M. Cardiac Rehabilitation and Endothelial Function. J. Clin. Med. 2020, 9, 2487. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ledesma, R.A.; Peng, R.; Liu, Q.; Xu, D. The Beneficial Effects of Cardiac Rehabilitation on the Function and Levels of Endothelial Progenitor Cells. Heart Lung Circ. 2017, 26, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, P.; Papa, A.; Maniscalco, M.; Di Minno, M.N.D. COVID-19 and functional disability: Current insights and rehabilitation strategies. Postgrad. Med. J. 2021, 97, 469–470. [Google Scholar] [CrossRef]
- Tu, T.M.; Seet, C.Y.H.; Koh, J.S.; Tham, C.H.; Chiew, H.J.; De Leon, J.A.; Chua, C.Y.K.; Hui, A.C.; Tan, S.S.Y.; Vasoo, S.S.; et al. Acute Ischemic Stroke During the Convalescent Phase of Asymptomatic COVID-2019 Infection in Men. JAMA Netw. Open 2021, 4, e217498. [Google Scholar] [CrossRef]
- Deng, H.; Tang, T.X.; Chen, D.; Tang, L.S.; Yang, X.P.; Tang, Z.H. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. Pathogens 2021, 10, 582. [Google Scholar] [CrossRef]
- Shahin, Y.; Khan, J.A.; Samuel, N.; Chetter, I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: A meta-analysis of randomised controlled trials. Atherosclerosis 2011, 216, 7–16. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Young, D.; Coupland, C.; Channon, K.M.; Tan, P.S.; Harrison, D.A.; Rowan, K.; Aveyard, P.; Pavord, I.D.; Watkinson, P.J. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: Cohort study including 8.3 million people. Heart 2020, 106, 1503–1511. [Google Scholar] [CrossRef]
- Lopes, R.D.; Macedo, A.V.S.; de Barros, E.S.P.G.M.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L.; Feldman, A.; D’Andrea Saba Arruda, G.; de Albuquerque, D.C.; Camiletti, A.S.; et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, M.; Fagiani, F.; Racchi, M.; Corsini, E.; Govoni, S.; Lanni, C. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target Ther. 2020, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Sinoway, L.I.; Musch, T.I.; Minotti, J.R.; Zelis, R. Enhanced maximal metabolic vasodilatation in the dominant forearms of tennis players. J. Appl. Physiol. 1986, 61, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Merlo, C.; Bernardi, E.; Bellotti, F.; Pomidori, L.; Cogo, A. Supervised exercise training improves endothelial function in COPD patients: A method to reduce cardiovascular risk? ERJ Open Res. 2020, 6, 00304–2019. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, D.W.; Brubaker, P.H.; Herrington, D.M.; Morgan, T.M.; Stewart, K.P.; Hundley, W.G.; Abdelhamed, A.; Haykowsky, M.J. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: A randomized, controlled, single-blind trial. J. Am. Coll. Cardiol. 2013, 62, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Zhuo, H.; Chen, Y.; Zhang, K.; Dong, Y.; Chen, C.; Wang, W. Mechanism of Isosorbide Dinitrate Combined with Exercise Training Rehabilitation to Mobilize Endothelial Progenitor Cells in Patients with Coronary Heart Disease. Bioengineered 2021. [Google Scholar] [CrossRef]
- Ross, M.D.; Malone, E.; Florida-James, G. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes. Oxid. Med. Cell. Longev. 2016, 2016, 3583956. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef]
Variable | Overall | Normal Exercise Capacity | Reduced Exercise Capacity | p Value |
---|---|---|---|---|
36 | 8 | 28 | ||
Demographic | ||||
Age, years | 54.5 ± 10.6 | 54.9 ± 9.3 | 54.4 ± 11.1 | 0.918 |
Male gender, % | 91.7 | 100 | 89.3 | 0.809 |
Active smokers, % | 2.8 | 12.5 | 0 | 0.498 |
History of smoking, % | 44.4 | 37.5 | 46.4 | 0.964 |
Anthropometric | ||||
Weight, kg | 85.0 (78.0–96.0) | 82.5 (74.5–94.5) | 85.0 (78.0–97.8) | 0.421 |
BMI, kg/m2 | 27.9 (24.9–32.0) | 25.3 (23.4–29.1) | 28.1 (25.4–32.3) | 0.077 |
Acute phase COVID-19 | ||||
Orotracheal intubation, % | 2.8 | 0 | 3.6 | 1.000 |
NIMV/High-flow O2, % | 61.1 | 50.0 | 64.3 | 0.749 |
Long-term O2 therapy, % | 83.3 | 62.5 | 89.3 | 0.209 |
HRCT TSS (0–20) | 12.0 (7.3–14.0) | 9.0 (5.8–14.0) | 12 (7.5–14.0) | 0.513 |
Pulmonary function tests | ||||
FEV1, L | 2.8 ± 0.8 | 3.3 ± 0.5 | 2.7 ± 0.8 | 0.056 |
FEV1, % predicted | 82.0 ± 20.6 | 92.8 ± 17.8 | 78.9 ± 20.6 | 0.095 |
FVC, L | 3.4 ± 1.1 | 4.3 ± 0.9 | 3.2 ± 1.0 | 0.008 |
FVC, % predicted | 79.9 ± 20.8 | 95.4 ± 17.6 | 75.5 ± 19.7 | 0.015 |
FEV1/FVC | 82.4 ± 7.0 | 77.4 ± 8.0 | 83.8 ± 6.1 | 0.019 |
DLCO, mL/min/mmHg | 19.1 ± 5.6 | 22.5 ± 5.1 | 18.0 ± 5.4 | 0.045 |
DLCO, % predicted | 66.4 ± 18.3 | 74.6 ± 15.9 | 63.8 ± 18.5 | 0.073 |
DLCO/VA, mL/min/mmHg/L | 3.9 ± 0.7 | 3.7 ± 0.5 | 3.9 ± 0.8 | 0.557 |
DLCO/VA, % predicted | 90.1 ± 14.2 | 88.5 ± 9.7 | 90.5 ± 15.3 | 0.769 |
TLC, L | 4.6 ± 1.4 | 5.9 ± 1.2 | 4.2 ± 1.3 | 0.003 |
TLC, % predicted | 67.9 ± 18.3 | 82.0 ± 13.4 | 63.7 ± 17.7 | 0.011 |
RV, L | 1.1 ± 0.7 | 1.5 ± 0.8 | 1.0 ± 0.7 | 0.092 |
RV, % predicted | 49.3 ± 28.9 | 63.1 ± 29.3 | 45.2 ± 28.0 | 0.125 |
RV/TLC | 24.4 ± 11.9 | 25.9 ± 9.5 | 24.0 ± 12.6 | 0.725 |
Echocardiography | ||||
EF, % | 57.9 ± 4.1 | 56.1 ± 4.5 | 58.4 ± 4.0 | 0.206 |
TAPSE, mm | 25.2 ± 2.6 | 25.7 ± 5.2 | 23.4 ± 2.8 | 0.129 |
SPAP, mmHg | 27.5 ± 5.9 | 25.7 ± 5.2 | 27.9 ± 6.0 | 0.380 |
TAPSE/SPAP, mm/mmHg | 0.89 ± 0.19 | 1.01 ± 0.20 | 0.87 ± 0.18 | 0.085 |
E, cm/s | 56.5 (46.3–66.3) | 64.5 (50.2–71.8) | 55.0 (44.8–64.5) | 0.145 |
A, cm/s | 63.0 ± 11.4 | 60.0 ± 15.6 | 63.6 ± 10.6 | 0.490 |
E/A ratio | 0.86 (0.73–1.15) | 1.09 (0.82–1.33) | 0.83 (0.72–1.12) | 0.110 |
E/E’ ratio | 5.0 (4.0–6.0) | 4.0 (3.5–5.5) | 5.0 (4.0–6.0) | 0.190 |
DT, ms | 185.8 ± 50.8 | 178.5 ± 44.4 | 187.4 ± 52.7 | 0.703 |
Blood laboratory parameters | ||||
Hemoglobin, g/dL | 13.0 ± 1.5 | 13.5 ± 0.9 | 12.9 ± 1.6 | 0.294 |
Creatinine, mg/dL | 0.82 ± 0.14 | 0.91 ± 0.14 | 0.81 ± 0.13 | 0.069 |
GFR, mL/min/1.73 m2 | 98.8 ± 15.1 | 94.4 ± 12.9 | 100.1 ± 15.7 | 0.359 |
BUN, mg/dL | 35.2 ± 11.1 | 38.6 ± 12.3 | 34.5 ± 11.0 | 0.461 |
AST, UI/L | 19.5 (15.0–34.0) | 22.0 (14.3–29.3) | 19.0 (15.8–35.3) | 0.796 |
ALT, UI/L | 56.0 (30.0–86.3) | 61.5 (27.0–97.0) | 55.0 (33.0–80.3) | 0.796 |
γGT, UI/L | 38.0 (30.0–54.8) | 36.0 (27.0–54.0) | 40.0 (32.0–63.0) | 0.592 |
Procalcitonin, ng/mL | 0.03 (0.02–0.05) | 0.02 (0.01–0.03) | 0.03 (0.02–0.06) | 0.115 |
CRP, mg/dL | 2.6 (1.1–7.3) | 1.5 (0.6–7.0) | 3.2 (1.2–8.1) | 0.275 |
D-Dimer, ng/mL | 290.0 (270.0–490.0) | 270.0 (250.0–342.5) | 310.0 (270.0–320.0) | 0.105 |
Troponin I, pg/mL | 3.0 (2.0–5.0) | 2.5 (2.0–3.3) | 4.0 (2.0–5.5) | 0.190 |
Myoglobin, µg/L | 34.0 (27.5–53.0) | 36.5 (27.5–50.0) | 33.0 (27.0–54.0) | 0.854 |
CK-MB, ng/mL | 0.85 ± 0.53 | 1.10 ± 0.79 | 0.77 ± 0.44 | 0.367 |
CPK, UI/L | 29.0 (20.0–42.0) | 29.0 (25.0–45.0) | 30.5 (20.0–41.3) | 0.872 |
BNP, pg/mL | 11.8 (10.0–30.9) | 10.6 (10.0–16.5) | 15.2 (10.0–32.0) | 0.473 |
Blood pressure | ||||
24 h SBP, mmHg | 121.9 ± 12.8 | 115.5 ± 7.5 | 123.9 ± 13.6 | 0.176 |
24 h DBP, mmHg | 80.0 ± 6.3 | 78.3 ± 6.9 | 80.6 ± 6.3 | 0.457 |
Comorbidities | ||||
Hypertension, % | 50.0 | 37.5 | 53.6 | 0.688 |
Diabetes mellitus, % | 11.1 | 12.5 | 10.7 | 1.000 |
Dyslipidemia, % | 11.1 | 25.0 | 7.1 | 0.436 |
Obesity, % | 30.6 | 12.5 | 35.7 | 0.411 |
OSAS, % | 8.3 | 12.5 | 7.1 | 1.000 |
Pharmacological therapy | ||||
Statins, % | 12.1 | 28.6 | 7.7 | 0.395 |
β-blockers, % | 15.2 | 0 | 19.2 | 0.506 |
ACE-I, % | 21.2 | 26.8 | 19.2 | 0.987 |
CCB, % | 15.6 | 0 | 19.2 | 0.585 |
ARB, % | 18.2 | 0 | 23.1 | 0.394 |
COVID-19 therapy | ||||
Corticosteroids, % | 70.6 | 57.1 | 74.1 | 0.681 |
Antibiotics, % | 23.5 | 14.3 | 25.9 | 0.883 |
LMWH, % | 67.6 | 57.1 | 70.4 | 0.831 |
CPET—Performance | ||||
Peak VO2, mL/kg/min | 16.6 ± 3.9 | 21.7 ± 1.9 | 15.1 ± 3.0 | <0.001 |
Peak VO2, % predicted | 62.4 ± 16.1 | 75.9 ± 16.3 | 58.6 ± 14.1 | 0.006 |
Work, Watt | 99.6 ± 27.5 | 129.8 ± 12.4 | 90.9 ± 24.4 | <0.001 |
Borg dyspnea (0–10) | 3.0 (3.0–5.0) | 3.0 (3.0–5.0) | 3.0 (3.0–5.0) | 0.723 |
CPET—Ventilation | ||||
Peak VE, L/min | 65.5 ± 14.6 | 77.5 ± 13.9 | 62.1 ± 13.0 | 0.006 |
Peak VE, % predicted | 67.6 ± 14.4 | 76.3 ± 15.9 | 65.1 ± 13.2 | 0.052 |
Breathing reserve, % | 29.8 ± 17.0 | 32.9 ± 12.0 | 28.9 ± 18.3 | 0.596 |
CPET—Circulation | ||||
Peak HR, beats/min | 147.0 (124.5–158.8) | 159.0 (155.3–160.0) | 142.0 (123.3–154.8) | 0.030 |
Peak HR, % predicted | 86.2 ± 11.8 | 94.3 ± 11.4 | 83.9 ± 11.1 | 0.027 |
HRR at 1 min, beats | 19.0 ± 9.5 | 18.8 ± 7.3 | 19.0 ± 10.2 | 0.942 |
Peak O2 pulse, L/stroke | 9.9 (8.3–11.7) | 11.3 (10.1–13.7) | 9.6 (8.3–10.9) | 0.044 |
Peak O2 pulse, % predicted | 69.0 (60.0–90.5) | 82.0 (69.0–91.8) | 65.5 (57.5–82.5) | 0.135 |
CPET—Gas exchange | ||||
VE/VCO2 slope | 35.5 ± 5.3 | 32.6 ± 4.5 | 36.3 ± 5.3 | 0.078 |
VE/VCO2 at AT | 36.1 ± 5.1 | 31.5 ± 3.7 | 37.4 ± 4.7 | 0.003 |
Peak RER | 1.19 (1.13–1.27) | 1.18 (1.14–1.30) | 1.20 (1.13–1.30) | 0.780 |
Peak PETCO2, mmHg | 32.3 ± 3.2 | 33.8 ± 3.6 | 31.8 ± 3.0 | 0.126 |
Vd/Vt reduction, % | 47.2 | 87.5 | 35.7 | 0.029 |
CPET—Anaerobic threshold | ||||
AT, mL/kg/min | 12.4 ± 3.2 | 14.9 ± 2.6 | 11.6 ± 3.0 | 0.008 |
VO2/Work slope | 9.2 ± 1.3 | 9.7 ± 0.9 | 9.1 ± 1.3 | 0.220 |
Vascular reactivity | ||||
FMD, % | 2.89 ± 1.99 | 4.11 ± 2.08 | 2.54 ± 1.85 | 0.048 |
BAD, mm | 4.15 ± 0.65 | 4.17 ± 0.44 | 4.14 ± 0.70 | 0.925 |
RH | 1.86 ± 0.15 | 1.22 ± 0.15 | 1.17 ± 0.15 | 0.419 |
SRAUC-TOT | 52,157.4 (32,883.1–66,629.7) | 54,343.3 (34,142.4–70,067.6) | 50,869.3 (32,883.1–6629.7) | 0.641 |
SRAUC | 19,702.5 (11,114.9–31,746.6) | 23,565.3 (10,142.8–35,303.7) | 18,800.0 (11,114.9–31,746.6) | 0.466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosino, P.; Parrella, P.; Formisano, R.; Perrotta, G.; D’Anna, S.E.; Mosella, M.; Papa, A.; Maniscalco, M. Cardiopulmonary Exercise Performance and Endothelial Function in Convalescent COVID-19 Patients. J. Clin. Med. 2022, 11, 1452. https://doi.org/10.3390/jcm11051452
Ambrosino P, Parrella P, Formisano R, Perrotta G, D’Anna SE, Mosella M, Papa A, Maniscalco M. Cardiopulmonary Exercise Performance and Endothelial Function in Convalescent COVID-19 Patients. Journal of Clinical Medicine. 2022; 11(5):1452. https://doi.org/10.3390/jcm11051452
Chicago/Turabian StyleAmbrosino, Pasquale, Paolo Parrella, Roberto Formisano, Giovanni Perrotta, Silvestro Ennio D’Anna, Marco Mosella, Antimo Papa, and Mauro Maniscalco. 2022. "Cardiopulmonary Exercise Performance and Endothelial Function in Convalescent COVID-19 Patients" Journal of Clinical Medicine 11, no. 5: 1452. https://doi.org/10.3390/jcm11051452
APA StyleAmbrosino, P., Parrella, P., Formisano, R., Perrotta, G., D’Anna, S. E., Mosella, M., Papa, A., & Maniscalco, M. (2022). Cardiopulmonary Exercise Performance and Endothelial Function in Convalescent COVID-19 Patients. Journal of Clinical Medicine, 11(5), 1452. https://doi.org/10.3390/jcm11051452