Update on Efficacy of Conservative Treatments for Carpal Tunnel Syndrome
Abstract
:1. Introduction
2. Wait and See
2.1. How Wait and See Might Work
2.2. Does Wait and See Work?
3. Orthoses
3.1. How Orthoses Might Work
3.2. What Is the Optimal Treatment Strategy?
3.3. Do Orthoses Work?
4. Corticosteroid Injection
4.1. How Corticosteroid Injection Might Work
4.2. What Is the Optimal Treatment Strategy?
4.3. Do Corticosteroid Injections Work?
5. Platelet-Rich Plasma (PRP) Injection
5.1. How the Intervention Might Work
5.2. What Is the Optimal Treatment Approach?
5.3. Does PRP Work?
6. Kinesio Tape
6.1. How the Intervention Might Work
6.2. Does Kinesio Tape Work?
7. Neurodynamic Techniques
7.1. How Neurodynamic Techniques Might Work
7.2. The Optimal Treatment Strategy
7.3. Do Neurodynamic Techniques Work?
8. Gabapentin
8.1. How the Intervention Might Work
8.2. Does Gabapentin Work?
9. Ultrasound
9.1. How Ultrasound Might Work
9.2. What Is the Optimal Strategy?
9.3. Does Ultrasound Work?
10. Extracorporeal Shock Wave Therapy (ESWT)
10.1. How ESWT Might Work
10.2. Does ESWT Work?
11. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atroshi, I.; Gummesson, C.; Johnsson, R.; Ornstein, E.; Ranstam, J.; Rosén, I. Prevalence of Carpal Tunnel Syndrome in a General Population. JAMA 1999, 282, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Dale, A.M.; Harris-Adamson, C.; Rempel, D.; Gerr, F.; Hegmann, K.; Silverstein, B.; Burt, S.; Garg, A.; Kapellusch, J.; Merlino, L.; et al. Prevalence and Incidence of Carpal Tunnel Syndrome in US Working Populations: Pooled Analysis of Six Prospective Studies. Scand. J. Work. Environ. Health 2013, 39, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Pourmemari, M.H.; Shiri, R. Diabetes as a Risk Factor for Carpal Tunnel Syndrome: A Systematic Review and Meta-Analysis. Diabet. Med. 2016, 33, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Liu, Z. Obesity, Type 2 Diabetes, and the Risk of Carpal Tunnel Syndrome: A Two-Sample Mendelian Randomization Study. Front. Genet. 2021, 12, 1119. [Google Scholar] [CrossRef]
- Stallings, S.P.; Kasdan, M.L.; Soergel, T.M.; Corwin, H.M. A Case-Control Study of Obesity as a Risk Factor for Carpal Tunnel Syndrome in a Population of 600 Patients Presenting for Independent Medical Examination. J. Hand Surg. Am. 1997, 22, 211–215. [Google Scholar] [CrossRef]
- Geoghegan, J.M.; Clark, D.I.; Bainbridge, L.C.; Smith, C.; Hubbard, R. Risk Factors in Carpal Tunnel Syndrome. J. Hand Surg. Am. 2004, 29, 315–320. [Google Scholar] [CrossRef]
- Wiberg, A.; Ng, M.; Schmid, A.B.; Smillie, R.W.; Baskozos, G.; Holmes, M.V.; Künnapuu, K.; Mägi, R.; Bennett, D.L.; Furniss, D. A Genome-Wide Association Analysis Identifies 16 Novel Susceptibility Loci for Carpal Tunnel Syndrome. Nat. Commun. 2019, 10, 1030. [Google Scholar] [CrossRef]
- Radecki, P. The Familial Occurrence of Carpal Tunnel Syndrome. Muscle Nerve 1994, 17, 325–330. [Google Scholar] [CrossRef]
- Verdugo, R.J.; Salinas, R.A.; Castillo, J.L.; Cea, J.G. Surgical versus Non-Surgical Treatment for Carpal Tunnel Syndrome. Cochrane Database Syst. Rev. 2008, 2008, CD001552. [Google Scholar] [CrossRef]
- Padua, L.; Padua, R.; Aprile, I.; Pasqualetti, P.; Tonali, P. Multiperspective Follow-up of Untreated Carpal Tunnel Syndrome: A Multicenter Study. Neurology 2001, 56, 1459–1466. [Google Scholar] [CrossRef]
- Mondelli, M.; Rossi, S.; Monti, E.; Aprile, I.; Caliandro, P.; Pazzaglia, C.; Romano, C.; Padua, L. Long Term Follow-up of Carpal Tunnel Syndrome during Pregnancy: A Cohort Study and Review of the Literature. Electromyogr. Clin. Neurophysiol. 2007, 47, 259–271. [Google Scholar] [PubMed]
- Resende, L.A.; Tahara, A.; Fonseca, R.G.; Sardenberg, T. The Natural History of Carpal Tunnel Syndrome. A Study of 20 Hands Evaluated 4 to 9 Years after Initial Diagnosis. Electromyogr. Clin. Neurophysiol. 2003, 43, 301–304. [Google Scholar] [PubMed]
- Ortiz-Corredor, F.; Enríquez, F.; Díaz-Ruíz, J.; Calambas, N. Natural Evolution of Carpal Tunnel Syndrome in Untreated Patients. Clin. Neurophysiol. 2008, 119, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, B.A.; Fan, Z.J.; Bonauto, D.K.; Bao, S.; Smith, C.K.; Howard, N.; Viikari-Juntura, E. The Natural Course of Carpal Tunnel Syndrome in a Working Population. Scand. J. Work. Environ. Health 2010, 36, 384–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchetti, R.; Schoenhuber, R.; Nathan, P. Correlation of Segmental Carpal Tunnel Pressures with Changes in Hand and Wrist Positions in Patients with Carpal Tunnel Syndrome and Controls. J. Hand Surg. Br. 1998, 23, 598–602. [Google Scholar] [CrossRef]
- Werner, R.; Armstrong, T.J.; Bir, C.; Aylard, M.K. Intracarpal Canal Pressures: The Role of Finger, Hand, Wrist and Forearm Position. Clin. Biomech. 1997, 12, 44–51. [Google Scholar] [CrossRef]
- Seradge, H.; Jia, Y.C.; Owens, W. In Vivo Measurement of Carpal Tunnel Pressure in the Functioning Hand. J. Hand Surg. Am. 1995, 20, 855–859. [Google Scholar] [CrossRef]
- Manente, G.; Torrieri, F.; Di Blasio, F.; Staniscia, T.; Romano, F.; Uncini, A. An Innovative Hand Brace for Carpal Tunnel Syndrome: A Randomized Controlled Trial. Muscle Nerve 2001, 24, 1020–1025. [Google Scholar] [CrossRef]
- Golriz, B.; Ahmadi Bani, M.; Arazpour, M.; Bahramizadeh, M.; Curran, S.; Madani, S.P.; Hutchins, S.W. Comparison of the Efficacy of a Neutral Wrist Splint and a Wrist Splint Incorporating a Lumbrical Unit for the Treatment of Patients with Carpal Tunnel Syndrome. Prosthet. Orthot. Int. 2016, 40, 617–623. [Google Scholar] [CrossRef]
- Page, M.J.; Massy-Westropp, N.; O’Connor, D.; Pitt, V. Splinting for Carpal Tunnel Syndrome. Cochrane Database Syst. Rev. 2012, 2012, CD010003. [Google Scholar] [CrossRef]
- Walker, W.C.; Metzler, M.; Cifu, D.X.; Swartz, Z. Neutral Wrist Splinting in Carpal Tunnel Syndrome: A Comparison of Night-Only versus Full-Time Wear Instructions. Arch. Phys. Med. Rehabil. 2000, 81, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Sanaee, S.; Roshanzamir, S.; Homayounee, K. Efficacy of Long-Term Splinting in the Treatment of Severe Carpal Tunnel Syndrome. J. Musculoskelet. Res. 2017, 20, 1750013. [Google Scholar] [CrossRef]
- Gatheridge, M.A.; Sholty, E.A.; Inman, A.; Pattillo, M.; Mindrup, F.; Sanderson, D.L. Splinting in Carpal Tunnel Syndrome: The Optimal Duration. Mil. Med. 2020, 185, e2049–e2054. [Google Scholar] [CrossRef] [PubMed]
- Boonhong, J.; Panyasriwanit, S. Neutral Wrist Splint for Mild to Moderate Carpal Tunnel Syndrome. Chulalongkorn Med. J. 2017, 61, 151–163. [Google Scholar]
- Geler Külcü, D.; Bursali, C.; Aktaş, İ.; Bozkurt Alp, S.; Ünlü Özkan, F.; Akpinar, P. Kinesiotaping as an Alternative Treatment Method for Carpal Tunnel Syndrome. Turk. J. Med. Sci. 2016, 46, 1042–1049. [Google Scholar] [CrossRef]
- Hall, B.; Lee, H.C.; Fitzgerald, H.; Byrne, B.; Barton, A.; Lee, A.H. Investigating the Effectiveness of Full-Time Wrist Splinting and Education in the Treatment of Carpal Tunnel Syndrome: A Randomized Controlled Trial. Am. J. Occup. Ther. 2013, 67, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Oncu, J.; Iliser, R.; Yılmaz, F.; Kuran, B. Efficacy of Kinesiotaping on Symptoms, Hand Functions, and Hand Grip Strength in Carpal Tunnel Syndrome: A Single-Blind and Randomized Controlled Study. Türkiye Fiz. Tip Rehabil. Derg. 2014, 60, 43–51. [Google Scholar] [CrossRef]
- Premoselli, S.; Sioli, P.; Grossi, A.; Cerri, C. Neutral Wrist Splinting in Carpal Tunnel Syndrome: A 3- and 6-Months Clinical and Neurophysiologic Follow-up Evaluation of Night-Only Splint Therapy. Eura. Medicophys. 2006, 42, 121–126. [Google Scholar]
- Rioja Toro, J.; Estévez Poy, P.J.; Martínez Pardo, F. Estudio Prospectivo, Aleatorizado y Controlado Con Placebo, Para Valorar La Eficacia Del Tratamiento Con Láser, Asociado o No a Ortesis de Muñeca En El Síndrome Del Túnel Del Carpo Idiopático. Rehabilitación 2012, 46, 92–102. [Google Scholar] [CrossRef]
- Werner, R.A.; Franzblau, A.; Gell, N. Randomized Controlled Trial of Nocturnal Splinting for Active Workers with Symptoms of Carpal Tunnel Syndrome. Arch. Phys. Med. Rehabil. 2005, 86, 1–7. [Google Scholar] [CrossRef]
- De Kleermaeker, F.G.C.M.; Boogaarts, H.D.; Meulstee, J.; Verhagen, W.I.M. Minimal Clinically Important Difference for the Boston Carpal Tunnel Questionnaire: New Insights and Review of Literature. J. Hand Surg. Eur. Vol. 2019, 44, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, S.E. Pathophysiology of Nerve Compression. Hand Clin. 2002, 18, 231–241. [Google Scholar] [CrossRef]
- Yang, F.-A.; Shih, Y.-C.; Hong, J.-P.; Wu, C.-W.; Liao, C.-D.; Chen, H.-C. Ultrasound-Guided Corticosteroid Injection for Patients with Carpal Tunnel Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2021, 11, 10417. [Google Scholar] [CrossRef] [PubMed]
- Atroshi, I.; Flondell, M.; Hofer, M.; Ranstam, J. Methylprednisolone Injections for the Carpal Tunnel Syndrome: A Randomized, Placebo-Controlled Trial. Ann. Intern. Med. 2013, 159, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Dammers, J.W.H.H.; Roos, Y.; Veering, M.M.; Vermeulen, M. Injection with Methylprednisolone in Patients with the Carpal Tunnel Syndrome: A Randomised Double Blind Trial Testing Three Different Doses. J. Neurol. 2006, 253, 574–577. [Google Scholar] [CrossRef]
- Habib, G.S.; Badarny, S.; Rawashdeh, H. A Novel Approach of Local Corticosteroid Injection for the Treatment of Carpal Tunnel Syndrome. Clin. Rheumatol. 2006, 25, 338–340. [Google Scholar] [CrossRef]
- Salman Roghani, R.; Holisaz, M.T.; Tarkashvand, M.; Delbari, A.; Gohari, F.; Boon, A.J.; Lokk, J. Different Doses of Steroid Injection in Elderly Patients with Carpal Tunnel Syndrome: A Triple-Blind, Randomized, Controlled Trial. Clin. Interv. Aging 2018, 13, 117–124. [Google Scholar] [CrossRef] [Green Version]
- O’Gradaigh, D.; Merry, P. Corticosteroid Injection for the Treatment of Carpal Tunnel Syndrome. Ann. Rheum. Dis. 2000, 59, 918–919. [Google Scholar] [CrossRef]
- Dammers, J.W.; Veering, M.M.; Vermeulen, M. Injection with Methylprednisolone Proximal to the Carpal Tunnel: Randomised Double Blind Trial. BMJ 1999, 319, 884–886. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.; Devor, W.; Borschel, L.; Contreras, R. Intracarpal Steroid Injection Is Safe and Effective for Short-Term Management of Carpal Tunnel Syndrome. Muscle Nerve 2004, 29, 82–88. [Google Scholar] [CrossRef]
- Girlanda, P.; Dattola, R.; Venuto, C.; Mangiapane, R.; Nicolosi, C.; Messina, C. Local Steroid Treatment in Idiopathic Carpal Tunnel Syndrome Short- and Long-Term Efficacy. J. Neurol. 1993, 240, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Karadaş, O.; Omaç, O.K.; Tok, F.; Ozgül, A.; Odabaşi, Z. Effects of Steroid with Repetitive Procaine HCl Injection in the Management of Carpal Tunnel Syndrome: An Ultrasonographic Study. J. Neurol. Sci. 2012, 316, 76–78. [Google Scholar] [CrossRef]
- Peters-Veluthamaningal, C.; Winters, J.C.; Groenier, K.H.; Meyboom-de Jong, B. Randomised Controlled Trial of Local Corticosteroid Injections for Carpal Tunnel Syndrome in General Practice. BMC Fam. Pract. 2010, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dernek, B.; Aydin, T.; Koseoglu, P.K.; Kesiktas, F.N.; Yesilyurt, T.; Diracoglu, D.; Aksoy, C. Comparison of the Efficacy of Lidocaine and Betamethasone Dipropionate in Carpal Tunnel Syndrome Injection. J. Back Musculoskelet. Rehabil. 2017, 30, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, T.V.; Silagy, M.; O’Bryan, E.; Johnston, R.V.; Cyril, S.; Buchbinder, R. Autologous Blood and Platelet-rich Plasma Injection Therapy for Lateral Elbow Pain. Cochrane Database Syst. Rev. 2021. [Google Scholar] [CrossRef]
- Moraes, V.Y.; Lenza, M.; Tamaoki, M.J.; Faloppa, F.; Belloti, J.C. Platelet-Rich Therapies for Musculoskeletal Soft Tissue Injuries. Cochrane Database Syst. Rev. 2014, CD010071. [Google Scholar] [CrossRef]
- Bennell, K.L.; Paterson, K.L.; Metcalf, B.R.; Duong, V.; Eyles, J.; Kasza, J.; Wang, Y.; Cicuttini, F.; Buchbinder, R.; Forbes, A.; et al. Effect of Intra-Articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients with Knee Osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA 2021, 326, 2021–2030. [Google Scholar] [CrossRef]
- Sánchez, M.; Anitua, E.; Delgado, D.; Sanchez, P.; Prado, R.; Orive, G.; Padilla, S. Platelet-Rich Plasma, a Source of Autologous Growth Factors and Biomimetic Scaffold for Peripheral Nerve Regeneration. Expert Opin. Biol. Ther. 2017, 17, 197–212. [Google Scholar] [CrossRef]
- Kaux, J.-F.; Emonds-Alt, T. The Use of Platelet-Rich Plasma to Treat Chronic Tendinopathies: A Technical Analysis. Platelets 2018, 29, 213–227. [Google Scholar] [CrossRef]
- Malahias, M.-A.; Nikolaou, V.S.; Johnson, E.O.; Kaseta, M.-K.; Kazas, S.-T.; Babis, G.C. Platelet-Rich Plasma Ultrasound-Guided Injection in the Treatment of Carpal Tunnel Syndrome: A Placebo-Controlled Clinical Study. J. Tissue Eng. Regen. Med. 2018, 12, e1480–e1488. [Google Scholar] [CrossRef]
- Chen, S.-R.; Shen, Y.-P.; Ho, T.-Y.; Li, T.-Y.; Su, Y.-C.; Chou, Y.-C.; Chen, L.-C.; Wu, Y.-T. One-Year Efficacy of Platelet-Rich Plasma for Moderate-to-Severe Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.; Roll, S.C.; Javaherian-Dysinger, H.; Daher, N. Comparative Efficacy of the Dorsal Application of Kinesio Tape and Splinting for Carpal Tunnel Syndrome: A Randomized Controlled Trial. J. Hand Ther. 2021, 34, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Liong, K.; Lahiri, A.; Lee, S.; Chia, D.; Biswas, A.; Lee, H.P. Mid-Motion Deformation of Median Nerve during Finger Flexion: A New Insight into the Dynamic Aetiology of Carpal Tunnel Syndrome. Hand Surg. 2013, 18, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Szikszay, T.; Hall, T.; von Piekartz, H. In Vivo Effects of Limb Movement on Nerve Stretch, Strain, and Tension: A Systematic Review. J. Back Musculoskelet. Rehabil. 2017, 30, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Ballestero-Pérez, R.; Plaza-Manzano, G.; Urraca-Gesto, A.; Romo-Romo, F.; de los Ángeles Atín-Arratibel, M.; Pecos-Martín, D.; Gallego-Izquierdo, T.; Romero-Franco, N. Effectiveness of Nerve Gliding Exercises on Carpal Tunnel Syndrome: A Systematic Review. J. Manipulative Physiol. Ther. 2017, 40, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, A.B.; Hailey, L.; Tampin, B. Entrapment Neuropathies: Challenging Common Beliefs with Novel Evidence. J. Orthop. Sports Phys. Ther. 2018, 48, 58–62. [Google Scholar] [CrossRef]
- Beltran-Alacreu, H.; Jiménez-Sanz, L.; Fernández-Carnero, J.; La Touche, R. Comparison of Hypoalgesic Effects of Neural Stretching vs Neural Gliding: A Randomized Controlled Trial. J. Manipulative Physiol. Ther. 2015, 38, 644–652. [Google Scholar] [CrossRef]
- Beneciuk, J.M.; Bishop, M.D.; George, S.Z. Effects of Upper Extremity Neural Mobilization on Thermal Pain Sensitivity: A Sham-Controlled Study in Asymptomatic Participants. J. Orthop. Sports Phys. Ther. 2009, 39, 428–438. [Google Scholar] [CrossRef]
- Coppieters, M.W.; Butler, D.S. Do “sliders” Slide and “Tensioners” Tension? An Analysis of Neurodynamic Techniques and Considerations Regarding Their Application. Man. Ther. 2008, 13, 213–221. [Google Scholar] [CrossRef]
- Dilley, A.; Lynn, B.; Greening, J.; DeLeon, N. Quantitative in Vivo Studies of Median Nerve Sliding in Response to Wrist, Elbow, Shoulder and Neck Movements. Clin. Biomech. 2003, 18, 899–907. [Google Scholar] [CrossRef]
- Núñez de Arenas-Arroyo, S.; Cavero-Redondo, I.; Torres-Costoso, A.; Reina-Gutiérrez, S.; Álvarez-Bueno, C.; Martínez-Vizcaíno, V. Short-Term Effects of Neurodynamic Techniques for Treating Carpal Tunnel Syndrome: A Systematic Review With Meta-Analysis. J. Orthop. Sports Phys. Ther. 2021, 51, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Wolny, T.; Linek, P. Neurodynamic Techniques Versus “Sham” Therapy in the Treatment of Carpal Tunnel Syndrome: A Randomized Placebo-Controlled Trial. Arch. Phys. Med. Rehabil. 2018, 99, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Wolny, T.; Linek, P. Is Manual Therapy Based on Neurodynamic Techniques Effective in the Treatment of Carpal Tunnel Syndrome? A Randomized Controlled Trial. Clin. Rehabil. 2019, 33, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las Peñas, C.; Ortega-Santiago, R.; de la Llave-Rincón, A.I.; Martínez-Perez, A.; Fahandezh-Saddi Díaz, H.; Martínez-Martín, J.; Pareja, J.A.; Cuadrado-Pérez, M.L. Manual Physical Therapy Versus Surgery for Carpal Tunnel Syndrome: A Randomized Parallel-Group Trial. J. Pain 2015, 16, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Arias-Buría, J.L.; Cleland, J.A.; Pareja, J.A.; Plaza-Manzano, G.; Ortega-Santiago, R. Manual Therapy Versus Surgery for Carpal Tunnel Syndrome: 4-Year Follow-Up From a Randomized Controlled Trial. Phys. Ther. 2020, 100, 1987–1996. [Google Scholar] [CrossRef]
- Fernández-de-Las-Peñas, C.; Cleland, J.; Palacios-Ceña, M.; Fuensalida-Novo, S.; Pareja, J.A.; Alonso-Blanco, C. The Effectiveness of Manual Therapy Versus Surgery on Self-Reported Function, Cervical Range of Motion, and Pinch Grip Force in Carpal Tunnel Syndrome: A Randomized Clinical Trial. J. Orthop. Sports Phys. Ther. 2017, 47, 151–161. [Google Scholar] [CrossRef]
- Lewis, K.J.; Coppieters, M.W.; Ross, L.; Hughes, I.; Vicenzino, B.; Schmid, A.B. Group Education, Night Splinting and Home Exercises Reduce Conversion to Surgery for Carpal Tunnel Syndrome: A Multicentre Randomised Trial. J. Physiother. 2020, 66, 97–104. [Google Scholar] [CrossRef]
- Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for Neuropathic Pain in Adults. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Eftekharsadat, B.; Babaei-Ghazani, A.; Habibzadeh, A. The Efficacy of 100 and 300 Mg Gabapentin in the Treatment of Carpal Tunnel Syndrome. Iran. J. Pharm. Res. 2015, 14, 1275–1280. [Google Scholar]
- Hui, A.C.F.; Wong, S.M.; Leung, H.W.; Man, B.L.; Yu, E.; Wong, L.K.S. Gabapentin for the Treatment of Carpal Tunnel Syndrome: A Randomized Controlled Trial. Eur. J. Neurol. 2011, 18, 726–730. [Google Scholar] [CrossRef]
- Raso, V.V.M.; Barbieri, C.H.; Mazzer, N.; Fasan, V.S. Can Therapeutic Ultrasound Influence the Regeneration of Peripheral Nerves? J. Neurosci. Methods 2005, 142, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Gieck, J.H.; Saliba, E.N.; Perrin, D.H.; Ball, D.W.; McCue, F.C. The Biophysical Effects of Ultrasound on Median Nerve Distal Latencies. Electromyogr. Clin. Neurophysiol. 2000, 40, 169–180. [Google Scholar] [PubMed]
- Oztas, O.; Turan, B.; Bora, I.; Karakaya, M.K. Ultrasound Therapy Effect in Carpal Tunnel Syndrome. Arch. Phys. Med. Rehabil. 1998, 79, 1540–1544. [Google Scholar] [CrossRef]
- Tıkız, C.; Duruöz, T.; Ünlü, Z.; Cerrahoğlu, L.; Yalçınsoy, E. Comparison of the Efficacy of Low-Level Laser Therapy and Pulsed Ultrasound Treatment in Carpal Tunnel Syndrome: A Placebo-Controlled Study. Turkish J. Phys. Med. Rehabil. 2013, 59, 201–209. [Google Scholar] [CrossRef]
- Ekim, A.; Çolak, E. Ultrasound Treatment in Carpal Tunnel Syndrome: A Placebo Controlled Study. Turkiye Fiz. Tip Rehabil. Derg. 2008, 54, 96–101. [Google Scholar] [CrossRef]
- Hausner, T.; Nógrádi, A. The Use of Shock Waves in Peripheral Nerve Regeneration: New Perspectives? In Tissue Engineering of the Peripheral Nerve; Geuna, S., Perroteau, I., Tos, P., Battiston, B., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 109, pp. 85–98. ISBN 0074-7742. [Google Scholar]
- Fu, M.; Cheng, H.; Li, D.; Yu, X.; Ji, N.; Luo, F. Radial Shock Wave Therapy in the Treatment of Chronic Constriction Injury Model in Rats: A Preliminary Study. Chin. Med. J. 2014, 127, 830–834. [Google Scholar]
- Bolt, D.M.; Burba, D.J.; Hubert, J.D.; Pettifer, G.R.; Hosgood, G.L. Evaluation of Cutaneous Analgesia after Non-Focused Extracorporeal Shock Wave Application over the 3rd Metacarpal Bone in Horses. Can. J. Vet. Res. 2004, 68, 288–292. [Google Scholar]
- Ke, M.-J.; Chen, L.-C.; Chou, Y.-C.; Li, T.-Y.; Chu, H.-Y.; Tsai, C.-K.; Wu, Y.-T. The Dose-Dependent Efficiency of Radial Shock Wave Therapy for Patients with Carpal Tunnel Syndrome: A Prospective, Randomized, Single-Blind, Placebo-Controlled Trial. Sci. Rep. 2016, 6, 38344. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Ke, M.-J.; Chou, Y.-C.; Chang, C.-Y.; Lin, C.-Y.; Li, T.-Y.; Shih, F.-M.; Chen, L.-C. Effect of Radial Shock Wave Therapy for Carpal Tunnel Syndrome: A Prospective Randomized, Double-Blind, Placebo-Controlled Trial. J. Orthop. Res. 2016, 34, 977–984. [Google Scholar] [CrossRef]
- Vahdatpour, B.; Kiyani, A.; Dehghan, F. Effect of Extracorporeal Shock Wave Therapy on the Treatment of Patients with Carpal Tunnel Syndrome. Adv. Biomed. Res. 2016, 5, 120. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karjalanen, T.; Raatikainen, S.; Jaatinen, K.; Lusa, V. Update on Efficacy of Conservative Treatments for Carpal Tunnel Syndrome. J. Clin. Med. 2022, 11, 950. https://doi.org/10.3390/jcm11040950
Karjalanen T, Raatikainen S, Jaatinen K, Lusa V. Update on Efficacy of Conservative Treatments for Carpal Tunnel Syndrome. Journal of Clinical Medicine. 2022; 11(4):950. https://doi.org/10.3390/jcm11040950
Chicago/Turabian StyleKarjalanen, Teemu, Saara Raatikainen, Kati Jaatinen, and Vieda Lusa. 2022. "Update on Efficacy of Conservative Treatments for Carpal Tunnel Syndrome" Journal of Clinical Medicine 11, no. 4: 950. https://doi.org/10.3390/jcm11040950
APA StyleKarjalanen, T., Raatikainen, S., Jaatinen, K., & Lusa, V. (2022). Update on Efficacy of Conservative Treatments for Carpal Tunnel Syndrome. Journal of Clinical Medicine, 11(4), 950. https://doi.org/10.3390/jcm11040950