Prematurity and Long-Term Respiratory Morbidity—What Is the Critical Gestational Age Threshold?
Abstract
1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-B.; Kinney, M.; Lawn, J.; The Born Too Soon Preterm Birth Action Group. Born Too Soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10 (Suppl. 1), S2. [Google Scholar] [CrossRef] [PubMed]
- Ohana, O.; Wainstock, T.; Sheiner, E.; Leibson, T.; Pariente, G. Long-term digestive hospitalizations of premature infants (besides necrotizing enterocolitis): Is there a critical threshold? Arch. Gynecol. Obstet. 2021, 304, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Garcia, C.V.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef]
- Ely, D.M.; Driscoll, A.K. Infant Mortality in the United States, 2017: Data from the Period Linked Birth/Infant Death File. Natl. Vital. Stat. Rep. 2019, 68, 1–20. [Google Scholar] [PubMed]
- Tyson, J.E.; Parikh, N.; Langer, J.; Green, C.; Higgins, R.D. Intensive Care for Extreme Prematurity—Moving beyond Gestational Age. N. Engl. J. Med. 2008, 358, 1672–1681. [Google Scholar] [CrossRef]
- Helenius, K.; Sjörs, G.; Shah, P.S.; Modi, N.; Reichman, B.; Morisaki, N.; Kusuda, S.; Lui, K.; Darlow, B.A.; Bassler, D.; et al. Survival in Very Preterm Infants: An International Comparison of 10 National Neonatal Networks. Pediatrics 2017, 140, e20171264. [Google Scholar] [CrossRef]
- Alleman, B.W.; Bell, E.F.; Li, L.; Dagle, J.M.; Smith, P.B.; Ambalavanan, N.; Laughon, M.M.; Stoll, B.J.; Goldberg, R.N.; Carlo, W.A.; et al. Individual and Center-Level Factors Affecting Mortality Among Extremely Low Birth Weight Infants. Pediatrics 2013, 132, e175–e184. [Google Scholar] [CrossRef]
- Corchia, C.; Ferrante, P.; Da Frè, M.; Di Lallo, D.; Gagliardi, L.; Carnielli, V.; Miniaci, S.; Piga, S.; Macagno, F.; Cuttini, M. Cause-Specific Mortality of Very Preterm Infants and Antenatal Events. J. Pediatr. 2013, 162, 1125–1132.e4. [Google Scholar] [CrossRef]
- Chandrasekharan, P.; Lakshminrusimha, S.; Chowdhury, D.; Van Meurs, K.; Keszler, M.; Kirpalani, H.; Das, A.; Walsh, M.C.; McGowan, E.C.; Higgins, R.D.; et al. Early Hypoxic Respiratory Failure in Extreme Prematurity: Mortality and Neurodevelopmental Outcomes. Pediatrics 2020, 146, e20193318. [Google Scholar] [CrossRef]
- Kajekar, R. Environmental factors and developmental outcomes in the lung. Pharmacol. Ther. 2007, 114, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal Outcomes of Extremely Preterm Infants from the NICHD Neonatal Research Network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Coathup, V.; Boyle, E.; Carson, C.; Johnson, S.; Kurinzcuk, J.J.; Macfarlane, A.; Petrou, S.; Rivero-Arias, O.; Quigley, M.A. Gestational age and hospital admissions during childhood: Population based, record linkage study in England (TIGAR study). BMJ 2020, 371, m4075. [Google Scholar] [CrossRef] [PubMed]
- Kuint, J.; Lerner-Geva, L.; Chodick, G.; Boyko, V.; Shalev, V.; Reichman, B.; Heymann, E.; Zangen, S.; Smolkin, T.; Mimouni, F.; et al. Rehospitalization Through Childhood and Adolescence: Association with Neonatal Morbidities in Infants of Very Low Birth Weight. J. Pediatr. 2017, 188, 135–141.e2. [Google Scholar] [CrossRef]
- Bolton, C.E.; Stocks, J.; Hennessy, E.; Cockcroft, J.R.; Fawke, J.; Lum, S.; McEniery, C.M.; Wilkinson, I.B.; Marlow, N. The EPICure Study: Association between Hemodynamics and Lung Function at 11 Years after Extremely Preterm Birth. J. Pediatr. 2012, 161, 595–601.e2. [Google Scholar] [CrossRef]
- Choukroun, M.-L.; Feghali, H.; Vautrat, S.; Marquant, F.; Nacka, F.; Leroy, V.; Demarquez, J.-L.; Fayon, M.J. Pulmonary outcome and its correlates in school-aged children born with a gestational age ≤ 32 weeks. Respir. Med. 2013, 107, 1966–1976. [Google Scholar] [CrossRef][Green Version]
- Thunqvist, P.; Tufvesson, E.; Bjermer, L.; Winberg, A.; Fellman, V.; Domellöf, M.; Melén, E.; Norman, M.; Hallberg, J. Lung function after extremely preterm birth-A population-based cohort study (EXPRESS). Pediatr. Pulmonol. 2018, 53, 64–72. [Google Scholar] [CrossRef]
- Hafström, M.; Källén, K.; Serenius, F.; Maršál, K.; Rehn, E.; Drake, H.; Ådén, U.; Farooqi, A.; Thorngren-Jerneck, K.; Strömberg, B. Cerebral Palsy in Extremely Preterm Infants. Pediatrics 2018, 141, e20171433. [Google Scholar] [CrossRef]
- Hirvonen, M.; Ojala, R.; Korhonen, P.; Haataja, P.; Eriksson, K.; Gissler, M.; Luukkaala, T.; Tammela, O. Cerebral Palsy Among Children Born Moderately and Late Preterm. Pediatrics 2014, 134, e1584–e1593. [Google Scholar] [CrossRef]
- Stocks, J.; Hislop, A.; Sonnappa, S. Early lung development: Lifelong effect on respiratory health and disease. Lancet Respir. Med. 2013, 1, 728–742. [Google Scholar] [CrossRef]
- Harding, R.; Maritz, G. Maternal and fetal origins of lung disease in adulthood. Semin. Fetal Neonatal Med. 2012, 17, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Fawke, J.; Lum, S.; Kirkby, J.; Hennessy, E.; Marlow, N.; Rowell, V.; Thomas, S.; Stocks, J. Lung function and respiratory symptoms at 11 years in children born extremely preterm: The EPICure study. Am. J. Respir. Crit. Care Med. 2010, 182, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, S.J.; Watkins, W.J.; Paranjothy, S.; Dunstan, F.D.; Henderson, A.J.; Kotecha, S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax 2011, 67, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, S.J.; Dunstan, F.D.; Kotecha, S. Long term respiratory outcomes of late preterm-born infants. Semin. Fetal Neonatal Med. 2012, 17, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Copper, R.L.; Goldenberg, R.L.; Creasy, R.K.; DuBard, M.B.; Davis, R.O.; Entman, S.S.; Iams, J.D.; Cliver, S.P. A multicenter study of preterm birth weight and gestational age—Specific neonatal mortality. Am. J. Obstet. Gynecol. 1993, 168, 78–84. [Google Scholar] [CrossRef]
- Schittny, J.C. Development of the lung. Cell Tissue Res. 2017, 367, 427–444. [Google Scholar] [CrossRef]
- Laughon, M.; Allred, E.N.; Bose, C.; O’Shea, T.M.; Van Marter, L.J.; Ehrenkranz, R.A.; Leviton, A.; ELGAN study investigators. Patterns of Respiratory Disease During the First 2 Postnatal Weeks in Extremely Premature Infants. Pediatrics 2009, 123, 1124–1131. [Google Scholar] [CrossRef]
- Frank, L.; Sosenko, I.R. Development of lung antioxidant enzyme system in late gestation: Possible implications for the prematurely born infant. J. Pediatr. 1987, 110, 9–14. [Google Scholar] [CrossRef]
- Fraser, J.; Walls, M.; McGuire, W. Respiratory complications of preterm birth. BMJ 2004, 329, 962–965. [Google Scholar] [CrossRef]
- Finer, N.; Leone, T. Oxygen saturation monitoring for the preterm infant: The evidence basis for current practice. Pediatr. Res. 2009, 65, 375–380. [Google Scholar] [CrossRef]
- Altman, M.; Vanpee, M.; Cnattingius, S.; Norman, M. Neonatal Morbidity in Moderately Preterm Infants: A Swedish National Population-Based Study. J. Pediatr. 2011, 158, 239–244.e1. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.; White, R.J.; Awad, H.A.; Bates, W.A.; McGrath-Morrow, S.A.; O’Reilly, M.A. Neonatal Hyperoxia Causes Pulmonary Vascular Disease and Shortens Life Span in Aging Mice. Am. J. Pathol. 2011, 178, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Kunig, A.M.; Balasubramaniam, V.; Markham, N.E.; Morgan, D.; Montgomery, G.; Grover, T.R.; Abman, S.H. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am. J. Physiol. Cell. Mol. Physiol. 2005, 289, L529–L535. [Google Scholar] [CrossRef] [PubMed]
- Georgeson, G.D.; Szőny, B.J.; Streitman, K.; Varga, I.S.; Kovács, A.; Kovács, L.; László, A. Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 103, 136–139. [Google Scholar] [CrossRef]
- Hernandez, L.A.; Peevy, K.J.; Moise, A.A.; Parker, J.C. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J. Appl. Physiol. 1989, 66, 2364–2368. [Google Scholar] [CrossRef] [PubMed]
- Carlton, D.P.; Cummings, J.J.; Scheerer, R.G.; Poulain, F.R.; Bland, R.D. Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J. Appl. Physiol. 1990, 69, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Björklund, L.J.; Ingimarsson, J.; Curstedt, T.; John, J.; Robertson, B.; Werner, O.; Vilstrup, C.T.; Bj, L.J. Manual Ventilation with a Few Large Breaths at Birth Compromises the Therapeutic Effect of Subsequent Surfactant Replacement in Immature Lambs. Pediatr. Res. 1997, 42, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Laughon, M.M.; Langer, J.C.; Bose, C.L.; Smith, P.B.; Ambalavanan, N.; Kennedy, K.A.; Stoll, B.J.; Buchter, S.; Laptook, A.R.; Ehrenkranz, R.A.; et al. Prediction of Bronchopulmonary Dysplasia by Postnatal Age in Extremely Premature Infants. Am. J. Respir. Crit. Care Med. 2011, 183, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.; Wheeler, K.I.; McCallion, N.; Morley, C.J.; Davis, P.G. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst. Rev. 2017, 10, CD003666. [Google Scholar] [CrossRef]
- Speer, C.P.; Silverman, M. Issues relating to children born prematurely. Eur. Respir. J. Suppl. 1998, 27, 13s–16s. [Google Scholar]
- Been, J.V.; Lugtenberg, M.J.; Smets, E.; Van Schayck, C.P.; Kramer, B.W.; Mommers, M.; Sheikh, A. Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis. PLoS Med. 2014, 11, e1001596. [Google Scholar] [CrossRef] [PubMed]
- Leps, C.; Carson, C.; QLeps, C.; Carson, C.; Quigley, M.A. Gestational age at birth and wheezing trajectories at 3–11 years. Arch. Dis. Child. 2018, 103, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, M.S.; Ahmed, P.; Ieromnimon, A.; Goepfert, P.; Laiou, E.; Quansah, R. Preterm delivery and asthma: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 2006, 118, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Källén, B.; Finnström, O.; Nygren, K.G.; Otterblad Olausson, P. Association between preterm birth and intrauterine growth retardation and child asthma. Eur. Respir. J. 2013, 41, 671–676. [Google Scholar] [CrossRef]
- Smith, L.J.; van Asperen, P.P.; McKay, K.O.; Selvadurai, H.; Fitzgerald, D.A. Reduced Exercise Capacity in Children Born Very Preterm. Pediatrics 2008, 122, e287–e293. [Google Scholar] [CrossRef]
- Davidesko, S.; Wainstock, T.; Sheiner, E.; Pariente, G. Long-Term Infectious Morbidity of Premature Infants: Is There a Critical Threshold? J. Clin. Med. 2020, 9, 3008. [Google Scholar] [CrossRef]
- Kallapur, S.G.; Ikegami, M. Physiological consequences of intrauterine insults. Paediatr. Respir. Rev. 2006, 7, 110–116. [Google Scholar] [CrossRef]
- Baumfeld, Y.; Walfisch, A.; Wainstock, T.; Segal, I.; Sergienko, R.; Landau, D.; Sheiner, E. Elective cesarean delivery at term and the long-term risk for respiratory morbidity of the offspring. Eur. J. Nucl. Med. Mol. Imaging 2018, 177, 1653–1659. [Google Scholar] [CrossRef]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020, 2021, CD004454. [Google Scholar] [CrossRef]
- Maritz, G.S.; Morley, C.; Harding, R. Early developmental origins of impaired lung structure and function. Early Hum. Dev. 2005, 81, 763–771. [Google Scholar] [CrossRef]




| Maternal Characteristics | Extremely Preterm (24.0–27.6) N = 118 | Very Preterm (28.0–31.6) N = 776 | Moderate to Late Preterm (32.0–36.6) N = 13,308 | Term Delivery (≥37.0) N = 206,361 | p Value a |
|---|---|---|---|---|---|
| Maternal age (mean ± SD, years) | 28.4 ± 6.3 | 28.3 ± 6.3 | 28.3 ± 6.2 | 28.2 ± 5.7 | <0.001 |
| Diabetes mellitus b (%) | 0.0 | 6.2 | 8.2 | 5.3 | <0.001 |
| Hypertensive disorders c (%) | 8.5 | 19.1 | 12.9 | 4.7 | <0.001 |
| Induction of labor (%) | 10.2 | 9.3 | 23.1 | 27.6 | <0.001 |
| Intra-amniotic infection (%) | 33.1 | 14.3 | 2.6 | 0.3 | <0.001 |
| Cesarean Delivery (%) | 51.7 | 52.8 | 31.0 | 12.7 | <0.001 |
| Low Apgar at 5 min (<7) (%) | 14.4 | 6.2 | 2.5 | 1.4 | <0.001 |
| Gestational age at delivery (mean ± SD, weeks) | 26.4 ± 0.7 | 30.0 ± 1.0 | 35.2 ± 1.1 | 39.4 ± 1.2 | <0.001 |
| Birthweight (mean ± SD, grams) | 1096 ± 601 | 1644 ± 633 | 2540 ± 495 | 3270 ± 445 | <0.001 |
| SGA d (%) | 3.4 | 1.8 | 3.6 | 4.4 | <0.001 |
| Respiratory Morbidity | Extremely Preterm (24.0–27.6) N = 118 | Very Preterm (28.0–31.6) N = 776 | Moderate to Late Preterm (32.0–36.6) N = 13,308 | Term Delivery (≥37.0) N = 206,361 | p Value a |
|---|---|---|---|---|---|
| Asthma (%) | 3.4 | 5.2 | 3.4 | 2.5 | <0.001 |
| Pleural disease (%) | 0.0 | 0.4 | 0.1 | 0.1 | 0.022 |
| Obstructive sleep apnea (OSA) (%) | 1.7 | 1.3 | 0.9 | 0.7 | 0.002 |
| Other * (%) | 8.5 | 6.6 | 3.0 | 1.9 | <0.001 |
| Total respiratory hospitalizations (%) | 12.7 | 11.7 | 7.0 | 4.7 | <0.001 |
| Gestational Age | Adjusted Hazard Ratio (aHR) * | Confidence Interval (95%) | p Value |
|---|---|---|---|
| Term delivery (reference) (37–42 weeks) | 1 | - | - |
| Moderate to late preterm (32–37 weeks) | 1.29 | 1.20–1.39 | <0.01 |
| Very preterm (28–32 weeks) | 2.02 | 1.62–2.52 | <0.01 |
| Extremely preterm (24–28 weeks) | 2.04 | 1.21–3.44 | <0.01 |
| Gestational Age | Adjusted Hazard Ratio (aHR) * | Confidence Interval (95%) | p Value |
|---|---|---|---|
| Term delivery (reference) (37–42 weeks) | 1 | - | - |
| Moderate to late preterm (32–37 weeks) | 1.32 | 1.12–1.56 | <0.01 |
| Very preterm (28–32 weeks) | 2.61 | 1.70–4.02 | <0.01 |
| Extremely preterm (24–28 weeks) | 3.33 | 1.50–7.39 | <0.01 |
| Gestational Age | Adjusted Hazard Ratio (aHR) * | Confidence Interval (95%) | p Value |
|---|---|---|---|
| Term delivery (reference) (37–42 weeks) | 1 | - | - |
| Moderate to late preterm (32–37 weeks) | 1.32 | 1.21–1.44 | <0.01 |
| Very preterm (28–32 weeks) | 1.97 | 1.52–2.55 | <0.01 |
| Extremely preterm (24–28 weeks) | 2.04 | 1.01–4.12 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutvirtz, G.; Wainstock, T.; Sheiner, E.; Pariente, G. Prematurity and Long-Term Respiratory Morbidity—What Is the Critical Gestational Age Threshold? J. Clin. Med. 2022, 11, 751. https://doi.org/10.3390/jcm11030751
Gutvirtz G, Wainstock T, Sheiner E, Pariente G. Prematurity and Long-Term Respiratory Morbidity—What Is the Critical Gestational Age Threshold? Journal of Clinical Medicine. 2022; 11(3):751. https://doi.org/10.3390/jcm11030751
Chicago/Turabian StyleGutvirtz, Gil, Tamar Wainstock, Eyal Sheiner, and Gali Pariente. 2022. "Prematurity and Long-Term Respiratory Morbidity—What Is the Critical Gestational Age Threshold?" Journal of Clinical Medicine 11, no. 3: 751. https://doi.org/10.3390/jcm11030751
APA StyleGutvirtz, G., Wainstock, T., Sheiner, E., & Pariente, G. (2022). Prematurity and Long-Term Respiratory Morbidity—What Is the Critical Gestational Age Threshold? Journal of Clinical Medicine, 11(3), 751. https://doi.org/10.3390/jcm11030751

