Effectiveness and Safety of Transcatheter Atrial Septal Defect Closure in Adults with Systemic Essential Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Echocardiography
2.3. Diagnosis of Systemic Essential Hypertension
2.4. Transcatheter Atrial Septal Defect Closure Procedure
2.5. Transcatheter Atrial Septal Defect Closure-Related Complications
2.6. Primary and Secondary Study Endpoints
2.7. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics
3.2. Baseline Echocardiographic Characteristics
3.3. Transcatheter Atrial Septal Defect Closure Procedure
3.4. Changes in Echocardiographic Parameters 24 h after Transcatheter Atrial Septal Defect Closure
3.5. Echocardiographic Characteristics 6 Months after Transcatheter Atrial Septal Defect Closure
3.6. Transcatheter Atrial Septal Defect Closure-Related Complications
3.7. Primary and Secondary Study Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, J.I.; Kaplan, S.; Liberthson, R. R: Prevalence of congenital heart disease. Am. Heart J. 2004, 147, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M. Natural history of atrial septal defect. Br. Heart J. 1970, 32, 820–826. [Google Scholar] [CrossRef]
- Lindsey, J.B.; Hillis, L.D. Clinical update: Atrial septal defect in adults. Lancet 2007, 369, 1244–1246. [Google Scholar] [CrossRef]
- Geva, T.; Martins, J.D.; Wald, R.M. Atrial septal defects. Lancet 2014, 383, 1921–1932. [Google Scholar] [CrossRef]
- Webb, G.; Gatzoulis, M.A. Atrial septal defects in the adult: Recent progress and overview. Circulation 2006, 114, 1645–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachweh, J.S.; Daebritz, S.H.; Hermanns, B.; Fausten, B.; Jockenhoevel, S.; Handt, S.; Messmer, B.J. Hypertensive Pulmonary Vascular Disease in Adults with Secundum or Sinus Venosus Atrial Septal Defect. Ann. Thorac. Surg. 2006, 81, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Manes, A.; Palazzini, M.; Leci, E.; Reggiani, M.L.B.; Branzi, A.; Galiè, N. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: A comparison between clinical subgroups. Eur. Heart J. 2014, 35, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Maurer, S.J.; Stöckemann, K.; Pujol, C.; Hörer, J.; Ewert, P.; Tutarel, O. Pulmonary Arterial Hypertension Associated with Congenital Heart Disease in Adults over the Age of 40 Years. J. Clin. Med. 2020, 9, 4071. [Google Scholar] [CrossRef]
- Tutarel, O.; Kempny, A.; Alonso-Gonzalez, R.; Jabbour, R.; Li, W.; Uebing, A.; Dimopoulos, K.; Swan, L.; Gatzoulis, M.A.; Diller, G.-P. Congenital heart disease beyond the age of 60: Emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur. Heart J. 2014, 35, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Maurer, S.J.; Bauer, U.M.M.; Baumgartner, H.; Uebing, A.; Walther, C.; Tutarel, O. Acquired Comorbidities in Adults with Congenital Heart Disease: An Analysis of the German National Register for Congenital Heart Defects. J. Clin. Med. 2021, 10, 314. [Google Scholar] [CrossRef]
- Kwiatek-Wrzosek, A.; Kowalik, E.; Kowalski, M.; Hoffman, P. The burden of cardiovascular risk factors among seniors with congenital heart disease: A single tertiary center experience. Kardiol. Pol. 2021, 79, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104, Correction in Eur. Heart J. 2019, 40, 475. [Google Scholar] [CrossRef]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [CrossRef]
- Niklas, A.; Flotyńska, A.; Puch-Walczak, A.; Polakowska, M.; Topór-Mądry, R.; Polak, M.; Piotrowski, W.; Kwaśniewska, M.; Nadrowski, P.; Pająk, A.; et al. Prevalence, awareness, treatment and control of hypertension in the adult Polish population—Multi-center National Population Health Examination Surveys—WOBASZ studies. Arch. Med. Sci. 2018, 14, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; et al. Prevalence, Awareness, Treatment, and Control of Hypertension in Rural and Urban Communities in High-, Middle-, and Low-Income Countries. JAMA 2013, 310, 959–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deanfield, J.; Thaulow, E.; Warnes, C.; Webb, G.; Kolbel, F.; Hoffman, A.; Sorenson, K.; Kaemmer, H.; Thilen, U.; Bink-Boelkens, M.; et al. Management of grown up congenital heart disease. Eur. Heart J. 2003, 24, 1035–1084. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, H.; Bonhoeffer, P.; De Groot, N.M.; de Haan, F.; Deanfield, J.E.; Galie, N.; Gatzoulis, M.A.; Gohlke-Baerwolf, C.; Kaemmerer, H.; Kilner, P.; et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur. Heart J. 2010, 31, 2915–2957. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2020, 42, 563–645. [Google Scholar] [CrossRef]
- Murphy, J.G.; Gersh, B.J.; McGoon, M.D.; Mair, D.D.; Porter, C.-B.J.; Ilstrup, D.M.; McGoon, D.C.; Puga, F.J.; Kirklin, J.W.; Danielson, G.K. Long-term outcome after surgical repair of isolated atrial septal defect. Follow-up at 27 to 32 years. N. Engl. J. Med. 1990, 323, 1645–1650. [Google Scholar] [CrossRef]
- Roos-Hesselink, J.W.; Meijboom, F.J.; Spitaels, S.E.; Van Domburg, R.; Van Rijen, E.H.; Utens, E.M.; Bogers, A.J.; Simoons, M.L. Excellent survival and low incidence of arrhythmias, stroke and heart failure long-term after surgical ASD closure at young age A prospective follow-up study of 21–33 years. Eur. Heart J. 2003, 24, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Attie, F.; Rosas, M.; Granados, N.; Zabal, C.; Buendía, A.; Calderón, J. Surgical treatment for secundum atrial septal defects in patients >40 years old: A randomized clinical trial. J. Am. Coll. Cardiol. 2001, 38, 2035–2042. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.-D.; Hijazi, Z.M.; Kleinman, C.S.; Silverman, N.H.; Larntz, K.; Amplatzer Investigators. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: Results of a multicenter nonrandomized trial. J. Am. Coll. Cardiol. 2002, 39, 1836–1844. [Google Scholar] [CrossRef] [Green Version]
- Oster, M.; Bhatt, A.B.; Zaragoza-Macias, E.; Dendukuri, N.; Marelli, A. Interventional Therapy Versus Medical Therapy for Secundum Atrial Septal Defect: A Systematic Review (Part 2) for the 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e814–e830. [Google Scholar] [CrossRef] [PubMed]
- Kotowycz, M.A.; Therrien, J.; Ionescu-Ittu, R.; Owens, C.G.; Pilote, L.; Martucci, G.; Tchervenkov, C.; Marelli, A.J. Long-Term Outcomes After Surgical Versus Transcatheter Closure of Atrial Septal Defects in Adults. JACC Cardiovasc. Interv. 2013, 6, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Tan, J.-L.; Li, W.; Dimopoulos, K.; Spence, M.S.; Chow, P.C.; Mullen, M.J. The Impact of Transcatheter Atrial Septal Defect Closure in the Older Population: A Prospective Study. JACC Cardiovasc. Interv. 2010, 3, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Butera, G.; Carminati, M.; Chessa, M.; Youssef, R.; Drago, M.; Giamberti, A.; Pomè, G.; Bossone, E.; Frigiola, A. Percutaneous versus surgical closure of secundum atrial septal defect: Comparison of early results and complications. Am. Heart J. 2006, 151, 228–234. [Google Scholar] [CrossRef]
- Takaya, Y.; Akagi, T.; Kijima, Y.; Nakagawa, K.; Sano, S.; Ito, H. Long-term outcome after transcatheter closure of atrial septal defect in older patients: Impact of age at procedure. JACC Cardiovasc. Interv. 2015, 8, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Humenberger, M.; Rosenhek, R.; Gabriel, H.; Rader, F.; Heger, M.; Klaar, U.; Binder, T.; Probst, P.; Heinze, G.; Maurer, G.; et al. Benefit of atrial septal defect closure in adults: Impact of age. Eur. Heart J. 2011, 32, 553–560. [Google Scholar] [CrossRef]
- Takaya, Y.; Taniguchi, M.; Akagi, T.; Nobusada, S.; Kusano, K.; Ito, H.; Sano, S. Long-Term Effects of Transcatheter Closure of Atrial Septal Defect on Cardiac Remodeling and Exercise Capacity in Patients Older than 40 Years with a Reduction in Cardiopulmonary Function. J. Interv. Cardiol. 2013, 26, 195–199. [Google Scholar] [CrossRef]
- Komar, M.; Przewlocki, T.; Olszowska, M.; Sobien, B.; Podolec, P. The benefit of atrial septal defect closure in elderly patients. Clin. Interv. Aging 2014, 9, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Nyboe, C.; Karunanithi, Z.; Nielsen-Kudsk, J.E.; Hjortdal, V.E. Long-term mortality in patients with atrial septal defect: A nationwide cohort-study. Eur. Heart J. 2018, 39, 993–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świątkiewicz, I. Wybrane Przezskórne Interwencje Strukturalne; Echokardiografia Kliniczna, I-Medica: Warsaw, Poland, 2017; pp. 192–201. [Google Scholar]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.; et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 2006, 7, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Cheitlin, M.D.; Armstrong, W.F.; Aurigemma, G.P.; Beller, G.A.; Bierman, F.Z.; Davis, J.L.; Douglas, P.S.; Faxon, D.P.; Gillam, L.D.; Kimball, T.R.; et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography—Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J. Am. Coll. Cardiol. 2003, 42, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Silvestry, F.E.; Cohen, M.S.; Armsby, L.B.; Burkule, N.J.; Fleishman, C.E.; Hijazi, Z.M.; Lang, R.M.; Rome, J.J.; Wang, Y.; American Society of Echocardiography; et al. Guidelines for the Echocardiographic Assessment of Atrial Septal Defect and Patent Foramen Ovale: From the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J. Am. Soc. Echocardiogr. 2015, 28, 910–958. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar]
- Boutin, C.; Musewe, N.N.; Smallhorn, J.F.; Dyck, J.D.; Kobayashi, T.; Benson, L.N. Echocardiographic follow-up of atrial septal defect after catheter closure by double-umbrella device. Circulation 1993, 88, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Tossavainen, E.; Söderberg, S.; Grönlund, C.; Gonzalez, M.; Henein, M.Y.; Lindqvist, P. Pulmonary artery acceleration time in identifying pulmonary hypertension patients with raised pulmonary vascular resistance. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Abaci, A.; Unlu, S.; Alsancak, Y.; Kaya, U.; Sezenoz, B. Short and long term complications of device closure of atrial septal defect and patent foramen ovale: Meta-analysis of 28,142 patients from 203 studies. Catheter. Cardiovasc. Interv. 2013, 82, 1123–1138. [Google Scholar] [CrossRef]
- Brida, M.; Diller, G.-P.; Kempny, A.; Drakopoulou, M.; Shore, D.; A Gatzoulis, M.; Uebing, A. Atrial septal defect closure in adulthood is associated with normal survival in the mid to longer term. Heart 2019, 105, 1014–1019. [Google Scholar] [CrossRef]
- Tutarel, O. Acquired heart conditions in adults with congenital heart disease: A growing problem. Heart 2014, 100, 1317–1321. [Google Scholar] [CrossRef]
- Eroglu, E.; Cakal, S.D.; Çakal, B.; Dundar, C.; Alici, G.; Özkan, B.; Yazicioglu, M.V.; Tigen, K.; Esen, A.M. Time course of right ventricular remodeling after percutaneous atrial septal defect closure: Assessment of regional deformation properties with two-dimensional strain and strain rate imaging. Echocardiography 2013, 30, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, I.; Patel, N.T.; Taub, P.R. 971-P: Prevalence of Diabetic Cardiomyopathy in Real-World Practice: A Longitudinal Cohort Study. Diabetes 2021, 70, 971-P. [Google Scholar] [CrossRef]
- Giardini, A.; Donti, A.; Formigari, R.; Specchia, S.; Prandstraller, D.; Bronzetti, G.; Bonvicini, M.; Picchio, F.M. Determinants of cardiopulmonary functional improvement after transcatheter atrial septal defect closure in asymptomatic adults. J. Am. Coll. Cardiol. 2004, 43, 1886–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giardini, A.; Donti, A.; Specchia, S.; Formigari, R.; Oppido, G.; Picchio, F.M. Long-term impact of transcatheter atrial septal defect closure in adults on cardiac function and exercise capacity. Int. J. Cardiol. 2008, 124, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.S.L.; Dundon, B.K.; Molaee, P.; Williams, K.F.; Carbone, A.; Brown, M.A.; Worthley, M.I.; Disney, P.J.; Sanders, P.; Worthley, S.G. Percutaneous closure of atrial septal defects leads to normalisation of atrial and ventricular volumes. J. Cardiovasc. Magn. Reson. 2008, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schussler, J.M.; Anwar, A.; Phillips, S.D.; Roberts, B.J.; Vallabhan, R.C.; Grayburn, P.A. Effect on right ventricular volume of percutaneous Amplatzer closure of atrial septal defect in adults. Am. J. Cardiol. 2005, 95, 993–995. [Google Scholar] [CrossRef]
- Eun, L.Y.; Park, H.K.; Choi, J.Y. Comparison of the Change in Diastolic Dysfunction after Transcatheter Atrial Septal Defect Closure between Asymptomatic Younger and Older Age Groups. J. Clin. Med. 2020, 9, 3637. [Google Scholar] [CrossRef]
- Pascotto, M.; Santoro, G.; Cerrato, F.; Caputo, S.; Bigazzi, M.C.; Iacono, C.; Carrozza, M.; Russo, M.G.; Caianiello, G.; Calabrò, R. Time-course of cardiac remodeling following transcatheter closure of atrial septal defect. Int. J. Cardiol. 2006, 112, 348–352. [Google Scholar] [CrossRef]
- Walker, R.E.; Moran, A.M.; Gauvreau, K.; Colan, S.D. Evidence of adverse ventricular interdependence in patients with atrial septal defects. Am. J. Cardiol. 2004, 3, 1374–1377. [Google Scholar] [CrossRef]
- Salehian, O.; Horlick, E.; Schwerzmann, M.; Haberer, K.; McLaughlin, P.; Siu, S.C.; Webb, G.; Therrien, J. Improvements in cardiac form and function after transcatheter closure of secundum atrial septal defects. J. Am. Coll. Cardiol. 2005, 45, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Berger, F.; Jin, Z.; Ishihashi, K.; Vogel, M.; Ewert, P.; Alexi-Meshkishvili, V.; Weng, Y.; Lange, P.E. Comparison of acute effects on right ventricular haemodynamics of surgical versus interventional closure of atrial septal defects. Cardiol. Young 1999, 9, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Santoro, G.; Pascotto, M.; Caputo, S.; Cerrato, F.; Bigazzi, M.C.; Palladino, M.T.; Iacono, C.; Carrozza, M.; Russo, M.G.; Calabrò, R. Similar cardiac remodelling after transcatheter atrial septal defect closure in children and young adults. Heart 2006, 92, 958–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldtman, G.R.; Razack, V.; Siu, S.; El-Hajj, H.; Walker, F.; Webb, G.D.; Benson, L.N.; McLaughlin, P.R. Right ventricular form and function after percutaneous atrial septal defect device closure. J. Am. Coll. Cardiol. 2001, 37, 2108–2113. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, A.S.; Borer, J.S.; Clark, C.E.; Henry, W.L.; Redwood, D.R.; Morrow, A.G.; Epstein, S.E. Abnormal right ventricular size and ventricular septal motion after atrial septal defect closure: Etiology and functional significance. Am. J. Cardiol. 1978, 41, 295–301. [Google Scholar] [CrossRef]
- Majunke, N.; Bialkowski, J.; Wilson, N.; Szkutnik, M.; Kusa, J.; Baranowski, A.; Heinisch, C.; Ostermayer, S.; Wunderlich, N.; Sievert, H. Closure of Atrial Septal Defect with the Amplatzer Septal Occluder in Adults. Am. J. Cardiol. 2009, 103, 550–554. [Google Scholar] [CrossRef]
- Fischer, G.; Stieh, J.; Uebing, A.; Hoffmann, U.; Morf, G.; Kramer, H.H. Experience with transcatheter closure of secundum atrial septal defects using the Amplatzer septal occluder: A single center study in 236 consecutive patients. Heart 2003, 89, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Lopez, K.; Banerjee, A.; Joseph, A.; Cao, Q.-L.; Hijazi, Z.M. Transcatheter closure of atrial septal defects in adults > or =40 years of age: Immediate and follow-up results. J. Interv. Cardiol. 2007, 20, 82–88. [Google Scholar] [CrossRef]
- Masura, J.; Gavora, P.; Podnar, T. Long-term outcome of transcatheter secundum-type atrial septal defect closure using Amplatzer septal occluders. J. Am. Coll. Cardiol. 2005, 45, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Godart, F.; Houeijeh, A.; Recher, M.; Francart, C.; Polge, A.-S.; Richardson, M.; Cajot, M.-A.; Duhamel, A. Transcatheter closure of atrial septal defect with the Figulla® ASD Occluder: A comparative study with the Amplatzer® Septal Occluder. Arch. Cardiovasc. Dis. 2015, 108, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Yong, G.; Khairy, P.; De Guise, P. Pulmonary arterial hypertension in patients with transcatheter closure of secundum atrial septal defects: A longitudinal study. Circ. Cardiovasc. Interv. 2009, 2, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Fredriksen, P.M.; Veldtman, G.; Hechter, S.; Therrien, J.; Chen, A.; Warsi, M.A.; Freeman, M.; Liu, P.; Siu, S.; Thaulow, E.; et al. Aerobic capacity in adults with various congenital heart diseases. Am. J. Cardiol. 2001, 87, 310–314. [Google Scholar] [CrossRef]
- Boucher, C.A.; Liberthson, R.R.; Buckley, M.J. Secundum atrial septal defect and significant mitral regurgitation: Incidence, management and morphologic basis. Chest 1979, 75, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świątkiewicz, I.; Di Somma, S.; De Fazio, L.; Mazzilli, V.; Taub, P.R. Effectiveness of Intensive Cardiac Rehabilitation in High-Risk Patients with Cardiovascular Disease in Real-World Practice. Nutrients 2021, 13, 3883. [Google Scholar] [CrossRef] [PubMed]
- Brochu, M.-C.; Baril, J.-F.; Dore, A.; Juneau, M.; De Guise, P.; Mercier, L.-A. Improvement in Exercise Capacity in Asymptomatic and Mildly Symptomatic Adults After Atrial Septal Defect Percutaneous Closure. Circulation 2002, 106, 1821–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masutani, S.; Taketazu, M.; Ishido, H.; Iwamoto, Y.; Yoshiba, S.; Matsunaga, T.; Kobayashi, T.; Senzaki, H. Effects of age on hemodynamic changes after transcatheter closure of atrial septal defect: Importance of ventricular diastolic function. Heart Vessel. 2012, 27, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.R.; Owada, C.Y.; Sang, C.J., Jr.; Khan, M.; Lim, D.S. Closure of Secundum Atrial Septal Defects with the AMPLATZER Septal Occluder: A Prospective, Multicenter, Post-Approval Study. Circ. Cardiovasc. Interv. 2017, 10, e004212. [Google Scholar] [CrossRef]
- Chessa, M.; Carminati, M.; Butera, G.; Bini, R.M.; Drago, M.; Rosti, L.; Giamberti, A.; Pomè, G.; Bossone, E.; Frigiola, A. Early and late complications associated with transcatheter occlusion of secundum atrial septal defect. J. Am. Coll. Cardiol. 2002, 39, 1061–1065. [Google Scholar] [CrossRef] [Green Version]
- Butera, G.; Biondi-Zoccai, G.; Sangiorgi, G.; Abella, R.; Giamberti, A.; Bussadori, C.; Sheiban, I.; Saliba, Z.; Santoro, T.; Pelissero, G.; et al. Percutaneous versus surgical closure of secundum atrial septal defects: A systematic review and meta-analysis of currently available clinical evidence. EuroIntervention 2011, 7, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Abrahamyan, L.; Dharma, C.; Alnasser, S.; Fang, J.; Austin, P.C.; Lee, D.S.; Osten, M.; Horlick, E.M. Long-Term Outcomes After Atrial Septal Defect Transcatheter Closure by Age and Against Population Controls. JACC Cardiovasc. Interv. 2021, 14, 566–575. [Google Scholar] [CrossRef]
- Kolanowska, D.; Łach, P.; Frąc, M.; Nadolna, A.; Fabiszak, T.; Świątkiewicz, I.; Sukiennik, A.; Sielski, S.; Woźnicki, M.; Kubica, J. Percutaneous left atrial appendage closure for thromboembolic prophylaxis in patients with atrial fibrillation. The impact of operator’s experience on the procedure course. Med. Res. J. 2015, 3, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Krumsdorf, U.; Ostermayer, S.; Billinger, K.; Trepels, T.; Zadan, E.; Horvath, K.; Sievert, H. Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1000 consecutive patients. J. Am. Coll. Cardiol. 2004, 43, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świątkiewicz, I.; Woźnicki, M.; Sukiennik, A.; Kubica, J. Device-associated thrombus after percutaneous left atrial appendage closure: A case report and literature review. Med. Res. J. 2016, 1, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-J.; Lee, S.C.; Kim, J.B.; Seo, D.-J.; Song, J.-M.; Yun, S.-C.; Yun, T.-J. Deterioration of Mitral Valve Competence After the Repair of Atrial Septal Defect in Adults. Ann. Thorac. Surg. 2011, 92, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S.; Izumi, C.; Amano, M.; Miyake, M.; Tamura, T.; Kondo, H.; Kaitani, K.; Yamanaka, K.; Nakagawa, Y. Incidence and Predictors of Aggravation of Mitral Regurgitation after Atrial Septal Defect Closure. Ann. Thorac. Surg. 2017, 104, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, S.; Numata, S.; Tsutsumi, Y.; Monta, O.; Yamazaki, S.; Seo, H.; Samura, T.; Ohashi, H. Mitral valve regurgitation after atrial septal defect repair in adults. J. Heart Valve Dis. 2014, 23, 310–315. [Google Scholar]
- Takaya, Y.; Kijima, Y.; Akagi, T.; Nakagawa, K.; Oe, H.; Taniguchi, M.; Sano, S.; Ito, H. Fate of Mitral Regurgitation after Transcatheter Closure of Atrial Septal Defect in Adults. Am. J. Cardiol. 2015, 116, 458–462. [Google Scholar] [CrossRef] [Green Version]
- Tomai, F.; Gaspardone, A.; Papa, M.; Polisca, P. Acute left ventricular failure after transcatheter closure of a secundum atrial septal defect in a patient with coronary artery disease: A critical reappraisal. Catheter. Cardiovasc. Interv. 2002, 55, 97–99. [Google Scholar] [CrossRef]
- Masutani, S.; Senzaki, H. Left Ventricular Function in Adult Patients with Atrial Septal Defect: Implication for Development of Heart Failure After Transcatheter Closure. J. Card. Fail. 2011, 17, 957–963. [Google Scholar] [CrossRef]
- Tadros, V.-X.; Asgar, A.W. Atrial septal defect closure with left ventricular dysfunction. EuroIntervention 2016, 12, X13–X17. [Google Scholar] [CrossRef]
- Masutani, S.; Taketazu, M.; Mihara, C.; Mimura, Y.; Ishido, H.; Matsunaga, T.; Kobayashi, T.; Senzaki, H. Usefulness of Early Diastolic Mitral Annular Velocity to Predict Plasma Levels of Brain Natriuretic Peptide and Transient Heart Failure Development After Device Closure of Atrial Septal Defect. Am. J. Cardiol. 2009, 104, 1732–1736. [Google Scholar] [CrossRef]
- Ewert, P.; Berger, F.; Nagdyman, N.; Kretschmar, O.; Dittrich, S.; Abdul-Khaliq, H.; Lange, P. Masked left ventricular restriction in elderly patients with atrial septal defects: A contraindication for closure? Catheter. Cardiovasc. Interv. 2001, 52, 177–180. [Google Scholar] [CrossRef]
- Gruner, C.; Akkaya, E.; Kretschmar, O.; Roffi, M.; Corti, R.; Jenni, R.; Eberli, F.R. Pharmacologic Preconditioning Therapy Prior to Atrial Septal Defect Closure in Patients at High Risk for Acute Pulmonary Edema. J. Interv. Cardiol. 2012, 25, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Chessa, M.; Tutarel, O. Adults with congenital heart disease—We need more Europe for a better care. Eur. J. Heart Fail. 2021, 23, 454–455. [Google Scholar] [CrossRef] [PubMed]
- Brida, M.; Šimkova, I.; Jovović, L.; Prokšelj, K.; Antonová, P.; Balint, H.O.; Gumbiene, L.; Lebid, I.H.; Komar, M.; Kratunkov, P.; et al. European Society of Cardiology Working Group on Adult Congenital Heart Disease and Study Group for Adult Congenital Heart Care in Central and South Eastern European Countries consensus paper: Current status, provision gaps and investment required. Eur. J. Heart Fail. 2021, 23, 445–453. [Google Scholar] [CrossRef]
Variable | HTN+ Group (n = 79) | HTN− Group (n = 105) | p-Value between Groups |
---|---|---|---|
Age (years) | 56.2 (51.0–62.0) | 36.1 (25.0–47.0) | <0.0001 |
Gender (male/female) n (%) | 25/54 (31.6/68.4) | 29/76 (27.6/72.4) | 0.485 |
Smoking n (%) | 6 (7.6) | 7 (6.7) | 0.822 |
Hyperlipidemia n (%) | 39 (49.4) | 23 (21.9) | 0.0001 |
Nonobstructive coronary artery disease n (%) | 6 (7.6) | 0 (0.0) | 0.004 |
Ischemic stroke n (%) | 13 (16.5) | 14 (13.3) | 0.572 |
Type 2 diabetes mellitus n (%) | 12 (15.2) | 0 (0.0) | <0.001 |
Chronic symptomatic heart failure n (%) | 30 (38.0) | 13 (12.4) | <0.001 |
Atrial arrhythmias n (%) | 21 (26.6) | 10 (9.5) | 0.003 |
Atrial fibrillation paroxysmal/permanent n (%) | 8/11 (10.1/13.9) | 3/3 (2.9/2.9) | 0.003 |
ASA n (%) | 30 (38.0) | 24 (23.1) | 0.029 |
Beta blocker n (%) | 57 (72.2) | 22 (22.9) | <0.00001 |
ACEI or ARB n (%) | 35 (44.3) | 5 (4.8) | <0.00001 |
Diuretic n (%) | 18 (31.6) | 3 (2.9) | <0.00001 |
Antithrombotic treatment n (%) | 25 (31.7) | 5 (4.8) | <0.00001 |
Coronary angiography before ASDC n (%) | 24 (30.4) | 12 (11.4) | 0.001 |
Variable | HTN+ Group (n = 79) | HTN− Group (n = 105) | p-Value between Groups |
---|---|---|---|
RVEDd (mm) | 33.0 (30.0–39.0) | 31.0 (28.0–37.0) | 0.028 |
LA (mm) | 41.5 (37.0–45.0) | 35.0 (31.0–38.0) | <0.0001 |
LVEDd (mm) | 44.0 (41.0–48.0) | 42.0 (39.0–46.0) | 0.014 |
LVESd (mm) | 30.0 (25.0–33.0) | 27.0 (23.0–31.5) | 0.02 |
IVSd (mm) | 11.0 (10.0–12.0) | 9.0 (8.0–11.0) | <0.0001 |
PWd (mm) | 10.0 (10.0–11.0) | 8.0 (7.0–10.0) | <0.0001 |
LVM (g/m2) | 158.0 (132.0–206.0) | 110.0 (82.0–170.0) | <0.0001 |
LVEF (%) | 60.0 (55.0–60.0) | 60.0 (60.0–64.0) | 0.004 |
LVDD a n (%) | 28 (47.5) | 8 (12.3) | <0.0001 |
MR b moderate n (%) | 24 (35.8) | 13 (15.7) | 0.004 |
Maximum defect native diameter (mm) | 11.0 (6.0–18.0) | 15.0 (7.0–20.0) | 0.386 |
PASP b (mmHg) | 46.0 (40.5–52.0) | 44.0 (39.0–48.0) | 0.120 |
PASP ≥ 40 mmHg b n (%) | 52 (77.6) | 55 (66.3) | 0.127 |
PAcT b (ms) | 96.0 (74.0–110.0) | 107.0 (89.0–120.0) | 0.017 |
TR b moderate or severe n (%) | 54 (80.6) | 48 (57.8) | 0.001 |
Variable | Before ASDC (n = 79) | 24 h after ASDC (n = 79) | p-Value |
---|---|---|---|
RVEDd (mm) | 33.0 (30.0–39.0) | 32.0 (28.0–38.0) a | 0.003 |
LA (mm) | 41.5 (37.0–45.0) | 42.0 (38.5–44.5) | 0.668 |
LVEDd (mm) | 44.0 (41.0–48.0) | 42.5 (36.0–49.0) | 0.009 |
LVESd (mm) | 30.0 (25.0–33.0) | 30.0 (25.0–33.0) | 0.055 |
LVEF (%) | 60.0 (55.0–60.0) | 60.0 (55.0–60.0) | 0.258 |
MR moderate n (%) | 24 (35.8) b | 20 (32.3) a | 0.670 |
PASP (mmHg) | 46.0 (40.5–52.0) b | 40.0 (39.0–47.0) b | 0.01 |
PASP ≥ 40 mmHg n (%) | 52 (77.6) b | 34 (50.7) b | 0.012 |
PAcT (ms) | 96.0 (74.0–110.0) b | 104.0 (96.0–133.0) b | 0.168 |
TR moderate or severe n (%) | 54 (80.6) b | 34 (50.7) b | <0.001 |
Variable | HTN+ Group (n = 79) | HTN− Group (n = 104) | p-Value between Groups |
---|---|---|---|
RVEDd a (mm) | 32.0 (28.0–38.0) | 29.0 (26.0–33.0) | 0.013 |
Relative RVEDd change compared to baseline a (mm) | −1.0 (−5.0–−1.0) | −2.0 (−4.0–−1.0) | 0.551 |
Reverse RV remodeling a n (%) | 29 (46.8) | 43 (46.7) | 0.997 |
LA (mm) | 42.0 (38.5–44.5) | 35.0 (32.0–38.0) | <0.0001 |
LVEDd (mm) | 42.5 (36.0–49.0) | 43.0 (39.0–47.0) | 0.098 |
LVESd (mm) | 30.0 (25.0–33.0) | 27.0 (23.0–31.5) | 0.917 |
IVSd (mm) | 11.0 (10.0–12.5) | 9.0 (8.0–10.0) | <0.0001 |
LVEF (%) | 60.0 (55.0–60.0) | 60.0 (60.0–63.0) | 0.005 |
MR a moderate n (%) | 20 (32.3) | 9 (9.8) | 0.002 |
Residual interatrial shunt a n (%) | 13 (21) | 17 (18.5) | 0.702 |
PASP b (mmHg) | 40.0 (39.0–47.0) | 44.0 (36.0–47.0) | 0.991 |
PASP ≥ 40 mmHg b n (%) | 34 (50.7) | 52 (62.7) | 0.143 |
PAcT b (ms) | 104.0 (96.0–133.0) | 107.0 (89.0–120.0) | 0.114 |
TR b moderate or severe n (%) | 34 (50.7) | 25 (30.1) | 0.01 |
Intra-atrial thrombus n (%) | 0 (0) | 0 (0) |
Variable | Before ASDC (n = 79) | 6 Months after ASDC (n = 78) | p-Value |
---|---|---|---|
RVEDd (mm) | 33.0 (30.0–39.0) | 30.0 (27.5–35.0) a | <0.001 |
LA (mm) | 41.5 (37.0–45.0) | 42.0 (39.0–45.0) | 0.352 |
LVEDd (mm) | 44.0 (41.0–48.0) | 47.0 (43.0–50.0) | 0.008 |
LVESd (mm) | 30.0 (25.0–33.0) | 30.0 (27.0–33.0) | 0.330 |
LVEF (%) | 60.0 (55.0–60.0) | 60.0 (60.0–60.0) | 0.296 |
LVDD n (%) | 28 (47.5) b | 18 (28.1) a | 0.027 |
MR moderate n (%) | 24 (35.8) c | 16 (25) a | 0.179 |
MR moderate-to-severe or severe n (%) | 0 (0) c | 3 (4.7) a | 0.227 |
PASP (mmHg) | 46.0 (40.5–52.0) c | 40.5 (39.0–50.5) c | 0.025 |
PASP ≥ 40 mmHg n (%) | 52 (77.6) c | 34 (50.7) c | 0.012 |
PAcT (ms) | 96.0 (74.0–110.0) c | 104.0 (81.0–118.0) c | 0.266 |
TR moderate or severe n (%) | 54 (80.6) c | 34 (50.7) c | <0.001 |
Intra-atrial thrombus n (%) | 0 (0) | 2 (2.6) | 0.471 |
Variable | HTN+ Group (n = 78) | HTN− Group (n = 104) | p-Value between Groups |
---|---|---|---|
RVEDd a (mm) | 30.0 (27.5–35.0) | 27.0 (25.0–30.0) | <0.0001 |
Relative RVEDd change compared to baseline a (mm) | −3.0 (−7.0–0.0) | −4.0 (−9.0–−1.0) | 0.129 |
Reverse RV remodeling a n (%) | 38 (59.4) | 57 (67.9) | 0.286 |
LA (mm) | 42.0 (39.0–45.0) | 35.0 (33.0–37.5) | <0.0001 |
LVEDd (mm) | 47.0 (43.0–50.0) | 45.0 (41.0–48.0) | 0.117 |
LVESd (mm) | 30.0 (27.0–33.0) | 29.0 (26.0–33.0) | 0.502 |
IVSd (mm) | 11.0 (10.0–13.0) | 10.0 (9.0–11.0) | <0.0001 |
LVEF (%) | 60.0 (60.0–60.0) | 60.0 (60.0–63.0) | 0.009 |
LVDD a n (%) | 18 (28.1) | 9 (10.7) | 0.007 |
MR a moderate n (%) | 16 (25) | 8 (9.5) | 0.011 |
MR a moderate-to-severe or severe a n (%) | 3 (4.7) | 1 (1.2) | 0.194 |
Residual interatrial shunt a n (%) | 15 (23.4) | 11 (13.1) | 0.101 |
PASP b (mmHg) | 40.5 (39.0–50.5) | 38.0 (35.0–42.0) | 0.083 |
PASP ≥ 40 mmHg b n (%) | 34 (53.1) | 26 (31.0) | 0.016 |
PAcT b (ms) | 104.0 (81.0–118.0) | 126.0 (107.0–145.0) | 0.002 |
TR b moderate n (%) | 34 (50.7) | 15 (18.1) | 0.003 |
Intra-atrial thrombus n (%) | 2 (2.6) | 0 (0) | 0.101 |
A composite of reverse RV remodeling and a lack of residual shunt a n (%) | 28 (43.8) | 48 (57.1) | 0.106 |
ASDC-Related Complication | HTN+ Group (n = 79) | HTN− Group (n = 105) | p-Value between Groups |
---|---|---|---|
Total complications n (%) | 10 (12.7) | 10 (9.5) | 0.513 |
Total minor/major complications n (%) | 6/4 (7.6/5.1) | 5/5 (4.8/4.8) | 0.422 |
Early complications n (%) | 7 (8.9) | 8 (7.6) | 0.761 |
Early major complications n (%) | 1 (1.3) | 3 (2.9) | 0.464 |
Device embolization requiring urgent surgical intervention n (%) | 1 (1.3) | 1 (0.95) | |
Cardiac arrest followed by resuscitation n (%) | 0 (0) | 1 (0.95) | |
HF exacerbation requiring parenteral diuretic n (%) | 0 (0) | 1 (0.95) | |
Early minor complications n (%) | 6 (7.6) | 5 (4.8) | 0.422 |
Minor venous access site bleeding n (%) | 4 (5.1) | 3 (2.9) | |
Pericardial effusion n (%) | 2 (2.5) | 2 (1.9) | |
Transient arrhythmias n (%) | 0 (0) | 1 (0.95) | |
Groin hematoma not requiring surgery n (%) | 1 (1.3) | 1 (0.95) | |
Late major complications n (%) | 3 (3.8) | 2 (1.9) | 0.441 |
HF exacerbation requiring hospitalization n (%) | 0 (0) | 1 (0.95) | |
New onset of significant MR or deterioration of MR n (%) | 3 (3.8) | 1 (0.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątkiewicz, I.; Bednarczyk, Ł.; Kasprzak, M.; Laskowska, E.; Woźnicki, M. Effectiveness and Safety of Transcatheter Atrial Septal Defect Closure in Adults with Systemic Essential Hypertension. J. Clin. Med. 2022, 11, 973. https://doi.org/10.3390/jcm11040973
Świątkiewicz I, Bednarczyk Ł, Kasprzak M, Laskowska E, Woźnicki M. Effectiveness and Safety of Transcatheter Atrial Septal Defect Closure in Adults with Systemic Essential Hypertension. Journal of Clinical Medicine. 2022; 11(4):973. https://doi.org/10.3390/jcm11040973
Chicago/Turabian StyleŚwiątkiewicz, Iwona, Łukasz Bednarczyk, Michał Kasprzak, Ewa Laskowska, and Marek Woźnicki. 2022. "Effectiveness and Safety of Transcatheter Atrial Septal Defect Closure in Adults with Systemic Essential Hypertension" Journal of Clinical Medicine 11, no. 4: 973. https://doi.org/10.3390/jcm11040973
APA StyleŚwiątkiewicz, I., Bednarczyk, Ł., Kasprzak, M., Laskowska, E., & Woźnicki, M. (2022). Effectiveness and Safety of Transcatheter Atrial Septal Defect Closure in Adults with Systemic Essential Hypertension. Journal of Clinical Medicine, 11(4), 973. https://doi.org/10.3390/jcm11040973