The Influence of a Single Instrument-Assisted Manual Therapy (IAMT) for the Lower Back on the Structural and Functional Properties of the Dorsal Myofascial Chain in Female Soccer Players: A Randomised, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- Female soccer player;
- Age of 15–35 years;
- Good health;
- Active involvement in competition;
- Minimum of three 90 min practice sessions per week.
- Back pathology within the past 4 weeks;
- Chronic illnesses;
- Acute injuries.
2.3. Measurements
2.3.1. Ultrasound Imaging
2.3.2. Dorsal Structure Flexibility Tests
- Starting with your head, bend your upper body forward with your knees extended, and let gravity passively guide you towards the floor, so that your extended arms are as close to the floor as possible.
- Now, try to reach the floor through muscular activation with your fingertips or palms while your knees remain fully extended.
2.3.3. Superficial Skin Temperature Assessment
2.4. Treatments
2.4.1. IAMT Treatment
2.4.2. Heat Treatment
2.4.3. Placebo Treatment
2.5. Statistical Analysis
3. Results
3.1. Structural Movement Parameters
3.2. Functional Movement Parameters
3.3. Superficial Skin Temperature
3.4. Superficial Fascia Changes
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmood, T.; Hafeez, M.; Ghauri, M.W.; Salam, A. Instrument assisted soft tissue mobilization- an emerging trend for soft tissue dysfunction. J. Pak. Med. Assoc. 2021, 71, 977–981. [Google Scholar] [PubMed]
- Seffrin, C.B.; Cattano, N.M.; Reed, M.A.; Gardiner-Shires, A.M. Instrument-Assisted Soft Tissue Mobilization: A Systematic Review and Effect-Size Analysis. J. Athl. Train. 2019, 54, 808–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, G. Acute effects of instrument assisted soft tissue mobilization vs. foam rolling on knee and hip range of motion in soccer players. J. Bodyw. Mov. Ther. 2015, 19, 690–696. [Google Scholar] [CrossRef]
- Laudner, K.; Compton, B.D.; McLoda, T.A.; Walters, C.M. Acute effects of instrument assisted soft tissue mobilization for improving posterior shoulder range of motion in collegiate baseball players. Int. J. Sports Phys. Ther. 2014, 9, 1–7. [Google Scholar]
- Sevier, T.L.; Stegink-Jansen, C.W. Astym treatment vs. eccentric exercise for lateral elbow tendinopathy: A randomized controlled clinical trial. PeerJ 2015, 3, e967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, A.; Knoblauch, N.T.; Dobos, G.J.; Michalsen, A.; Kaptchuk, T.J. The effect of Gua Sha treatment on the microcirculation of surface tissue: A pilot study in healthy subjects. Explore 2007, 3, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Stow, R. Instrument-assisted soft tissue mobilization. Int. J. Athl. Ther. Train. 2011, 16, 5–8. [Google Scholar]
- Schaefer, J.L.; Sandrey, M.A. Effects of a 4-week dynamic-balancetraining program supplemented with graston instrument assisted soft-tissue mobilization for chronic ankle instability. J. Sport Rehabil. 2012, 21, 313–326. [Google Scholar] [CrossRef]
- Lauche, R.; Wübbeling, K.; Lüdtke, R.; Cramer, H.; Choi, K.E.; Rampp, T.; Michalsen, A.; Langhorst, J.; Dobos, G.J. Randomized controlled pilot study: Pain intensity and pressure pain thresholds in patients with neck and low back pain before and after traditional east Asian “gua sha” therapy. Am. J. Chin. Med. 2012, 40, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.; Hitchcock, R.; Lavallee, K.; Hayford, E.; Morazzini, R.; Wallace, A.; Conroy, D.; Cleland, J. The effects of instrument-assisted soft tissue mobilization compared to other interventions on pain and function: A systematic review. Phys. Ther. Rev. 2017, 22, 76–85. [Google Scholar] [CrossRef]
- Ikeda, N.; Otsuka, S.; Kawanishi, Y.; Kawakami, Y. Effects of Instrument-assisted Soft Tissue Mobilization on Musculoskeletal Properties. Med. Sci. Sports Exerc. 2019, 51, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, S.W.; Lee, M.; Cain, M.; Baker, R. The efficacy of instrument assisted soft tissue mobilization: A systematic review. J. Can. Chiropr. Assoc. 2016, 60, 200–211. [Google Scholar] [PubMed]
- Morvan, D.; Leroy-Willig, A.; Malgouyres, A.; Cuenod, C.A.; Jehenson, P.; Syrota, A. Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique. Magn. Reson. Med. 1993, 29, 371–377. [Google Scholar] [CrossRef]
- Kim, J.; Sung, D.J.; Lee, J. Therapeutic effectiveness of instrumentassisted soft tissue mobilization for soft tissue injury: Mechanisms and practical application. J. Exerc. Rehabil. 2017, 13, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bove, G.M.; Chapelle, S.L.; Hanlon, K.E.; Diamond, M.P.; Mokler, D.J. Attenuation of postoperative adhesions using a modeled manual therapy. PLoS ONE 2017, 12, e0178407. [Google Scholar] [CrossRef] [Green Version]
- Gunn, L.J.; Stewart, J.C.; Morgan, B.; Metts, S.T.; Magnuson, J.M.; Iglowski, N.J.; Fritz, S.L.; Arnot, C. Instrument-assisted soft tissue mobilization and proprioceptive neuromuscular facilitation techniques improve hamstring flexibility better than static stretching alone: A randomized clinical trial. J. Man. Manip. Ther. 2019, 27, 15–23. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, J.; Krutsch, W.; Spreco, A.; van Zoest, W.; Roberts, C.; Meyer, T.; Bengtsson, H. Time before return to play for the most common injuries in professional football: A 16-year follow-up of the UEFA Elite Club Injury Study. Br. J. Sports Med. 2020, 54, 421–426. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef]
- Bradley, P.S.; Portas, M.D. The relationship between preseason range of motion and muscle strain injury in elite soccer players. J. Strength Cond. Res. 2007, 21, 1155–1159. [Google Scholar] [PubMed] [Green Version]
- Moon, J.H.; Jung, J.H.; Won, Y.S.; Cho, H.Y. Immediate effects of Graston technique on hamstringmuscle extensibility and pain intensity in patients with nonspecific low back pain. J. Phys. Ther. Sci. 2017, 29, 224–247. [Google Scholar] [CrossRef] [PubMed]
- Vleeming, A.; Pool-Goudzwaard, A.L.; Stoeckart, R.; van Wingerden, J.P.; Snijders, C.J. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine 1995, 20, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Schuenke, M.D.; Vleeming, A.; van Hoof, T.; Willard, F.H. A description of the lumbar interfascial triangle and its relation with the lateral raphe: Anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J. Anat. 2012, 221, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Carvalhais, V.O.; Ocarino Jde, M.; Araújo, V.L.; Souza, T.R.; Silva, P.L.; Fonseca, S.T. Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: An in vivo experiment. J. Biomech. 2013, 46, 1003–1007. [Google Scholar] [CrossRef]
- Krause, F.; Wilke, J.; Vogt, L.; Banzer, W. Intermuscular force transmission along myofascial chains: A systematic review. J. Anat. 2016, 228, 910–918. [Google Scholar] [CrossRef]
- Wilke, J.; Krause, F.; Vogt, L.; Banzer, W. What Is Evidence-Based About Myofascial Chains: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 454–461. [Google Scholar] [CrossRef]
- Huijing, P.A.; Baan, G.C. Myofascial force transmission: Muscle relative position and length determine agonist and synergist muscle force. J. Appl. Physiol. 2003, 94, 1092–1107. [Google Scholar] [CrossRef] [Green Version]
- Marshall, R. Living Anatomy: Structure as the Mirror of Function; Melbourne University Press: Melbourne, Australia, 2001; p. 222. [Google Scholar]
- Langevin, H.M.; Fox, J.R.; Koptiuch, C.; Badger, G.J.; Greenan-Naumann, A.C.; Bouffard, N.A.; Konofagou, E.E.; Lee, W.N.; Triano, J.J.; Henry, S.M. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet. Disord. 2011, 12, 203–213. [Google Scholar] [CrossRef]
- Langevin, H.M.; Stevens-Tuttle, D.; Fox, J.R.; Badger, G.J.; Bouffard, N.A.; Krag, M.H.; Wu, J.; Henry, S.M. Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain. BMC Musculoskelet. Disord. 2009, 10, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Schleip, R.; Gabbiani, G.; Wilke, J.; Naylor, I.; Hinz, B.; Zorn, A.; Jäger, H.; Breul, R.; Schreiner, S.; Klingler, W. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Front. Physiol. 2019, 10, 336–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griefahn, A.; Oehlmann, J.; Zalpour, C.; von Piekartz, H. Do exercises with the Foam Roller have a short-term impact on the thoracolumbar fascia?—A randomized controlled trial. J. Bodyw. Mov. Ther. 2017, 21, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Nazari, G.; Bobos, P.; MacDermid, J.C.; Birmingham, T. The Effectiveness of Instrument-Assisted Soft Tissue Mobilization in Athletes, Participants Without Extremity or Spinal Conditions, and Individuals with Upper Extremity, Lower Extremity, and Spinal Conditions: A Systematic Review. Arch. Phys. Med. Rehabil. 2019, 100, 1726–1751. [Google Scholar] [CrossRef] [PubMed]
- Nazari, G.; Bobos, P.; Lu, S.Z.; Reischl, S.; Sharma, S.; Le, C.Y.; Vader, K.; Held, N.; MacDermid, J.C. Effectiveness of instrument-assisted soft tissue mobilization for the management of upper body, lower body, and spinal conditions. An updated systematic review with meta-analyses. Disabil. Rehabil. 2022, 1–11, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hussey, M.J.; Boron-Magulick, A.E.; Valovich McLeod, T.C.; Welch Bacon, C.E. The Comparison of Instrument-Assisted Soft Tissue Mobilization and Self-Stretch Measures to Increase Shoulder Range of Motion in Overhead Athletes: A Critically Appraised Topic. J. Sport Rehabil. 2018, 27, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Weber, P.; Graf, C.; Klingler, W.; Weber, N.; Schleip, R. The feasibility and impact of instrument-assisted manual therapy (IAMT) for the lower back on the structural and functional properties of the lumbar area in female soccer players: A randomised, placebo-controlled pilot study design. Pilot Feasibility Stud. 2020, 6, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.J.; Lachin, J.M. Properties of the urn randomization in clinical trials. Control Clin. Trials 1988, 9, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Barcikowska, Z.; Grzybowska, M.E.; Wąż, P.; Jaskulak, M.; Kurpas, M.; Sotomski, M.; Starzec-Proserpio, M.; Rajkowska-Labon, E.; Hansdorfer-Korzon, R.; Zorena, K. Effect of Manual Therapy Compared to Ibuprofen on Primary Dysmenorrhea in Young Women-Concentration Assessment of C-Reactive Protein, Vascular Endothelial Growth Factor, Prostaglandins and Sex Hormones. J. Clin. Med. 2022, 11, 2686. [Google Scholar] [CrossRef]
- Baker, R.J.; Bell, G.W. The effect of therapeutic modalities on blood flow in the human calf. J. Orthop. Sports Phys. Ther. 1991, 13, 23–27. [Google Scholar] [CrossRef]
- Okada, K.; Yamaguchi, T.; Minowa, K.; Inoue, N. The influence of hot pack therapy on the blood flow in masseter muscles. J. Oral Rehabil. 2005, 32, 480–486. [Google Scholar] [CrossRef]
- Kubo, K.; Yajima, H.; Takayama, M.; Ikebukuro, T.; Mizoguchi, H.; Takakura, N. Effects of acupuncture and heating on blood volume and oxygen saturation of human Achilles tendon in vivo. Eur. J. Appl. Physiol. 2010, 109, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Dilley, A.; Greening, J.; Lynn, B.; Leary, R.; Morris, V. The use of cross-correlation analysis between high-frequency ultrasound images to measure longitudinal median nerve movement. Ultrasound Med. Biol. 2001, 27, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys. Ther. Sport. 2011, 12, 175–181. [Google Scholar] [CrossRef]
- Davis, D.S.; Quinn, R.O.; Whiteman, C.T.; Williams, J.D.; Young, C.R. Concurrent validity of four clinical tests used to measure hamstring flexibility. J. Strength Cond. Res. 2008, 22, 583–588. [Google Scholar] [CrossRef]
- Mayer, T.G.; Tencer, A.F.; Kristoferson, S.; Mooney, V. Use of noninvasive techniques for quantification of spinal range-of-motion in normal subjects and chronic low-back dysfunction patients. Spine 1984, 9, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Saur, P.M.; Ensink, F.B.; Frese, K.; Seeger, D.; Hildebrandt, J. Lumbar range of motion: Reliability and validity of the inclinometer technique in the clinical measurement of trunk flexibility. Spine 1996, 21, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Binkley, J.; Bloch, R.; Goldsmith, C.H.; Minuk, T. Reliability of the modified-modified Schöber and double inclinometer methods for measuring lumbar flexion and extension. Phys. Ther. 1993, 73, 33–44. [Google Scholar] [CrossRef]
- Azadinia, F.; Kamyab, M.; Behtash, H.; Saleh Ganjavian, M.; Javaheri, M.R. The validity and reliability of noninvasive methods for measuring kyphosis. J. Spinal Disord. Tech. 2014, 27, E212–E218. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.; McCreesh, K.; Lewis, J. Intrarater and interrater reliability of the flexicurve index, flexicurve angle, and manual inclinometer for the measurement of thoracic kyphosis. Rehabil. Res. Pract. 2013, 2013, 475870. [Google Scholar] [CrossRef]
- Lewis, J.S.; Valentine, R.E. Clinical measurement of the thoracic kyphosis. A study of the intra-rater reliability in subjects with and without shoulder pain. BMC Musculoskelet. Disord. 2010, 11, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Toppenberg, R.M.; Bullock, M.I. The interrelation of spinal curves, pelvic tilt and muscle lengths in the adolescent female. Aust. J. Physiother. 1986, 32, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, P.; Schleip, R.; Klingler, W.; Krämer, N.; Graf, C. The influence of an instrument-assisted myofascial treatment on structural and functional properties of the lower back in female soccer players: Study design of a placebo-controlled RCT. J. Bodyw. Mov. Ther. 2018, 22, 848–849. [Google Scholar] [CrossRef]
- Rolke, R.; Andrews, K.; Magerl, W.; Treede, R.D. Quantitative Sensorische Testung. Available online: http://www.neuro.med.tu-muenchen.de/dfns/pdfs/QST-HandlungsanweisungUntersucherVersion_2_1_final_deutsch_2010_07_08-2.pdf (accessed on 18 November 2018).
- Buttagat, V.; Eungpinichpong, W.; Chatchawan, U.; Arayawichanon, P. Therapeutic effects of traditional Thai massage on pain, muscle tension and anxiety in patients with scapulocostal syndrome: A randomized single-blinded pilot study. J. Bodyw. Mov. Ther. 2012, 16, 57–63. [Google Scholar] [CrossRef]
- Puntumetakul, R.; Areeudomwong, P.; Emasithi, A.; Yamauchi, J. Effect of 10-week core stabilization exercise training and detraining on pain-related outcomes in patients with clinical lumbar instability. Patient Prefer. Adherence 2013, 7, 1189–1199. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, A.; Mohammadian, B.; Basiri Moghadam, M.; Nematollahi, M.R. The effects of topical heat therapy on chest pain in patients with acute coronary syndrome: A randomised double-blind placebo-controlled clinical trial. J. Clin. Nurs. 2014, 23, 3460–3467. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical Power Analyses Using G*Power 3.1: Tests For Correlation And Regression Analyses. Behav. Res. Methods. 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowman, M.K.; Matsuoka, S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005, 340, 791–809. [Google Scholar] [CrossRef]
- Cowman, M.K.; Schmidt, T.A.; Raghavan, P.; Stecco, A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Research 2015, 4, 622–632. [Google Scholar] [CrossRef] [Green Version]
- Cinar, Y.; Senyol, A.M.; Duman, K. Blood viscosity and blood pressure: Role of temperature and hyperglycemia. Am. J. Hypertens. 2001, 14, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Urbanová, R. Effect of temperature on rheologic properties of blood and internal viscosity of erythrocytes. Cas. Lek. Cesk. 1996, 135, 660–663. [Google Scholar]
- Stecco, A.; Gesi, M.; Stecco, C.; Stern, R. Fascial components of the myofascial pain syndrome. Curr. Pain Headache Rep. 2013, 17, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.T.; Rusch, N.J.; Vanhoutte, P.M. Effect of cold on the blood vessel wall. Gen. Pharmacol. 1983, 14, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Hoheisel, U.; Rosner, J.; Mense, S. Innervation changes induced by inflammation of the rat thoracolumbar fascia. Neuroscience 2015, 6, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Mense, S. Innervation of the thoracolumbar fascia. Eur. J. Transl. Myol. 2019, 29, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Corradin, M.; Macchi, V.; Morra, A.; Porzionato, A.; Biz, C.; De Caro, R. Plantar fascia anatomy and its relationship with Achilles tendon and paratenon. J. Anat. 2013, 223, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Tesarz, J.; Hoheisel, U.; Wiedenhöfer, B.; Mense, S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 2011, 194, 302–308. [Google Scholar] [CrossRef]
- Yahia, L.; Rhalmi, S.; Newman, N.; Isler, M. Sensory innervation of human thoracolumbar fascia. An immunohistochemical study. Acta Orthop. Scand. 1992, 63, 195–197. [Google Scholar] [CrossRef]
- Stecco, C.; Pirri, C.; Fede, C.; Fan, C.; Giordani, F.; Stecco, L.; Foti, C.; De Caro, R. Dermatome and Fasciatome. Clin. Anat. 2019, 32, 896–902. [Google Scholar] [CrossRef]
- Taguchi, T.; Yasui, M.; Kubo, A.; Abe, M.; Kiyama, H.; Yamanaka, A.; Mizumura, K. Nociception originating from the crural fascia in rats. Pain 2013, 154, 1103–1114. [Google Scholar] [CrossRef]
- Dayanır, I.O.; Birinci, T.; Kaya Mutlu, E.; Akcetin, M.A.; Akdemir, A.O. Comparison of Three Manual Therapy Techniques as Trigger Point Therapy for Chronic Nonspecific Low Back Pain: A Randomized Controlled Pilot Trial. J. Altern. Complement. Med. 2020, 26, 291–299. [Google Scholar] [CrossRef]
- Hsieh, L.L.; Liou, H.H.; Lee, L.H.; Chen, T.H.; Yen, A.M. Effect of acupressure and trigger points in treating headache: A randomized controlled trial. Am. J. Chin. Med. 2010, 38, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.G.; Chen, C.Y.; Li, W.F.; Chou, C.C.; Liao, Y.H. Traditional Chinese acupressure massage ameliorates systemic inflammatory responses and joint mobility limitation after acute repeated jumping exercise. Explore 2020, 16, 26–34. [Google Scholar] [CrossRef] [PubMed]
- St John Smith, E. Advances in understanding nociception and neuropathic pain. J. Neurol. 2018, 265, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Halbertsma, J.P.; Göeken, L.N.; Hof, A.L.; Groothoff, J.W.; Eisma, W.H. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain. Arch. Phys. Med. Rehabil. 2001, 82, 232–238. [Google Scholar] [CrossRef]
- Tafazzoli, F.; Lamontagne, M. Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects. Clin. Biomech. 1996, 11, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, A.; Bigney, K.A.; Buonomo, H.N.; Jarmak, M.W.; Moats, S.M.; Ross, J.K.; Tatarevic, E.; Tomko, M.A. Evaluation of intra-subject difference in hamstring flexibility in patients with low back pain: An exploratory study. J. Back Musculoskelet. Rehabil. 2015, 28, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.S.; Laymon, M.; Lee, H. Effect of heat and cold on tendon flexibility and force to flex the human knee. Med. Sci. Monit. 2013, 19, 661–667. [Google Scholar]
- Vleeming, A.; Schuenke, M.D.; Danneels, L.; Willard, F.H. The functional coupling of the deep abdominal and paraspinal muscles: The effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J. Anat. 2014, 225, 447–462. [Google Scholar] [CrossRef]
- Dos Santos Amorim, M.; Sinhorim, L.; Wagner, J.; de Paula Lemos, F.; Schleip, R.; Sonza, A.; Santos, G.M. Acute effects of myofascial reorganization on trapezius muscle oxygenation in individuals with nonspecific neck pain. J. Bodyw. Mov. Ther. 2022, 29, 286–290. [Google Scholar] [CrossRef]
- Wezenbeek, E.; Willems, T.; Mahieu, N.; De Muynck, M.; Vanden Bossche, L.; Steyaert, A.; De Clercq, D.; Witvrouw, E. The Role of the Vascular and Structural Response to Activity in the Development of Achilles Tendinopathy: A Prospective Study. Am. J. Sports Med. 2018, 46, 947–954. [Google Scholar] [CrossRef]
Parameter | All Groups (n = 67) | IG (n = 23) | CG (n = 22) | PG (n = 22) | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean/n | ± | SD | Mean/n | ± | SD | Mean/n | ± | SD | Mean/n | ± | SD | ||||
Age [year] | 20.9 | ± | 3.9 | 21.2 | ± | 4.1 | 20.9 | ± | 3.6 | 20.8 | ± | 4.1 | 0.945 | ‡ | |
Height [cm] | 167.4 | ± | 5.5 | 166.9 | ± | 4.3 | 168.3 | ± | 5.7 | 167.1 | ± | 6.4 | 0.563 | ‡ | |
Weight [kg] | 62.6 | ± | 7.0 | 62.7 | ± | 8.1 | 62.8 | ± | 6.4 | 62.4 | ± | 6.7 | 0.840 | ‡ | |
BMI [kg/m²] | 22.3 | ± | 2.3 | 22.5 | ± | 2.6 | 22.1 | ± | 1.7 | 22.4 | ± | 2.4 | 0.872 | † | |
Sport experience [year] | 12.4 | ± | 4.2 | 12.4 | ± | 3.6 | 11.6 | ± | 4.5 | 13.1 | ± | 4.7 | 0.488 | † | |
Menstruation [day] | 16.4 | ± | 8.2 | 16.6 | ± | 8.6 | 16.1 | ± | 8.2 | 16.4 | ± | 8.2 | 0.963 | ‡ | |
Weekly extent [hour] | 7.2 | ± | 2.0 | 7.1 | ± | 1.9 | 6.7 | ± | 1.9 | 7.8 | ± | 2.3 | 0.222 | ‡ | |
7-day-extent [hour] | 5.1 | ± | 3.1 | 4.7 | ± | 3.0 | 5.1 | ± | 3.0 | 5.7 | ± | 3.4 | 0.536 | † | |
Flexibility [0–10] | 2.88 | ± | 2.19 | 2.64 | ± | 2.00 | 3.23 | ± | 2.63 | 2.78 | ± | 1.94 | 0.807 | ‡ | |
Pain [0–10] | 1.66 | ± | 2.03 | 1.66 | ± | 1.88 | 2.17 | ± | 2.65 | 1.13 | ± | 1.32 | 0.806 | ‡ | |
Level | State | 24 | 7 | 10 | 7 | ||||||||||
National | 41 | 15 | 12 | 14 | 0.722 | # | |||||||||
International | 2 | 1 | 0 | 1 | |||||||||||
Squad | None | 50 | 16 | 18 | 16 | 0.875 | # | ||||||||
State | 7 | 3 | 2 | 2 | |||||||||||
National | 10 | 4 | 2 | 4 | |||||||||||
Free leg | Right | 56 | 19 | 18 | 19 | 0.909 | # | ||||||||
Left | 11 | 4 | 4 | 3 | |||||||||||
MSR | Yes | 52 | 18 | 16 | 18 | 0.767 | # | ||||||||
No | 15 | 5 | 6 | 4 | |||||||||||
Hormonal | Yes | 26 | 9 | 8 | 9 | 0.953 | # | ||||||||
contraception | No | 41 | 14 | 14 | 13 |
Parameter | IG (n = 23) | CG (n = 22) | PG (n = 22) | p-Value | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Δ1/Δ2 | ± | SD | Mean | ± | SD | Δ1/Δ2 | ± | SD | Mean | ± | SD | Δ1/Δ2 | ± | SD | |||
Baseline (t0) | ||||||||||||||||||||
SF R [mm] | 3.52 | ± | 1.59 | 3.73 | ± | 1.59 | 3.40 | ± | 1.88 | 0.808 | † | |||||||||
TLF-SL R [mm] | 5.85 | ± | 2.45 | 5.83 | ± | 2.60 | 4.73 | ± | 2.72 | 0.265 | † | |||||||||
TLF-DL R [mm] | 10.58 | ± | 3.80 | 11.14 | ± | 3.92 | 9.21 | ± | 4.01 | 0.249 | † | |||||||||
ESM R [mm] | 14.07 | ± | 3.17 | 16.63 | ± | 3.14 | 14.03 | ± | 3.78 | 0.017 | *† | |||||||||
SF L [mm] | 3.52 | ± | 1.54 | 3.88 | ± | 1.47 | 3.34 | ± | 1.36 | 0.467 | † | |||||||||
TLF-SL L [mm] | 6.82 | ± | 2.75 | 7.10 | ± | 3.30 | 5.74 | ± | 2.34 | 0.248 | † | |||||||||
TLF-DL L [mm] | 10.36 | ± | 2.88 | 11.51 | ± | 3.88 | 9.79 | ± | 2.80 | 0.202 | † | |||||||||
ESM L [mm] | 13.77 | ± | 2.69 | 14.22 | ± | 3.12 | 13.27 | ± | 3.54 | 0.604 | † | |||||||||
SM (SF/TLF-SL) R [mm] | 2.33 | ± | 1.30 | 2.10 | ± | 1.46 | 1.34 | ± | 1.06 | 0.031 | *† | |||||||||
SM (TLF-SL/TLF-DL) R [mm] | 4.73 | ± | 2.98 | 5.31 | ± | 2.51 | 4.48 | ± | 2.69 | 0.449 | ‡ | |||||||||
SM (TLF-DL/ESM) R [mm] | 3.50 | ± | 3.27 | 5.49 | ± | 3.33 | 4.83 | ± | 3.66 | 0.144 | † | |||||||||
SM (SF/TLF-SL) L [mm] | 3.30 | ± | 1.86 | 3.22 | ± | 2.08 | 2.40 | ± | 1.29 | 0.183 | † | |||||||||
SM (TLF-SL/TLF-DL) L [mm] | 3.54 | ± | 1.75 | 4.41 | ± | 2.28 | 4.05 | ± | 2.10 | 0.364 | † | |||||||||
SM (TLF-DL/ESM) L [mm] | 3.41 | ± | 3.31 | 2.71 | ± | 3.61 | 3.48 | ± | 3.07 | 0.697 | † | |||||||||
1st Post (t1) | ||||||||||||||||||||
SF R [mm] | 3.17 | ± | 1.87 | −0.35 | ± | 1.66 | 3.94 | ± | 1.82 | 0.21 | ± | 1.72 | 3.73 | ± | 1.79 | 0.33 | ± | 1.33 | 0.307 | † |
TLF-SL R [mm] | 5.19 | ± | 2.99 | −0.66 | ± | 2.33 | 5.65 | ± | 2.52 | −0.18 | ± | 2.16 | 5.73 | ± | 2.90 | 1.00 | ± | 1.95 | 0.036 | *† |
TLF-DL R [mm] | 10.15 | ± | 3.83 | −0.43 | ± | 3.72 | 11.00 | ± | 3.69 | −0.14 | ± | 2.27 | 9.95 | ± | 3.19 | 0.74 | ± | 2.75 | 0.402 | † |
ESM R [mm] | 13.65 | ± | 3.84 | −0.43 | ± | 2.84 | 15.28 | ± | 4.12 | −1.35 | ± | 3.17 | 14.42 | ± | 3.61 | 0.38 | ± | 3.02 | 0.170 | † |
SF L [mm] | 3.33 | ± | 1.54 | −0.19 | ± | 1.34 | 4.13 | ± | 1.86 | 0.25 | ± | 1.15 | 3.37 | ± | 1.50 | 0.03 | ± | 0.65 | 0.416 | † |
TLF-SL L [mm] | 6.64 | ± | 2.70 | −0.18 | ± | 1.79 | 7.25 | ± | 3.72 | 0.15 | ± | 1.72 | 5.80 | ± | 2.39 | 0.05 | ± | 1.03 | 0.770 | † |
TLF-DL L [mm] | 10.71 | ± | 2.75 | 0.35 | ± | 1.82 | 11.64 | ± | 4.52 | 0.12 | ± | 2.26 | 9.47 | ± | 2.71 | −0.32 | ± | 1.50 | 0.485 | † |
ESM L [mm] | 14.00 | ± | 3.53 | 0.24 | ± | 2.93 | 14.66 | ± | 3.33 | 0.44 | ± | 2.59 | 13.53 | ± | 3.40 | 0.26 | ± | 2.57 | 0.962 | † |
SM (SF/TLF-SL) R [mm] | 2.02 | ± | 1.51 | −0.31 | ± | 1.32 | 1.71 | ± | 1.04 | −0.39 | ± | 0.92 | 2.01 | ± | 1.34 | 0.67 | ± | 1.13 | 0.004 | *† |
SM (TLF-SL/TLF-DL) R [mm] | 4.96 | ± | 2.40 | 0.23 | ± | 2.10 | 5.35 | ± | 3.01 | 0.04 | ± | 2.00 | 4.22 | ± | 2.41 | −0.26 | ± | 1.82 | 0.464 | ‡ |
SM (TLF-DL/ESM) R [mm] | 3.50 | ± | 3.36 | 0.00 | ± | 2.87 | 4.28 | ± | 3.82 | −1.21 | ± | 2.58 | 4.47 | ± | 2.96 | −0.36 | ± | 2.47 | 0.299 | † |
SM (SF/TLF-SL) L [mm] | 3.31 | ± | 1.79 | 0.01 | ± | 1.21 | 3.13 | ± | 2.10 | −0.10 | ± | 0.90 | 2.43 | ± | 1.21 | 0.03 | ± | 0.78 | 0.902 | † |
SM (TLF-SL/TLF-DL) L [mm] | 4.06 | ± | 2.01 | 0.52 | ± | 1.41 | 4.38 | ± | 1.97 | −0.03 | ± | 1.28 | 3.67 | ± | 1.61 | −0.38 | ± | 1.20 | 0.072 | † |
SM (TLF-DL/ESM) L [mm] | 3.30 | ± | 3.51 | −0.11 | ± | 2.28 | 3.03 | ± | 3.58 | 0.32 | ± | 2.11 | 4.06 | ± | 2.89 | 0.58 | ± | 2.09 | 0.556 | † |
2nd Post (t2) | ||||||||||||||||||||
SF R [mm] | 4.04 | ± | 1.72 | 0.52 | ± | 1.94 | 4.02 | ± | 1.92 | 0.30 | ± | 1.68 | 3.41 | ± | 1.60 | 0.01 | ± | 1.11 | 0.581 | † |
TLF-SL R [mm] | 6.12 | ± | 2.33 | 0.27 | ± | 2.31 | 6.04 | ± | 3.01 | 0.21 | ± | 2.12 | 5.13 | ± | 2.34 | 0.40 | ± | 1.68 | 0.951 | † |
TLF-DL R [mm] | 10.93 | ± | 3.74 | 0.35 | ± | 3.42 | 11.61 | ± | 4.27 | 0.47 | ± | 2.67 | 9.29 | ± | 3.64 | 0.08 | ± | 3.22 | 0.913 | † |
ESM R [mm] | 14.70 | ± | 3.45 | 0.63 | ± | 2.96 | 15.80 | ± | 4.02 | −0.84 | ± | 2.91 | 14.34 | ± | 2.87 | 0.31 | ± | 3.04 | 0.230 | † |
SF L [mm] | 3.58 | ± | 1.79 | 0.06 | ± | 1.46 | 4.13 | ± | 1.43 | 0.25 | ± | 1.01 | 3.08 | ± | 1.41 | −0.27 | ± | 0.93 | 0.336 | † |
TLF-SL L [mm] | 6.84 | ± | 3.21 | 0.03 | ± | 2.12 | 6.83 | ± | 2.92 | −0.27 | ± | 1.64 | 5.50 | ± | 2.57 | −0.25 | ± | 1.32 | 0.816 | † |
TLF-DL L [mm] | 10.56 | ± | 3.01 | 0.20 | ± | 2.03 | 11.59 | ± | 4.32 | 0.08 | ± | 2.26 | 8.98 | ± | 3.01 | −0.81 | ± | 1.92 | 0.217 | † |
ESM L [mm] | 13.31 | ± | 3.23 | −0.46 | ± | 3.15 | 14.99 | ± | 3.94 | 0.77 | ± | 1.85 | 13.22 | ± | 3.27 | −0.05 | ± | 2.10 | 0.240 | † |
SM (SF/TLF-SL) R [mm] | 2.08 | ± | 1.39 | −0.25 | ± | 1.24 | 2.02 | ± | 1.47 | −0.09 | ± | 1.10 | 1.72 | ± | 1.08 | 0.39 | ± | 1.08 | 0.162 | † |
SM (TLF-SL/TLF-DL) R [mm] | 4.81 | ± | 2.58 | 0.08 | ± | 1.95 | 5.57 | ± | 3.12 | 0.27 | ± | 1.79 | 4.16 | ± | 2.94 | −0.32 | ± | 1.96 | 0.619 | ‡ |
SM (TLF-DL/ESM) R [mm] | 3.78 | ± | 3.08 | 0.28 | ± | 2.66 | 4.18 | ± | 3.10 | −1.31 | ± | 2.18 | 5.06 | ± | 3.69 | 0.23 | ± | 3.87 | 0.139 | † |
SM (SF/TLF-SL) L [mm] | 3.26 | ± | 1.88 | −0.03 | ± | 0.97 | 2.70 | ± | 1.74 | −0.52 | ± | 0.94 | 2.42 | ± | 1.54 | 0.02 | ± | 0.95 | 0.122 | † |
SM (TLF-SL/TLF-DL) L [mm] | 3.72 | ± | 1.98 | 0.18 | ± | 1.50 | 4.76 | ± | 2.70 | 0.35 | ± | 1.48 | 3.48 | ± | 1.88 | −0.56 | ± | 1.74 | 0.131 | † |
SM (TLF-DL/ESM) L [mm] | 2.75 | ± | 2.51 | −0.66 | ± | 2.44 | 3.40 | ± | 3.22 | 0.69 | ± | 2.13 | 4.24 | ± | 2.65 | 0.76 | ± | 1.66 | 0.044 | *† |
Parameter | IG (n = 23) | CG (n = 22) | PG (n = 22) | p-Value | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Δ1/Δ2 | ± | SD | Mean | ± | SD | Δ1/Δ2 | ± | SD | Mean | ± | SD | Δ1/Δ2 | ± | SD | |||
Baseline (t0) | ||||||||||||||||||||
PSLR R [°] | 77.4 | ± | 10.9 | 72.6 | ± | 11.3 | 77.6 | ± | 15.0 | 0.337 | † | |||||||||
PSLR L [°] | 77.2 | ± | 13.0 | 72.6 | ± | 10.6 | 76.6 | ± | 14.2 | 0.430 | † | |||||||||
PLS [°] | 52.7 | ± | 8.2 | 53.6 | ± | 9.6 | 54.9 | ± | 9.5 | 0.717 | † | |||||||||
ALS [°] | 54.3 | ± | 9.0 | 54.7 | ± | 9.3 | 56.0 | ± | 10.0 | 0.708 | ‡ | |||||||||
PTS [°] | 29.3 | ± | 9.5 | 27.7 | ± | 12.4 | 25.6 | ± | 8.2 | 0.467 | † | |||||||||
ATS [°] | 31.6 | ± | 10.5 | 28.3 | ± | 10.2 | 25.7 | ± | 9.2 | 0.180 | ‡ | |||||||||
1st Post (t1) | ||||||||||||||||||||
PSLR R [°] | 79.3 | ± | 10.8 | 1.9 | ± | 3.6 | 73.0 | ± | 10.3 | 0.4 | ± | 2.1 | 77.4 | ± | 14.8 | −0.2 | ± | 2.5 | 0.044 | *† |
PSLR L [°] | 77.5 | ± | 12.7 | 0.3 | ± | 2.4 | 72.8 | ± | 9.4 | 0.2 | ± | 2.4 | 77.2 | ± | 13.5 | 0.6 | ± | 2.2 | 0.865 | † |
PLS [°] | 51.7 | ± | 8.3 | −1.0 | ± | 4.9 | 52.9 | ± | 6.9 | −0.7 | ± | 4.2 | 55.2 | ± | 8.0 | 0.3 | ± | 4.1 | 0.616 | † |
ALS [°] | 53.3 | ± | 8.4 | −1.0 | ± | 4.2 | 53.8 | ± | 8.4 | −0.9 | ± | 4.3 | 55.7 | ± | 7.9 | −0.3 | ± | 4.5 | 0.776 | ‡ |
PTS [°] | 30.5 | ± | 8.9 | 1.2 | ± | 7.0 | 30.9 | ± | 9.5 | 3.2 | ± | 8.1 | 25.4 | ± | 9.7 | −0.2 | ± | 6.9 | 0.319 | † |
ATS [°] | 32.4 | ± | 7.9 | 0.8 | ± | 5.7 | 31.2 | ± | 10.0 | 2.9 | ± | 6.1 | 27.8 | ± | 10.3 | 2.1 | ± | 5.0 | 0.523 | ‡ |
2nd Post (t2) | ||||||||||||||||||||
PSLR R [°] | 79.7 | ± | 9.1 | 2.3 | ± | 3.6 | 72.9 | ± | 11.4 | 0.3 | ± | 2.3 | 77.0 | ± | 14.9 | −0.6 | ± | 1.8 | 0.002 | *† |
PSLR L [°] | 77.5 | ± | 12.0 | 0.3 | ± | 2.7 | 73.0 | ± | 10.3 | 0.4 | ± | 2.9 | 76.6 | ± | 14.4 | −0.1 | ± | 2.4 | 0.838 | † |
PLS [°] | 50.7 | ± | 11.2 | −2.0 | ± | 7.6 | 52.9 | ± | 9.3 | −0.7 | ± | 3.9 | 54.8 | ± | 7.4 | −0.1 | ± | 5.3 | 0.537 | † |
ALS [°] | 52.1 | ± | 13.6 | −2.2 | ± | 12.7 | 53.3 | ± | 9.2 | −1.5 | ± | 5.1 | 55.7 | ± | 8.1 | −0.3 | ± | 6.0 | 0.654 | ‡ |
PTS [°] | 28.7 | ± | 8.5 | −0.6 | ± | 7.5 | 30.6 | ± | 10.2 | 2.8 | ± | 9.2 | 27.0 | ± | 11.1 | 1.5 | ± | 7.6 | 0.367 | † |
ATS [°] | 31.0 | ± | 8.6 | −0.6 | ± | 5.6 | 30.5 | ± | 9.5 | 2.2 | ± | 5.9 | 27.0 | ± | 11.9 | 1.3 | ± | 5.7 | 0.415 | ‡ |
Parameter | IG (n = 23) | CG (n = 22) | PG (n = 22) | p-Value | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Δ1/Δ2 | ± | SD | Mean | ± | SD | Δ1/Δ2 | ± | SD | Mean | ± | SD | Δ1/Δ2 | ± | SD | |||
Baseline (t0) | ||||||||||||||||||||
Temp LS R [°C] | 33.4 | ± | 0.8 | 33.5 | ± | 0.6 | 33.4 | ± | 0.8 | 0.966 | ‡ | |||||||||
Temp LS L [°C] | 33.5 | ± | 0.8 | 33.7 | ± | 0.7 | 33.5 | ± | 0.9 | 0.941 | ‡ | |||||||||
Temp Ref [°C] | 29.9 | ± | 1.0 | 30.4 | ± | 1.1 | 30.2 | ± | 1.0 | 0.358 | ‡ | |||||||||
1st Post (t1) | ||||||||||||||||||||
Temp LS R [°C] | 34.9 | ± | 0.6 | 1.5 | ± | 0.5 | 35.7 | ± | 0.3 | 2.2 | ± | 0.6 | 31.4 | ± | 1.1 | −2.0 | ± | 0.7 | 0.001 | *‡ |
Temp LS L [°C] | 33.7 | ± | 0.9 | 0.2 | ± | 0.5 | 34.1 | ± | 0.7 | 0.4 | ± | 0.4 | 32.9 | ± | 0.9 | −0.6 | ± | 0.6 | 0.001 | *‡ |
Temp Ref [°C] | 30.0 | ± | 1.0 | 0.1 | ± | 0.8 | 30.3 | ± | 1.0 | −0.1 | ± | 0.6 | 30.1 | ± | 1.1 | −0.1 | ± | 0.8 | 0.886 | ‡ |
2nd Post (t2) | ||||||||||||||||||||
Temp LS R [°C] | 34.0 | ± | 0.5 | 0.7 | ± | 0.6 | 33.8 | ± | 0.5 | 0.3 | ± | 0.5 | 33.0 | ± | 0.7 | −0.4 | ± | 0.4 | 0.001 | *‡ |
Temp LS L [°C] | 33.6 | ± | 0.7 | 0.1 | ± | 0.4 | 33.6 | ± | 0.7 | −0.1 | ± | 0.5 | 33.3 | ± | 0.7 | −0.2 | ± | 0.6 | 0.159 | ‡ |
Temp Ref [°C] | 29.8 | ± | 0.8 | −0.1 | ± | 1.0 | 30.0 | ± | 0.8 | −0.4 | ± | 0.7 | 29.9 | ± | 0.9 | −0.3 | ± | 0.9 | 0.561 | ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, P.; Klingler, W.; Schleip, R.; Weber, N.; Joisten, C. The Influence of a Single Instrument-Assisted Manual Therapy (IAMT) for the Lower Back on the Structural and Functional Properties of the Dorsal Myofascial Chain in Female Soccer Players: A Randomised, Placebo-Controlled Trial. J. Clin. Med. 2022, 11, 7110. https://doi.org/10.3390/jcm11237110
Weber P, Klingler W, Schleip R, Weber N, Joisten C. The Influence of a Single Instrument-Assisted Manual Therapy (IAMT) for the Lower Back on the Structural and Functional Properties of the Dorsal Myofascial Chain in Female Soccer Players: A Randomised, Placebo-Controlled Trial. Journal of Clinical Medicine. 2022; 11(23):7110. https://doi.org/10.3390/jcm11237110
Chicago/Turabian StyleWeber, Patrick, Werner Klingler, Robert Schleip, Nadine Weber, and Christine Joisten. 2022. "The Influence of a Single Instrument-Assisted Manual Therapy (IAMT) for the Lower Back on the Structural and Functional Properties of the Dorsal Myofascial Chain in Female Soccer Players: A Randomised, Placebo-Controlled Trial" Journal of Clinical Medicine 11, no. 23: 7110. https://doi.org/10.3390/jcm11237110
APA StyleWeber, P., Klingler, W., Schleip, R., Weber, N., & Joisten, C. (2022). The Influence of a Single Instrument-Assisted Manual Therapy (IAMT) for the Lower Back on the Structural and Functional Properties of the Dorsal Myofascial Chain in Female Soccer Players: A Randomised, Placebo-Controlled Trial. Journal of Clinical Medicine, 11(23), 7110. https://doi.org/10.3390/jcm11237110