Neurorehabilitation in Multiple Sclerosis—A Review of Present Approaches and Future Considerations
Abstract
:1. Introduction
2. The Effect of Neurorehabilitation on the Neurobiological Particularities of Multiple Sclerosis Patients
3. Present Therapeutic Approaches
3.1. Disease-Modifying Therapies and Symptomatic Medication in Multiple Sclerosis
3.2. Physical Rehabilitation Strategies
3.2.1. Gait Management
3.2.2. Balance and Coordination Management
3.2.3. Fatigue Management
3.2.4. Spasticity Management
3.2.5. Dysphagia Management
3.2.6. Overactive Bladder Management
3.3. Cognitive Rehabilitation
4. Subjective and Objective Measures of Improvement after Neurorehabilitation
5. Emerging Techniques and Future Considerations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2MWT | 2-min walk test |
6MWT | 6-min walk test |
ADL | Activities of daily living |
AFOs | Ankle-foot orthoses |
AS | Ashworth scale |
BBS | Berg balance scale |
BDNF | Brain-derived neurotrophic factor |
BWSTT | Body-weight supported treadmill training |
CBT | Cognitive-behavioral therapy |
CNS | Central nervous system |
CPZ | Cuprizone |
DSS | Disability status scale |
DYMUS | Dysphagia in multiple sclerosis |
EAE | Experimental autoimmune encephalomyelitis |
EAT-10 | Eating assessment tool |
EDSS | Expanded disability status scale |
EMG | Electromyography |
FEES | Fiber optic endoscopic evaluation of swallowing |
FES | Functional electrical stimulation |
fMRI | Functional magnetic resonance imaging |
FS | Functional systems |
HMD | Head-mounted displays |
ICARS | International cooperative ataxia rating scale |
LCT | Lysolecithin |
MAS | Modified Ashworth scale |
MASA | Mann assessment of swallowing ability |
MoCA | Montreal cognitive assessment test |
MRI | Magnetic resonance imaging |
MS | Multiple sclerosis |
MSWS-12 | 12-item multiple sclerosis walking scale |
NHPT | Nine-hole peg test |
NHS | National health service |
NIBS | Noninvasive brain stimulation |
NMES | Neuromuscular electrical stimulation |
OPC | Oligodendrocyte precursor cells |
PAS | Penetration-aspiration scale |
PEMF | Pulsed electromagnetic field therapy |
PFMT | Pelvic floor muscle training |
PNF | Proprioceptive neuromuscular facilitation |
QoL | Quality of life |
RAGT | Robotic-assisted gait training |
ROM | Range of motion |
RPMS | Repetitive peripheral magnetic nerve stimulation |
RSN | Resting state network |
SCFAs | Short chain fatty acids |
sEMG | Surface electromyography |
SLT | Speech–language therapy |
T25FW | Timed 25-foot walk test |
tDCS | Transcranial direct current stimulation |
TENS | Transcutaneous electrical nerve stimulation |
TIS | Trunk impairment scale |
Treg | Regulatory T lymphocytes |
VR | Virtual reality |
References
- Miller, E. Multiple sclerosis. Adv. Exp. Med. Biol. 2012, 724, 222–238. [Google Scholar] [CrossRef]
- Federation, M.I. Atlas of MS 3rd Edition. Available online: https://www.msif.org/wp-content/uploads/2020/10/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf (accessed on 10 October 2022).
- Di Cara, M.; Lo Buono, V.; Corallo, F.; Cannistraci, C.; Rifici, C.; Sessa, E.; D’Aleo, G.; Bramanti, P.; Marino, S. Body image in multiple sclerosis patients: A descriptive review. Neurol. Sci. 2019, 40, 923–928. [Google Scholar] [CrossRef]
- Macias Islas, M.A.; Ciampi, E. Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, P.N.; Hoffman, J.M. Patient perspectives on falls in persons with multiple sclerosis. PM R 2021. [Google Scholar] [CrossRef]
- Zasadzka, E.; Trzmiel, T.; Pieczynska, A.; Hojan, K. Modern Technologies in the Rehabilitation of Patients with Multiple Sclerosis and Their Potential Application in Times of COVID-19. Medicina 2021, 57, 549. [Google Scholar] [CrossRef]
- Kurtzke, J.F. On the origin of EDSS. Mult. Scler. Relat. Disord. 2015, 4, 95–103. [Google Scholar] [CrossRef]
- Pirko, I.; Noseworthy, J.H. Chapter 48—Demyelinating Disorders of the Central Nervous System. In Textbook of Clinical Neurology, 3rd ed.; Goetz, C.G., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2007; pp. 1103–1133. [Google Scholar] [CrossRef]
- Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple sclerosis: Current knowledge and future outlook. Eur. Neurol. 2014, 72, 132–141. [Google Scholar] [CrossRef]
- de Sa, J.C.; Airas, L.; Bartholome, E.; Grigoriadis, N.; Mattle, H.; Oreja-Guevara, C.; O’Riordan, J.; Sellebjerg, F.; Stankoff, B.; Vass, K.; et al. Symptomatic therapy in multiple sclerosis: A review for a multimodal approach in clinical practice. Ther. Adv. Neurol. Disord. 2011, 4, 139–168. [Google Scholar] [CrossRef] [Green Version]
- Vanbellingen, T.; Kamm, C.P. Neurorehabilitation Topics in Patients with Multiple Sclerosis: From Outcome Measurements to Rehabilitation Interventions. Semin. Neurol. 2016, 36, 196–202. [Google Scholar] [CrossRef]
- Baird, J.F.; Sandroff, B.M.; Motl, R.W. Therapies for mobility disability in persons with multiple sclerosis. Expert Rev. Neurother. 2018, 18, 493–502. [Google Scholar] [CrossRef]
- Riemenschneider, M.; Hvid, L.G.; Stenager, E.; Dalgas, U. Is there an overlooked “window of opportunity” in MS exercise therapy? Perspectives for early MS rehabilitation. Mult. Scler. 2018, 24, 886–894. [Google Scholar] [CrossRef]
- Dalgas, U.; Langeskov-Christensen, M.; Stenager, E.; Riemenschneider, M.; Hvid, L.G. Exercise as Medicine in Multiple Sclerosis-Time for a Paradigm Shift: Preventive, Symptomatic, and Disease-Modifying Aspects and Perspectives. Curr. Neurol. Neurosci. Rep. 2019, 19, 88. [Google Scholar] [CrossRef]
- Tollár, J.; Nagy, F.; Tóth, B.E.; Török, K.; Szita, K.; Csutorás, B.; Moizs, M.; Hortobágyi, T. Exercise Effects on Multiple Sclerosis Quality of Life and Clinical-Motor Symptoms. Med. Sci. Sports Exerc. 2020, 52, 1007–1014. [Google Scholar] [CrossRef]
- Amatya, B.; Khan, F.; Galea, M. Rehabilitation for people with multiple sclerosis: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 1, Cd012732. [Google Scholar] [CrossRef]
- Barclay, A.; Paul, L.; MacFarlane, N.; McFadyen, A.K. The effect of cycling using active-passive trainers on spasticity, cardiovascular fitness, function and quality of life in people with moderate to severe Multiple Sclerosis (MS); a feasibility study. Mult. Scler. Relat. Disord. 2019, 34, 128–134. [Google Scholar] [CrossRef]
- Rooney, S.; Riemenschneider, M.; Dalgas, U.; Jørgensen, M.K.; Michelsen, A.S.; Brønd, J.C.; Hvid, L.G. Physical activity is associated with neuromuscular and physical function in patients with multiple sclerosis independent of disease severity. Disabil. Rehabil. 2021, 43, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Yazgan, Y.Z.; Tarakci, E.; Tarakci, D.; Ozdincler, A.R.; Kurtuncu, M. Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2019, 39, 101902. [Google Scholar] [CrossRef]
- Bahmani, D.S.; Kesselring, J.; Papadimitriou, M.; Bansi, J.; Pühse, U.; Gerber, M.; Shaygannejad, V.; Holsboer-Trachsler, E.; Brand, S. In Patients With Multiple Sclerosis, Both Objective and Subjective Sleep, Depression, Fatigue, and Paresthesia Improved After 3 Weeks of Regular Exercise. Front. Psychiatry 2019, 10, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, P.; Bloch, W.; Schenk, A.; Oberste, M.; Riedel, S.; Kool, J.; Langdon, D.; Dalgas, U.; Kesselring, J.; Bansi, J. High-intensity interval exercise improves cognitive performance and reduces matrix metalloproteinases-2 serum levels in persons with multiple sclerosis: A randomized controlled trial. Mult. Scler. 2018, 24, 1635–1644. [Google Scholar] [CrossRef]
- Tavazzi, E.; Bergsland, N.; Cattaneo, D.; Gervasoni, E.; Laganà, M.M.; Dipasquale, O.; Grosso, C.; Saibene, F.L.; Baglio, F.; Rovaris, M. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: A structural and functional MRI study. J. Neurol. 2018, 265, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Kjølhede, T.; Siemonsen, S.; Wenzel, D.; Stellmann, J.P.; Ringgaard, S.; Pedersen, B.G.; Stenager, E.; Petersen, T.; Vissing, K.; Heesen, C.; et al. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Mult. Scler. J. 2018, 24, 1356–1365. [Google Scholar] [CrossRef]
- Sandroff, B.M.; Wylie, G.R.; Sutton, B.P.; Johnson, C.L.; DeLuca, J.; Motl, R.W. Treadmill walking exercise training and brain function in multiple sclerosis: Preliminary evidence setting the stage for a network-based approach to rehabilitation. Mult. Scler. J. Exp. Transl. Clin. 2018, 4, 2055217318760641. [Google Scholar] [CrossRef] [PubMed]
- Joisten, N.; Rademacher, A.; Bloch, W.; Schenk, A.; Oberste, M.; Dalgas, U.; Langdon, D.; Caminada, D.; Purde, M.T.; Gonzenbach, R.; et al. Influence of different rehabilitative aerobic exercise programs on (anti-) inflammatory immune signalling, cognitive and functional capacity in persons with MS—Study protocol of a randomized controlled trial. BMC Neurol. 2019, 19, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centonze, D.; Leocani, L.; Feys, P. Advances in physical rehabilitation of multiple sclerosis. Curr. Opin. Neurol. 2020, 33, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.D. Telemedicine in Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2019, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Leocani, L.; Chieffo, R.; Gentile, A.; Centonze, D. Beyond rehabilitation in MS: Insights from non-invasive brain stimulation. Mult. Scler. 2019, 25, 1363–1371. [Google Scholar] [CrossRef] [Green Version]
- Nasios, G.; Messinis, L.; Dardiotis, E.; Papathanasopoulos, P. Repetitive Transcranial Magnetic Stimulation, Cognition, and Multiple Sclerosis: An Overview. Behav. Neurol. 2018, 2018, 8584653. [Google Scholar] [CrossRef] [Green Version]
- Şan, A.U.; Yılmaz, B.; Kesikburun, S. The Effect of Repetitive Transcranial Magnetic Stimulation on Spasticity in Patients with Multiple Sclerosis. J. Clin. Neurol. 2019, 15, 461–467. [Google Scholar] [CrossRef]
- Zeller, D.; Classen, J. Plasticity of the motor system in multiple sclerosis. Neuroscience 2014, 283, 222–230. [Google Scholar] [CrossRef]
- Bonzano, L.; Tacchino, A.; Brichetto, G.; Roccatagliata, L.; Dessypris, A.; Feraco, P.; De Carvalho, M.L.L.; Battaglia, M.A.; Mancardi, G.L.; Bove, M. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 2014, 90, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Rocca, M.A. Cortical reorganisation in patients with MS. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1087–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillary, F.G.; Chiaravalloti, N.D.; Ricker, J.H.; Steffener, J.; Bly, B.M.; Lange, G.; Liu, W.C.; Kalnin, A.J.; DeLuca, J. An investigation of working memory rehearsal in multiple sclerosis using fMRI. J. Clin. Exp. Neuropsychol. 2003, 25, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A. Present and future of fMRI in multiple sclerosis. Expert. Rev. Neurother. 2013, 13, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Valsasina, P.; Rocca, M.A.; Absinta, M.; Sormani, M.P.; Mancini, L.; De Stefano, N.; Rovira, A.; Gass, A.; Enzinger, C.; Barkhof, F.; et al. A multicentre study of motor functional connectivity changes in patients with multiple sclerosis. Eur. J. Neurosci. 2011, 33, 1256–1263. [Google Scholar] [CrossRef]
- Rocca, M.A.; Valsasina, P.; Hulst, H.E.; Abdel-Aziz, K.; Enzinger, C.; Gallo, A.; Pareto, D.; Riccitelli, G.; Muhlert, N.; Ciccarelli, O.; et al. Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study. Hum. Brain. Mapp. 2014, 35, 5799–5814. [Google Scholar] [CrossRef]
- Pareto, D.; Sastre-Garriga, J.; Alonso, J.; Galán, I.; Arévalo, M.J.; Renom, M.; Montalban, X.; Rovira, À. Classic Block Design “Pseudo”-Resting-State fMRI Changes After a Neurorehabilitation Program in Patients with Multiple Sclerosis. J. Neuroimaging 2018, 28, 313–319. [Google Scholar] [CrossRef]
- Sastre-Garriga, J.; Alonso, J.; Renom, M.; Arévalo, M.J.; González, I.; Galán, I.; Montalban, X.; Rovira, A. A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult. Scler. 2011, 17, 457–467. [Google Scholar] [CrossRef]
- Cerasa, A.; Gioia, M.C.; Valentino, P.; Nisticò, R.; Chiriaco, C.; Pirritano, D.; Tomaiuolo, F.; Mangone, G.; Trotta, M.; Talarico, T.; et al. Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: A randomized trial with fMRI correlates. Neurorehabil. Neural Repair 2013, 27, 284–295. [Google Scholar] [CrossRef]
- Enzinger, C.; Pinter, D.; Rocca, M.A.; De Luca, J.; Sastre-Garriga, J.; Audoin, B.; Filippi, M. Longitudinal fMRI studies: Exploring brain plasticity and repair in MS. Mult. Scler. 2016, 22, 269–278. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; Genova, H.M.; DeLuca, J. Cognitive rehabilitation in multiple sclerosis: The role of plasticity. Front. Neurol. 2015, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Tomassini, V.; Matthews, P.M.; Thompson, A.J.; Fuglø, D.; Geurts, J.J.; Johansen-Berg, H.; Jones, D.K.; Rocca, M.A.; Wise, R.G.; Barkhof, F.; et al. Neuroplasticity and functional recovery in multiple sclerosis. Nat. Rev. Neurol. 2012, 8, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, V.; Johansen-Berg, H.; Jbabdi, S.; Wise, R.G.; Pozzilli, C.; Palace, J.; Matthews, P.M. Relating brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil. Neural Repair 2012, 26, 581–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomassini, V.; Johansen-Berg, H.; Leonardi, L.; Paixão, L.; Jbabdi, S.; Palace, J.; Pozzilli, C.; Matthews, P.M. Preservation of motor skill learning in patients with multiple sclerosis. Mult. Scler. 2011, 17, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Mori, F.; Rossi, S.; Piccinin, S.; Motta, C.; Mango, D.; Kusayanagi, H.; Bergami, A.; Studer, V.; Nicoletti, C.G.; Buttari, F.; et al. Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J. Neurosci. 2013, 33, 19112–19119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobryakova, E.; Rocca, M.A.; Valsasina, P.; Ghezzi, A.; Colombo, B.; Martinelli, V.; Comi, G.; DeLuca, J.; Filippi, M. Abnormalities of the executive control network in multiple sclerosis phenotypes: An fMRI effective connectivity study. Hum. Brain Mapp. 2016, 37, 2293–2304. [Google Scholar] [CrossRef]
- Calautti, C.; Baron, J.C. Functional neuroimaging studies of motor recovery after stroke in adults: A review. Stroke 2003, 34, 1553–1566. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.A.; Pagani, E.; Ghezzi, A.; Falini, A.; Zaffaroni, M.; Colombo, B.; Scotti, G.; Comi, G.; Filippi, M. Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 2003, 19, 826–836. [Google Scholar] [CrossRef]
- Rocca, M.A.; Matthews, P.M.; Caputo, D.; Ghezzi, A.; Falini, A.; Scotti, G.; Comi, G.; Filippi, M. Evidence for widespread movement-associated functional MRI changes in patients with PPMS. Neurology 2002, 58, 866–872. [Google Scholar] [CrossRef]
- Reddy, H.; Narayanan, S.; Arnoutelis, R.; Jenkinson, M.; Antel, J.; Matthews, P.M.; Arnold, D.L. Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 2000, 123, 2314–2320. [Google Scholar] [CrossRef]
- Rocca, M.A.; Valsasina, P.; Martinelli, V.; Misci, P.; Falini, A.; Comi, G.; Filippi, M. Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 2012, 79, 1449–1457. [Google Scholar] [CrossRef]
- Faivre, A.; Robinet, E.; Guye, M.; Rousseau, C.; Maarouf, A.; Le Troter, A.; Zaaraoui, W.; Rico, A.; Crespy, L.; Soulier, E.; et al. Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: A longitudinal resting-state fMRI study. Mult. Scler. 2016, 22, 1695–1708. [Google Scholar] [CrossRef] [PubMed]
- Kesselring, J. Neurorehabilitation in Multiple Sclerosis—Resilience in Practice. Eur. Neurol. Rev. 2017, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Gentile, A.; Musella, A.; De Vito, F.; Rizzo, F.R.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stampanoni Bassi, M.; Buttari, F.; et al. Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Front. Immunol. 2019, 10, 2197. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.Y.; Lozinski, B.; Yong, V.W. Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. J. Neurosci. Res. 2020, 98, 509–523. [Google Scholar] [CrossRef]
- Souza, P.S.; Gonçalves, E.D.; Pedroso, G.S.; Farias, H.R.; Junqueira, S.C.; Marcon, R.; Tuon, T.; Cola, M.; Silveira, P.C.L.; Santos, A.R.; et al. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption. Mol. Neurobiol. 2017, 54, 4723–4737. [Google Scholar] [CrossRef]
- Fainstein, N.; Tyk, R.; Touloumi, O.; Lagoudaki, R.; Goldberg, Y.; Agranyoni, O.; Navon-Venezia, S.; Katz, A.; Grigoriadis, N.; Ben-Hur, T.; et al. Exercise intensity-dependent immunomodulatory effects on encephalomyelitis. Ann. Clin. Transl. Neurol. 2019, 6, 1647–1658. [Google Scholar] [CrossRef] [Green Version]
- Einstein, O.; Fainstein, N.; Touloumi, O.; Lagoudaki, R.; Hanya, E.; Grigoriadis, N.; Katz, A.; Ben-Hur, T. Exercise training attenuates experimental autoimmune encephalomyelitis by peripheral immunomodulation rather than direct neuroprotection. Exp. Neurol. 2018, 299, 56–64. [Google Scholar] [CrossRef]
- Xiao, R.; Bergin, S.M.; Huang, W.; Mansour, A.G.; Liu, X.; Judd, R.T.; Widstrom, K.J.; Queen, N.J.; Wilkins, R.K.; Siu, J.J.; et al. Enriched environment regulates thymocyte development and alleviates experimental autoimmune encephalomyelitis in mice. Brain Behav. Immun. 2019, 75, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Mandolesi, G.; Bullitta, S.; Fresegna, D.; De Vito, F.; Rizzo, F.R.; Musella, A.; Guadalupi, L.; Vanni, V.; Stampanoni Bassi, M.; Buttari, F.; et al. Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiol. Dis. 2019, 129, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.K.; Michaels, N.J.; Ilyntskyy, S.; Keough, M.B.; Kovalchuk, O.; Yong, V.W. Multimodal Enhancement of Remyelination by Exercise with a Pivotal Role for Oligodendroglial PGC1α. Cell Rep. 2018, 24, 3167–3179. [Google Scholar] [CrossRef] [Green Version]
- Barone, M.; Mendozzi, L.; D’Amico, F.; Saresella, M.; Rampelli, S.; Piancone, F.; La Rosa, F.; Marventano, I.; Clerici, M.; d’Arma, A.; et al. Influence of a High-Impact Multidimensional Rehabilitation Program on the Gut Microbiota of Patients with Multiple Sclerosis. Int. J. Mol. Sci. 2021, 22, 7173. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef]
- Tremlett, H.; Fadrosh, D.W.; Faruqi, A.A.; Zhu, F.; Hart, J.; Roalstad, S.; Graves, J.; Lynch, S.; Waubant, E. Gut microbiota in early pediatric multiple sclerosis: A case-control study. Eur. J. Neurol. 2016, 23, 1308–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saresella, M.; Marventano, I.; Barone, M.; La Rosa, F.; Piancone, F.; Mendozzi, L.; d’Arma, A.; Rossi, V.; Pugnetti, L.; Roda, G.; et al. Alterations in Circulating Fatty Acid Are Associated With Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis. Front. Immunol. 2020, 11, 1390. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; He, Z.; Chen, W.; Holzman, I.R.; Lin, J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res. 2007, 61, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, M.; Noto, D.; Kaga, N.; Chiba, A.; Miyake, S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE 2017, 12, e0173032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscarinu, M.C.; Cerasoli, B.; Annibali, V.; Policano, C.; Lionetto, L.; Capi, M.; Mechelli, R.; Romano, S.; Fornasiero, A.; Mattei, G.; et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Mult. Scler. 2017, 23, 442–446. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, J.; Cai, Z.; Zhou, K.; Chang, L.; Bai, Y.; Ma, Y. Prevotella Induces the Production of Th17 Cells in the Colon of Mice. J. Immunol. Res. 2020, 2020, 9607328. [Google Scholar] [CrossRef]
- Cekanaviciute, E.; Yoo, B.B.; Runia, T.F.; Debelius, J.W.; Singh, S.; Nelson, C.A.; Kanner, R.; Bencosme, Y.; Lee, Y.K.; Hauser, S.L.; et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA 2017, 114, 10713–10718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesselring, J.; Beer, S. Symptomatic therapy and neurorehabilitation in multiple sclerosis. Lancet Neurol. 2005, 4, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Amtmann, D.; Bamer, A.M.; Kim, J.; Chung, H.; Salem, R. People with multiple sclerosis report significantly worse symptoms and health related quality of life than the US general population as measured by PROMIS and NeuroQoL outcome measures. Disabil. Health J. 2018, 11, 99–107. [Google Scholar] [CrossRef]
- Kantarci, O.H.; Weinshenker, B.G. Natural history of multiple sclerosis. Neurol. Clin. 2005, 23, 17–38. [Google Scholar] [CrossRef]
- Landfeldt, E.; Castelo-Branco, A.; Svedbom, A.; Löfroth, E.; Kavaliunas, A.; Hillert, J. The long-term impact of early treatment of multiple sclerosis on the risk of disability pension. J. Neurol. 2018, 265, 701–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, A.; Bagga, A. Pulse steroid therapy. Indian J. Pediatr. 2008, 75, 1057–1066. [Google Scholar] [CrossRef]
- Geng, T.; Mark, V. Clinical neurorestorative progress in multiple sclerosis. J. Neurorestoratology 2015, 3, 83. [Google Scholar] [CrossRef] [Green Version]
- Minagar, A. Current and future therapies for multiple sclerosis. Scientifica 2013, 2013, 249101. [Google Scholar] [CrossRef]
- Sirbu, C.A.; Furdu-Lungut, E.; Plesa, C.F.; Nicolae, A.C.; Dragoi, C.M. Pharmacological Treatment of Relapsing Remitting Multiple Sclerosis—Where Are We? Farmacia 2016, 64, 651–655. [Google Scholar]
- Tobin, O. Multiple Sclerosis. Available online: https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/diagnosis-treatment/drc-20350274 (accessed on 7 October 2022).
- Bass, B.; Weinshenker, B.; Rice, G.P.A.; Noseworthy, J.H.; Cameron, M.G.P.; Hader, W.; Bouchard, S.; Ebers, G.C. Tizanidine Versus Baclofen in the Treatment of Spasticity in Patients with Multiple Sclerosis. Can. J. Neurol. Sci. J. Can. Des. Sci. Neurol. 1988, 15, 15–19. [Google Scholar] [CrossRef]
- Tullman, M.J. A review of current and emerging therapeutic strategies in multiple sclerosis. Am. J. Manag. Care 2013, 19, S21–S27. [Google Scholar]
- Cameron, M.H.; Bethoux, F.; Davis, N.; Frederick, M. Botulinum toxin for symptomatic therapy in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2014, 14, 463. [Google Scholar] [CrossRef]
- Nicholas, R.S.; Friede, T.; Hollis, S.; Young, C.A. Anticholinergics for urinary symptoms in multiple sclerosis. Cochrane Database Syst. Rev. 2009, 1. [Google Scholar] [CrossRef]
- Ledinek, A.H.; Sajko, M.C.; Rot, U. Evaluating the effects of amantadin, modafinil and acetyl-L-carnitine on fatigue in multiple sclerosis—Result of a pilot randomized, blind study. Clin. Neurol. Neurosurg. 2013, 115 (Suppl. S1), S86–S89. [Google Scholar] [CrossRef]
- Solaro, C.; Uccelli, M.M.; Uccelli, A.; Leandri, M.; Mancardi, G.L. Low-dose gabapentin combined with either lamotrigine or carbamazepine can be useful therapies for trigeminal neuralgia in multiple sclerosis. Eur. Neurol. 2000, 44, 45–48. [Google Scholar] [CrossRef]
- Leandri, M. Therapy of trigeminal neuralgia secondary to multiple sclerosis. Expert Rev. Neurother. 2003, 3, 661–671. [Google Scholar] [CrossRef]
- East Kent Hospital University NHS Foundation Trust. Inpatient Neuro-Rehabilitation for People with Multiple Sclerosis (MS). Available online: https://www.ekhuft.nhs.uk/EasySiteWeb/GatewayLink.aspx?alId=214554 (accessed on 10 October 2022).
- Minden, S.L.; Frankel, D.; Hadden, L.; Perloffp, J.; Srinath, K.P.; Hoaglin, D.C. The Sonya Slifka Longitudinal Multiple Sclerosis Study: Methods and sample characteristics. Mult. Scler. 2006, 12, 24–38. [Google Scholar] [CrossRef]
- Asch, P. Impact of mobility impairment in multiple sclerosis 2—Patient perspectives. Eur. Neurol. Rev. 2011, 6, 115–120. [Google Scholar] [CrossRef]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. 2008, 14, 383–390. [Google Scholar] [CrossRef]
- Bethoux, F.A.; Palfy, D.M.; Plow, M.A. Correlates of the timed 25 foot walk in a multiple sclerosis outpatient rehabilitation clinic. Int. J. Rehabil. Res. 2016, 39, 134–139. [Google Scholar] [CrossRef]
- Hobart, J.C.; Riazi, A.; Lamping, D.L.; Fitzpatrick, R.; Thompson, A.J. Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale (MSWS-12). Neurology 2003, 60, 31–36. [Google Scholar] [CrossRef]
- Jørgensen, M.; Dalgas, U.; Wens, I.; Hvid, L.G. Muscle strength and power in persons with multiple sclerosis—A systematic review and meta-analysis. J. Neurol. Sci. 2017, 376, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Hoang, P.; Gandevia, S.; Herbert, R. Prevalence of joint contractures and muscle weakness in people with multiple sclerosis. Disabil. Rehabil. 2013, 36, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Mañago, M.M.; Hebert, J.R.; Schenkman, M. Psychometric Properties of a Clinical Strength Assessment Protocol in People with Multiple Sclerosis. Int. J. MS Care 2017, 19, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latimer-Cheung, A.E.; Ginis, K.A.M.; Hicks, A.L.; Motl, R.W.; Pilutti, L.A.; Duggan, M.; Wheeler, G.; Persad, R.; Smith, K.M. Development of evidence-informed physical activity guidelines for adults with multiple sclerosis. Arch. Phys. Med. Rehabil. 2013, 94, 1829–1836.E7. [Google Scholar] [CrossRef] [PubMed]
- Frontera, W.R.; Hughes, V.A.; Krivickas, L.S.; Kim, S.K.; Foldvari, M.; Roubenoff, R. Strength training in older women: Early and late changes in whole muscle and single cells. Muscle Nerve 2003, 28, 601–608. [Google Scholar] [CrossRef]
- Mañago, M.M.; Glick, S.; Hebert, J.R.; Coote, S.; Schenkman, M. Strength Training to Improve Gait in People with Multiple Sclerosis: A Critical Review of Exercise Parameters and Intervention Approaches. Int. J. MS Care 2019, 21, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, E.; Mostahfezian, M.; Etemadifar, M.; Zafari, A. Resistance training and vibration improve muscle strength and functional capacity in female patients with multiple sclerosis. Asian J. Sports Med. 2012, 3, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Learmonth, Y.C.; Paul, L.; Miller, L.; Mattison, P.; McFadyen, A.K. The effects of a 12-week leisure centre-based, group exercise intervention for people moderately affected with multiple sclerosis: A randomized controlled pilot study. Clin. Rehabil. 2012, 26, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Romberg, A.; Virtanen, A.; Ruutiainen, J.; Aunola, S.; Karppi, S.L.; Vaara, M.; Surakka, J.; Pohjolainen, T.; Seppänen, A. Effects of a 6-month exercise program on patients with multiple sclerosis: A randomized study. Neurology 2004, 63, 2034–2038. [Google Scholar] [CrossRef]
- Harvey, L.; Smith, A.D.; Jones, R. The Effect of Weighted Leg Raises on Quadriceps Strength, EMG Parameters and Functional Activities in People with Multiple Sclerosis. Physiotherapy 1999, 85, 154–161. [Google Scholar] [CrossRef]
- Dalgas, U.; Stenager, E.; Jakobsen, J.; Petersen, T.; Hansen, H.J.; Knudsen, C.; Overgaard, K.; Ingemann-Hansen, T. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology 2009, 73, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Broekmans, T.; Roelants, M.; Feys, P.; Alders, G.; Gijbels, D.; Hanssen, I.; Stinissen, P.; Eijnde, B. Effects of long-term resistance training and simultaneous electro-stimulation on muscle strength and functional mobility in multiple sclerosis. Mult. Scler. 2010, 17, 468–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjølhede, T.; Vissing, K.; de Place, L.; Pedersen, B.G.; Ringgaard, S.; Stenager, E.; Petersen, T.; Dalgas, U. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up. Mult. Scler. 2015, 21, 599–611. [Google Scholar] [CrossRef]
- Manca, A.; Cabboi, M.P.; Dragone, D.; Ginatempo, F.; Ortu, E.; De Natale, E.R.; Mercante, B.; Mureddu, G.; Bua, G.; Deriu, F. Resistance Training for Muscle Weakness in Multiple Sclerosis: Direct Versus Contralateral Approach in Individuals With Ankle Dorsiflexors’ Disparity in Strength. Arch. Phys. Med. Rehabil. 2017, 98, 1348–1356.E1. [Google Scholar] [CrossRef]
- Dodd, K.J.; Taylor, N.F.; Shields, N.; Prasad, D.; McDonald, E.; Gillon, A. Progressive resistance training did not improve walking but can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: A randomized controlled trial. Mult. Scler. 2011, 17, 1362–1374. [Google Scholar] [CrossRef]
- Sangelaji, B.; Kordi, M.; Banihashemi, F.; Nabavi, S.M.; Khodadadeh, S.; Dastoorpoor, M. A combined exercise model for improving muscle strength, balance, walking distance, and motor agility in multiple sclerosis patients: A randomized clinical trial. Iran. J. Neurol. 2016, 15, 111–120. [Google Scholar]
- Savci, S.; Inal-Ince, D.; Arikan, H.; Guclu-Gunduz, A.; Cetisli-Korkmaz, N.; Armutlu, K.; Karabudak, R. Six-minute walk distance as a measure of functional exercise capacity in multiple sclerosis. Disabil. Rehabil. 2005, 27, 1365–1371. [Google Scholar] [CrossRef]
- Xie, X.; Sun, H.; Zeng, Q.; Lu, P.; Zhao, Y.; Fan, T.; Huang, G. Do Patients with Multiple Sclerosis Derive More Benefit from Robot-Assisted Gait Training Compared with Conventional Walking Therapy on Motor Function? A Meta-analysis. Front. Neurol. 2017, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Colombo, G.; Wirz, M.; Dietz, V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001, 39, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Karpatkin, H.; Benson, A.; Gardner, N.; Leb, N.; Ramos, N.; Xu, H.; Cohen, E. Pilot trial of speed-intensive gait training on balance and walking in people with multiple sclerosis. Int. J. Ther. Rehabil. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef]
- Protas, E.J.; Tissier, S. Strength and speed training for elders with mobility disability. J. Aging Phys. Act. 2009, 17, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Boyne, P.; Dunning, K.; Carl, D.; Gerson, M.; Khoury, J.; Rockwell, B.; Keeton, G.; Westover, J.; Williams, A.; McCarthy, M.; et al. High-Intensity Interval Training and Moderate-Intensity Continuous Training in Ambulatory Chronic Stroke: Feasibility Study. Phys. Ther. 2016, 96, 1533–1544. [Google Scholar] [CrossRef] [Green Version]
- Rose, M.H.; Løkkegaard, A.; Sonne-Holm, S.; Jensen, B.R. Improved clinical status, quality of life, and walking capacity in Parkinson’s disease after body weight-supported high-intensity locomotor training. Arch. Phys. Med. Rehabil. 2013, 94, 687–692. [Google Scholar] [CrossRef]
- Donzé, C. Update on rehabilitation in multiple sclerosis. Presse Med. 2015, 44, e169–e176. [Google Scholar] [CrossRef]
- Wening, J.; Ford, J.; Jouett, L.D. Orthotics and FES for maintenance of walking in patients with MS. Dis. Mon. 2013, 59, 284–289. [Google Scholar] [CrossRef]
- Kelleher, K.J.; Spence, W.D.; Solomonidis, S.; Apatsidis, D. The effect of textured insoles on gait patterns of people with multiple sclerosis. Gait Posture 2010, 32, 67–71. [Google Scholar] [CrossRef]
- Dixon, J.; Hatton, A.L.; Robinson, J.; Gamesby-Iyayi, H.; Hodgson, D.; Rome, K.; Warnett, R.; Martin, D.J. Effect of textured insoles on balance and gait in people with multiple sclerosis: An exploratory trial. Physiotherapy 2014, 100, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Kubsik-Gidlewska, A.M.; Klimkiewicz, P.; Klimkiewicz, R.; Janczewska, K.; Woldańska-Okońska, M. Rehabilitation in multiple sclerosis. Adv. Clin. Exp. Med. 2017, 26, 709–715. [Google Scholar] [CrossRef]
- Loyd, B.J.; Fangman, A.; Peterson, D.S.; Gappmaier, E.; Schubert, M.C.; Thackery, A.; Dibble, L. Rehabilitation to improve gaze and postural stability in people with multiple sclerosis: Study protocol for a prospective randomized clinical trial. BMC Neurol. 2019, 19, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, D.; Jonsdottir, J.; Zocchi, M.; Regola, A. Effects of balance exercises on people with multiple sclerosis: A pilot study. Clin. Rehabil. 2007, 21, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Lasa, S.; Ferriero, G.; Valero, R.; Gomez-Muñiz, F.; Rabini, A.; Varela, E. Effect of therapeutic horseback riding on balance and gait of people with multiple sclerosis. G Ital Med Lav Ergon 2011, 33, 462–467. [Google Scholar] [PubMed]
- Smedal, T.; Lygren, H.; Myhr, K.M.; Moe-Nilssen, R.; Gjelsvik, B.; Gjelsvik, O.; Strand, L.I. Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept. Physiother. Res. Int. 2006, 11, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, A.; Pfueller, C.F.; Paul, F.; Dörr, J. Exercise in multiple sclerosis—An integral component of disease management. EPMA J. 2011, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.T.; Chou, L.-W.; Hsieh, Y.-L. Proprioceptive Neuromuscular Facilitation-Based Physical Therapy on the Improvement of Balance and Gait in Patients with Chronic Stroke: A Systematic Review and Meta-Analysis. Life 2022, 12, 882. [Google Scholar] [CrossRef]
- Shimura, K.; Kasai, T. Effects of proprioceptive neuromuscular facilitation on the initiation of voluntary movement and motor evoked potentials in upper limb muscles. Hum. Mov. Sci. 2002, 21, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.A.; Kamen, G.; Frost, G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Med. 2006, 36, 133–149. [Google Scholar] [CrossRef]
- Judica, E.; Boneschi, F.M.; Ungaro, D.; Comola, M.; Gatti, R.; Comi, G.; Rossi, P. Impact of fatigue on the efficacy of rehabilitation in multiple sclerosis. J. Neurol. 2011, 258, 835–839. [Google Scholar] [CrossRef]
- Schwid, S.R.; Covington, M.; Segal, B.M.; Goodman, A.D. Fatigue in multiple sclerosis: Current understanding and future directions. J. Rehabil. Res. Dev. 2002, 39, 211–224. [Google Scholar]
- Mikuľáková, W.; Klímová, E.; Kendrová, L.; Gajdoš, M.; Chmelík, M. Effect of Rehabilitation on Fatigue Level in Patients with Multiple Sclerosis. Med. Sci. Monit. 2018, 24, 5761–5770. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.E.; Coulthard-Morris, L.; Zeng, Q. Psychosocial correlates of fatigue in multiple sclerosis. Arch. Phys. Med. Rehabil. 1996, 77, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.H.; Shafor, R. Fatigue in multiple sclerosis: A rational approach to evaluation and treatment. Curr. Neurol. Neurosci. Rep. 2005, 5, 140–146. [Google Scholar] [CrossRef]
- Zielińska-Nowak, E.; Włodarczyk, L.; Kostka, J.; Miller, E. New Strategies for Rehabilitation and Pharmacological Treatment of Fatigue Syndrome in Multiple Sclerosis. J. Clin. Med. 2020, 9, 3592. [Google Scholar] [CrossRef] [PubMed]
- Kalb, R.; Brown, T.R.; Coote, S.; Costello, K.; Dalgas, U.; Garmon, E.; Giesser, B.; Halper, J.; Karpatkin, H.; Keller, J.; et al. Exercise and lifestyle physical activity recommendations for people with multiple sclerosis throughout the disease course. Mult. Scler. 2020, 26, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Haveman, J.; Van Der Zee, J.; Wondergem, J.; Hoogeveen, J.F.; Hulshof, M.C. Effects of hyperthermia on the peripheral nervous system: A review. Int. J. Hyperth. 2004, 20, 371–391. [Google Scholar] [CrossRef]
- Miller, E.; Kostka, J.; Włodarczyk, T.; Dugué, B. Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case-control study. Acta Neurol. Scand. 2016, 134, 420–426. [Google Scholar] [CrossRef]
- Nilsagård, Y.; Denison, E.; Gunnarsson, L.G. Evaluation of a single session with cooling garment for persons with multiple sclerosis—A randomized trial. Disabil. Rehabil. Assist. Technol. 2006, 1, 225–233. [Google Scholar] [CrossRef]
- Lappin, M.S.; Lawrie, F.W.; Richards, T.L.; Kramer, E.D. Effects of a pulsed electromagnetic therapy on multiple sclerosis fatigue and quality of life: A double-blind, placebo controlled trial. Altern. Ther. Health Med. 2003, 9, 38–48. [Google Scholar]
- Piatkowski, J.; Kern, S.; Ziemssen, T. Effect of BEMER magnetic field therapy on the level of fatigue in patients with multiple sclerosis: A randomized, double-blind controlled trial. J. Altern. Complement. Med. 2009, 15, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Pilutti, L.A.; Edwards, T.; Motl, R.W.; Sebastião, E. Functional Electrical Stimulation Cycling Exercise in People with Multiple Sclerosis: Secondary Effects on Cognition, Symptoms, and Quality of Life. Int. J. MS Care 2019, 21, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.J.; Hsu, M.J.; Chen, S.M.; Lin, C.H.; Wong, A.M. Decreased central fatigue in multiple sclerosis patients after 8 weeks of surface functional electrical stimulation. J. Rehabil. Res. Dev. 2011, 48, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Shakespeare, D.; Boggild, M.; Young, C.A. Anti-spasticity agents for multiple sclerosis. Cochrane Database Syst. Rev. 2003, 2003, CD001332. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.P. Physical modalities in the treatment of neurological dysfunction. Clin. Neurol. Neurosurg. 2012, 114, 483–488. [Google Scholar] [CrossRef]
- Etoom, M.; Khraiwesh, Y.; Lena, F.; Hawamdeh, M.; Hawamdeh, Z.; Centonze, D.; Foti, C. Effectiveness of Physiotherapy Interventions on Spasticity in People With Multiple Sclerosis: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2018, 97, 793–807. [Google Scholar] [CrossRef]
- Barnes, M.; Kocer, S.; Fernandez, M.M.; Balcaitiene, J.; Fheodoroff, K. An international survey of patients living with spasticity. Disabil. Rehabil. 2017, 39, 1428–1434. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.M.; Hicks, A.L. Spasticity after spinal cord injury. Spinal Cord 2005, 43, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Zahraa, F.; Fatima, K.; Ali, F.; Amal, A.; Khodor, H.H.; Hassane, K. PJM and Cryotherapy in a New Approach for Spasticity Management: An Experimental Trial. Int. J. Pharm. Bio. Med. Sci. 2022, 2, 302–313. [Google Scholar] [CrossRef]
- Alcantara, C.C.; Blanco, J.; De Oliveira, L.M.; Ribeiro, P.F.S.; Herrera, E.; Nakagawa, T.H.; Reisman, D.S.; Michaelsen, S.M.; Garcia, L.C.; Russo, T.L. Cryotherapy reduces muscle hypertonia, but does not affect lower limb strength or gait kinematics post-stroke: A randomized controlled crossover study. Top. Stroke Rehabil. 2019, 26, 267–280. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Shin, S.; Motl, R.W. Multiple sclerosis and postural control: The role of spasticity. Arch. Phys. Med. Rehabil. 2010, 91, 93–99. [Google Scholar] [CrossRef]
- Pau, M.; Coghe, G.; Corona, F.; Marrosu, M.G.; Cocco, E. Effect of spasticity on kinematics of gait and muscular activation in people with Multiple Sclerosis. J. Neurol. Sci. 2015, 358, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Chen, K.; Ren, Y.; Son, J.; Cohen, B.A.; Sliwa, J.A.; Zhang, L.Q. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2017, 11, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Pompa, A.; Morone, G.; Iosa, M.; Pace, L.; Catani, S.; Casillo, P.; Clemenzi, A.; Troisi, E.; Tonini, A.; Paolucci, S.; et al. Does robot-assisted gait training improve ambulation in highly disabled multiple sclerosis people? A pilot randomized control trial. Mult. Scler. J. 2017, 23, 696–703. [Google Scholar] [CrossRef]
- Etoom, M.; Khraiwesh, Y.; Foti, C. Transcutaneous Electrical Nerve Stimulation for Spasticity. Am. J. Phys. Med. Rehabil. 2017, 96, e198. [Google Scholar] [CrossRef]
- Mills, P.B.; Dossa, F. Transcutaneous Electrical Nerve Stimulation for Management of Limb Spasticity: A Systematic Review. Am. J. Phys. Med. Rehabil. 2016, 95, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Wahls, T.L.; Reese, D.; Kaplan, D.; Darling, W.G. Rehabilitation with neuromuscular electrical stimulation leads to functional gains in ambulation in patients with secondary progressive and primary progressive multiple sclerosis: A case series report. J. Altern. Complement. Med. 2010, 16, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, A.; Mirkowski, M.; Thompson, S.; Burhan, A.M.; Miller, T.; Teasell, R. A Systematic Review and Meta-Analysis on the Use of Repetitive Transcranial Magnetic Stimulation for Spasticity Poststroke. PM R 2018, 10, 293–302. [Google Scholar] [CrossRef]
- Centonze, D.; Koch, G.; Versace, V.; Mori, F.; Rossi, S.; Brusa, L.; Grossi, K.; Torelli, F.; Prosperetti, C.; Cervellino, A.; et al. Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology 2007, 68, 1045–1050. [Google Scholar] [CrossRef]
- Abdollahi, M.; Bahrpeyma, F.; Forogh, B. Investigation of the Effects of Spinal Pulsed Electromagnetic Field on Spasticity of Lower Extremity and Alpha Motoneuron Excitability in Hemiplegic Patients Using Hmax/Mmax ratio. Cerebrovasc. Dis. 2013, 36, 18–19. [Google Scholar]
- Serag, H.; Abdelgawad, D.; Emara, T.; Moustafa, R.; El Nahas, N.; Haroun, M. Effects of Para-Spinal Repetitive Magnetic Stimulation on Multiple Sclerosis Related Spasticity. Int. J. Phys. Med. Rehabil. 2014, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Ciortea, V.M.; Motoașcă, I.; Borda, I.M.; Ungur, R.A.; Bondor, C.I.; Iliescu, M.G.; Ciubean, A.D.; Lazăr, I.; Bendea, E.; Irsay, L. Effects of High-Intensity Electromagnetic Stimulation on Reducing Upper Limb Spasticity in Post-Stroke Patients. Appl. Sci. 2022, 12, 2125. [Google Scholar] [CrossRef]
- Han, T.R.; Shin, H.I.; Kim, I.S. Magnetic stimulation of the quadriceps femoris muscle: Comparison of pain with electrical stimulation. Am. J. Phys. Med. Rehabil. 2006, 85, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Vinolo-Gil, M.J.; Rodríguez-Huguet, M.; García-Muñoz, C.; Gonzalez-Medina, G.; Martin-Vega, F.J.; Martín-Valero, R. Effects of Peripheral Electromagnetic Fields on Spasticity: A Systematic Review. J. Clin. Med. 2022, 11, 3739. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, T.C.; Nelson, D.A. Influence of temperature changes on multiple sclerosis: Critical review of mechanisms and research potential. J. Neurol. Sci. 1995, 129, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kargarfard, M.; Etemadifar, M.; Baker, P.; Mehrabi, M.; Hayatbakhsh, R. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. Arch. Phys. Med. Rehabil. 2012, 93, 1701–1708. [Google Scholar] [CrossRef]
- Aghaz, A.; Alidad, A.; Hemmati, E.; Jadidi, H.; Ghelichi, L. Prevalence of dysphagia in multiple sclerosis and its related factors: Systematic review and meta-analysis. Iran. J. Neurol. 2018, 17, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Calcagno, P.; Ruoppolo, G.; Grasso, M.G.; De Vincentiis, M.; Paolucci, S. Dysphagia in multiple sclerosis—Prevalence and prognostic factors. Acta Neurol. Scand. 2002, 105, 40–43. [Google Scholar] [CrossRef]
- Ansari, N.N.; Tarameshlu, M.; Ghelichi, L. Dysphagia In Multiple Sclerosis Patients: Diagnostic And Evaluation Strategies. Degener. Neurol. Neuromuscul. Dis. 2020, 10, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Farazi, M.; Ilkhani, Z.; Jaferi, S.; Haghighi, M. Rehabilitation Strategies of Dysphagia in a Patient with Multiple Sclerosis: A Case Study. Zahedan J. Res. Med. Sci. 2019, 21, e85773. [Google Scholar] [CrossRef]
- D’Amico, E.; Zanghì, A.; Serra, A.; Murabito, P.; Zappia, M.; Patti, F.; Cocuzza, S. Management of dysphagia in multiple sclerosis: Current best practice. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 47–54. [Google Scholar] [CrossRef]
- Kelly, E.A.; Koszewski, I.J.; Jaradeh, S.S.; Merati, A.L.; Blumin, J.H.; Bock, J.M. Botulinum toxin injection for the treatment of upper esophageal sphincter dysfunction. Ann. Otol. Rhinol. Laryngol. 2013, 122, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Schneider, I.; Thumfart, W.F.; Pototschnig, C.; Eckel, H.E. Treatment of dysfunction of the cricopharyngeal muscle with botulinum A toxin: Introduction of a new, noninvasive method. Ann. Otol. Rhinol. Laryngol. 1994, 103, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Murry, T.; Wasserman, T.; Carrau, R.L.; Castillo, B. Injection of botulinum toxin A for the treatment of dysfunction of the upper esophageal sphincter. Am. J. Otolaryngol. 2005, 26, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, G.; Gargano, R.; Bonura, G.; Realmuto, S.; Tocco, E.; Ragonese, P.; Gangitano, M.; Alfonsi, E.; Fierro, B.; Brighina, F.; et al. Anodal tDCS of the swallowing motor cortex for treatment of dysphagia in multiple sclerosis: A pilot open-label study. Neurol. Sci. 2018, 39, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Al Dandan, H.B.; Coote, S.; McClurg, D. Prevalence of Lower Urinary Tract Symptoms in People with Multiple Sclerosis: A Systematic Review and Meta-analysis. Int. J. MS Care 2020, 22, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Demaagd, G.A.; Davenport, T.C. Management of urinary incontinence. Pharm. Ther. 2012, 37, 345–361. [Google Scholar]
- Lúcio, A.C.; Perissinoto, M.C.; Natalin, R.A.; Prudente, A.; Damasceno, B.P.; D’Ancona, C.A. A comparative study of pelvic floor muscle training in women with multiple sclerosis: Its impact on lower urinary tract symptoms and quality of life. Clinics 2011, 66, 1563–1568. [Google Scholar] [CrossRef] [Green Version]
- Glenn, J. Restorative Nursing Bladder Training program: Recommending a strategy. Rehabil. Nurs. 2003, 28, 15–22. [Google Scholar] [CrossRef]
- Subak, L.L.; Wing, R.; West, D.S.; Franklin, F.; Vittinghoff, E.; Creasman, J.M.; Richter, H.E.; Myers, D.; Burgio, K.L.; Gorin, A.A.; et al. Weight loss to treat urinary incontinence in overweight and obese women. N. Engl. J. Med. 2009, 360, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Cortese, R.; Carotenuto, A.; Di Filippo, M.; Lanzillo, R. Editorial: Cognition in Multiple Sclerosis. Front. Neurol. 2021, 12, 751687. [Google Scholar] [CrossRef]
- Passamonti, L.; Cerasa, A.; Liguori, M.; Gioia, M.C.; Valentino, P.; Nisticò, R.; Quattrone, A.; Fera, F. Neurobiological mechanisms underlying emotional processing in relapsing-remitting multiple sclerosis. Brain 2009, 132, 3380–3391. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; Yarmak, P. Neurorehabilitation for Multiple Sclerosis Patients with Emotional Dysfunctions. Front. Neurol. 2015, 6, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalk, H.M. Mind over matter: Cognitive—Behavioral determinants of emotional distress in multiple sclerosis patients. Psychol. Health Med. 2007, 12, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.H.; Henry, J.D.; Nouzova, E.; Cooper, C.; Radlak, B.; Summers, F. Difficulties with emotion regulation in multiple sclerosis: Links to executive function, mood, and quality of life. J. Clin. Exp. Neuropsychol. 2014, 36, 831–842. [Google Scholar] [CrossRef]
- Taylor, P.; Dorstyn, D.S.; Prior, E. Stress management interventions for multiple sclerosis: A meta-analysis of randomized controlled trials. J. Health Psychol. 2020, 25, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Hind, D.; Cotter, J.; Thake, A.; Bradburn, M.; Cooper, C.; Isaac, C.; House, A. Cognitive behavioural therapy for the treatment of depression in people with multiple sclerosis: A systematic review and meta-analysis. BMC Psychiatry 2014, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, P.; Rosti-Otajärvi, E. Is neuropsychological rehabilitation effective in multiple sclerosis? Neurodegener. Dis. Manag. 2014, 4, 147–154. [Google Scholar] [CrossRef]
- Crosson, B.; Hampstead, B.M.; Krishnamurthy, L.C.; Krishnamurthy, V.; McGregor, K.M.; Nocera, J.R.; Roberts, S.; Rodriguez, A.D.; Tran, S.M. Advances in neurocognitive rehabilitation research from 1992 to 2017: The ascension of neural plasticity. Neuropsychology 2017, 31, 900–920. [Google Scholar] [CrossRef]
- WHOQOL Group. The World Health Organization Quality of Life assessment (WHOQOL): Position paper from the World Health Organization. Soc. Sci. Med. 1995, 41, 1403–1409. [Google Scholar] [CrossRef]
- Faraclas, E.; Lynn, J.; Lau, J.D.; Merlo, A. Health-Related Quality of Life in people with Multiple Sclerosis: How does this Population Compare to Population-based Norms in Different Health Domains? J. Patient-Rep. Outcomes 2022, 6, 12. [Google Scholar] [CrossRef]
- Berrigan, L.I.; Fisk, J.D.; Patten, S.B.; Tremlett, H.; Wolfson, C.; Warren, S.; Fiest, K.M.; McKay, K.A.; Marrie, R.A. Health-related quality of life in multiple sclerosis: Direct and indirect effects of comorbidity. Neurology 2016, 86, 1417–1424. [Google Scholar] [CrossRef] [Green Version]
- Pérez de Heredia-Torres, M.; Huertas-Hoyas, E.; Sánchez-Camarero, C.; Máximo-Bocanegra, N.; Alegre-Ayala, J.; Sánchez-Herrera-Baeza, P.; Martínez-Piédrola, R.M.; García-Bravo, C.; Mayoral-Martín, A.; Serrada-Tejeda, S. Occupational performance in multiple sclerosis and its relationship with quality of life and fatigue. Eur. J. Phys. Rehabil. Med. 2020, 56, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Morales, A.; Hernández-Mojica, T.; Paz-Rodríguez, F.; Jara-Prado, A.; Trujillo-De Los Santos, Z.; Sánchez-Guzmán, M.A.; Guerrero-Camacho, J.L.; Corona-Vázquez, T.; Flores, J.; Camacho-Molina, A.; et al. Quality of life in patients with multiple sclerosis and its association with depressive symptoms and physical disability. Mult. Scler. Relat. Disord. 2019, 36, 101386. [Google Scholar] [CrossRef] [PubMed]
- Dorstyn, D.S.; Roberts, R.M.; Murphy, G.; Haub, R. Employment and multiple sclerosis: A meta-analytic review of psychological correlates. J. Health Psychol. 2019, 24, 38–51. [Google Scholar] [CrossRef]
- Ysrraelit, M.C.; Fiol, M.P.; Gaitán, M.I.; Correale, J. Quality of Life Assessment in Multiple Sclerosis: Different Perception between Patients and Neurologists. Front. Neurol. 2017, 8, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-González, I.; Martín-Rodríguez, A.; Conrad, R.; Pérez-San-Gregorio, M. Quality of life in adults with multiple sclerosis: A systematic review. BMJ Open 2020, 10, e041249. [Google Scholar] [CrossRef] [PubMed]
- Ghodspour, Z.; Najafi, M.; Rahimian Boogar, I. Effectiveness of Mindfulness-Based Cognitive Therapy on Psychological Aspects of Quality of Life, Depression, Anxiety, and Stress Among Patients With Multiple Sclerosis. Pract. Clin. Psychol. 2018, 6, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Case, L.K.; Jackson, P.; Kinkel, R.; Mills, P.J. Guided Imagery Improves Mood, Fatigue, and Quality of Life in Individuals With Multiple Sclerosis: An Exploratory Efficacy Trial of Healing Light Guided Imagery. J. Evid. Based Integr. Med. 2018, 23, 2515690x17748744. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, H.; Niino, M.; Hirotani, M.; Miyazaki, Y.; Kikuchi, S. Pilot study on the effects of cognitive behavioral therapy on depression among Japanese patients with multiple sclerosis. Clin. Exp. Neuroimmunol. 2019, 10, 180–185. [Google Scholar] [CrossRef]
- Thomas, P.W.; Thomas, S.; Kersten, P.; Jones, R.; Slingsby, V.; Nock, A.; Davies Smith, A.; Baker, R.; Galvin, K.T.; Hillier, C. One year follow-up of a pragmatic multi-centre randomised controlled trial of a group-based fatigue management programme (FACETS) for people with multiple sclerosis. BMC Neurol. 2014, 14, 109. [Google Scholar] [CrossRef] [Green Version]
- Jongen, P.J.; Ruimschotel, R.; Heerings, M.; Hussaarts, A.; Duyverman, L.; van der Zande, A.; Valkenburg-Vissers, J.; Wolper, H.; van Droffelaar, M.; Lemmens, W.; et al. Improved self-efficacy in persons with relapsing remitting multiple sclerosis after an intensive social cognitive wellness program with participation of support partners: A 6-months observational study. Health Qual. Life Outcomes 2014, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Jongen, P.J.; Heerings, M.; Ruimschotel, R.; Hussaarts, A.; Duyverman, L.; van der Zande, A.; Valkenburg-Vissers, J.; van Droffelaar, M.; Lemmens, W.; Donders, R.; et al. Intensive social cognitive treatment (can do treatment) with participation of support partners in persons with relapsing remitting multiple sclerosis: Observation of improved self-efficacy, quality of life, anxiety and depression 1 year later. BMC Res. Notes 2016, 9, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Munster, C.E.; D’Souza, M.; Steinheimer, S.; Kamm, C.P.; Burggraaff, J.; Diederich, M.; Kravalis, K.; Dorn, J.; Walsh, L.; Dahlke, F.; et al. Tasks of activities of daily living (ADL) are more valuable than the classical neurological examination to assess upper extremity function and mobility in multiple sclerosis. Mult. Scler. 2019, 25, 1673–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goverover, Y. Cognition and activities of daily living in multiple sclerosis. In Cognition and Behavior in Multiple Sclerosis; American Psychological Association: Washington, DC, USA, 2018; pp. 171–190. [Google Scholar] [CrossRef]
- Freeman, J.A.; Langdon, D.W.; Hobart, J.C.; Thompson, A.J. The impact of inpatient rehabilitation on progressive multiple sclerosis. Ann. Neurol. 1997, 42, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.; Young, C.A.; Ennis, M.; Baker, G.; Boggild, M. A randomised controlled trial comparing rehabilitation against standard therapy in multiple sclerosis patients receiving intravenous steroid treatment. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1225–1230. [Google Scholar] [CrossRef]
- Storr, L.K.; Sørensen, P.S.; Ravnborg, M. The efficacy of multidisciplinary rehabilitation in stable multiple sclerosis patients. Mult. Scler. 2006, 12, 235–242. [Google Scholar] [CrossRef]
- Heesen, C.; Böhm, J.; Reich, C.; Kasper, J.; Goebel, M.; Gold, S.M. Patient perception of bodily functions in multiple sclerosis: Gait and visual function are the most valuable. Mult. Scler. 2008, 14, 988–991. [Google Scholar] [CrossRef]
- Motl, R.W.; Sandroff, B.M.; Suh, Y.; Sosnoff, J.J. Energy cost of walking and its association with gait parameters, daily activity, and fatigue in persons with mild multiple sclerosis. Neurorehabil. Neural Repair 2012, 26, 1015–1021. [Google Scholar] [CrossRef]
- Kikkert, L.H.J.; de Groot, M.H.; van Campen, J.P.; Beijnen, J.H.; Hortobágyi, T.; Vuillerme, N.; Lamoth, C.C.J. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic. PLoS ONE 2017, 12, e0178615. [Google Scholar] [CrossRef] [Green Version]
- Angelini, L.; Hodgkinson, W.; Smith, C.; Dodd, J.M.; Sharrack, B.; Mazzà, C.; Paling, D. Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting. J. Neurol. 2020, 267, 2897–2909. [Google Scholar] [CrossRef]
- van Munster, C.E.; Uitdehaag, B.M. Outcome Measures in Clinical Trials for Multiple Sclerosis. CNS Drugs 2017, 31, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Cofré Lizama, L.E.; Khan, F.; Lee, P.V.; Galea, M.P. The use of laboratory gait analysis for understanding gait deterioration in people with multiple sclerosis. Mult. Scler. 2016, 22, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Comber, L.; Galvin, R.; Coote, S. Gait deficits in people with multiple sclerosis: A systematic review and meta-analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, G.I.; Triantafyllou, A.I.; Roumpelakis, I.M.; Zampeli, F.; Garyfallia Eleni, P.; Koulouvaris, P.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Babis, G.C. Methodology of surface electromyography in gait analysis: Review of the literature. J. Med. Eng. Technol. 2019, 43, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-C.; Guerrieri, S.; Dalla Costa, G.; Pisa, M.; Leccabue, G.; Gregoris, L.; Comi, G.; Leocani, L. Intensive Neurorehabilitation and Gait Improvement in Progressive Multiple Sclerosis: Clinical, Kinematic and Electromyographic Analysis. Brain Sci. 2022, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; Bertochi, G.F.A.; Meneguci, J.; Motl, R.W. Pedometers and Accelerometers in Multiple Sclerosis: Current and New Applications. Int. J. Environ. Res. Public Health 2022, 19, 11839. [Google Scholar] [CrossRef]
- Verheyden, G.; Nuyens, G.; Nieuwboer, A.; Van Asch, P.; Ketelaer, P.; De Weerdt, W. Reliability and validity of trunk assessment for people with multiple sclerosis. Phys. Ther. 2006, 86, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, E.; Jonsdottir, J.; Montesano, A.; Cattaneo, D. Minimal Clinically Important Difference of Berg Balance Scale in People With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2017, 98, 337–340.e2. [Google Scholar] [CrossRef]
- Salcı, Y.; Fil, A.; Keklicek, H.; Çetin, B.; Armutlu, K.; Dolgun, A.; Tuncer, A.; Karabudak, R. Validity and reliability of the International Cooperative Ataxia Rating Scale (ICARS) and the Scale for the Assessment and Rating of Ataxia (SARA) in multiple sclerosis patients with ataxia. Mult. Scler. Relat. Disord. 2017, 18, 135–140. [Google Scholar] [CrossRef]
- Bertoni, R.; Lamers, I.; Chen, C.C.; Feys, P.; Cattaneo, D. Unilateral and bilateral upper limb dysfunction at body functions, activity and participation levels in people with multiple sclerosis. Mult. Scler. 2015, 21, 1566–1574. [Google Scholar] [CrossRef]
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. 2017, 23, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Keser, I.; Kirdi, N.; Meric, A.; Kurne, A.T.; Karabudak, R. Comparing routine neurorehabilitation program with trunk exercises based on Bobath concept in multiple sclerosis: Pilot study. J. Rehabil. Res. Dev. 2013, 50, 133–140. [Google Scholar] [CrossRef]
- Romaniszyn, P.; Kawa, J.; Stępien, P.; Nawrat-Szołtysik, A. Video-based time assessment in 360 degrees turn Berg balance test. Comput. Med. Imaging Graph. 2020, 80, 101689. [Google Scholar] [CrossRef] [PubMed]
- Kawa, J.; Stępień, P.; Kapko, W.; Niedziela, A.; Derejczyk, J. Leg movement tracking in automatic video-based one-leg stance evaluation. Comput. Med. Imaging Graph. 2018, 65, 191–199. [Google Scholar] [CrossRef]
- Aldenhoven, C.M.; Reimer, L.M.; Jonas, S. mBalance: Detect Postural Imbalance with Mobile Devices. Stud. Health Technol. Inf. 2022, 293, 30–38. [Google Scholar] [CrossRef]
- Vattanasilp, W.; Ada, L.; Crosbie, J. Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. J. Neurol. Neurosurg. Psychiatry 2000, 69, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Tarameshlu, M.; Ghelichi, L.; Azimi, A.R.; Ansari, N.N.; Khatoonabadi, A.R. The effect of traditional dysphagia therapy on the swallowing function in patients with Multiple Sclerosis: A pilot double-blinded randomized controlled trial. J. Bodyw. Mov. Ther. 2019, 23, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbek, J.C.; Robbins, J.A.; Roecker, E.B.; Coyle, J.L.; Wood, J.L. A penetration-aspiration scale. Dysphagia 1996, 11, 93–98. [Google Scholar] [CrossRef]
- Bergamaschi, R.; Crivelli, P.; Rezzani, C.; Patti, F.; Solaro, C.; Rossi, P.; Restivo, D.; Maimone, D.; Romani, A.; Bastianello, S.; et al. The DYMUS questionnaire for the assessment of dysphagia in multiple sclerosis. J. Neurol. Sci. 2008, 269, 49–53. [Google Scholar] [CrossRef]
- Massetti, T.; Trevizan, I.L.; Arab, C.; Favero, F.M.; Ribeiro-Papa, D.C.; de Mello Monteiro, C.B. Virtual reality in multiple sclerosis—A systematic review. Mult. Scler. Relat. Disord. 2016, 8, 107–112. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, Cd008349. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.L.; Phillips, B.A.; Kilpatrick, T.J.; Butzkueven, H.; Tubridy, N.; McDonald, E.; Galea, M.P. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult. Scler. 2006, 12, 620–628. [Google Scholar] [CrossRef]
- Erdeo, F.; Salcı, Y.; Uca, A.U.; Armutlu, K. Examination of the effects of coordination and balance problems on gait in ataxic multiple sclerosis patients. Neurosciences 2019, 24, 269–277. [Google Scholar] [CrossRef]
- Eftekharsadat, B.; Babaei-Ghazani, A.; Mohammadzadeh, M.; Talebi, M.; Eslamian, F.; Azari, E. Effect of virtual reality-based balance training in multiple sclerosis. Neurol. Res. 2015, 37, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Berriozabalgoitia, R.; Bidaurrazaga-Letona, I.; Otxoa, E.; Urquiza, M.; Irazusta, J.; Rodriguez-Larrad, A. Overground Robotic Program Preserves Gait in Individuals With Multiple Sclerosis and Moderate to Severe Impairments: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Verdict. History of Virtual Reality: Timeline. Available online: https://www.verdict.co.uk/history-virtual-reality-timeline/ (accessed on 24 October 2022).
- Weghorst, S. Augmented reality and Parkinson’s disease. Commun. ACM 1997, 40, 47–48. [Google Scholar] [CrossRef]
- Inman, D.P.; Loge, K.; Cram, A.; Peterson, M. Learning to Drive a Wheelchair in Virtual Reality. J. Spec. Educ. Technol. 2011, 26, 21–34. [Google Scholar] [CrossRef]
- Foreman, N.; Wilson, P.; Stanton, D. VR and spatial awareness in disabled children. Commun. ACM 1997, 40, 76–77. [Google Scholar] [CrossRef]
- Baram, Y.; Miller, A. Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology 2006, 66, 178–181. [Google Scholar] [CrossRef]
- Sampson, P.; Freeman, C.; Coote, S.; Demain, S.; Feys, P.; Meadmore, K.; Hughes, A.M. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis. IEEE Trans. Neural. Syst. Rehabil. Eng. 2016, 24, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, H.; Spaeth, D.; Dicianno, B.; Brown, K.; Cooper, R. Preliminary evaluation of variable compliance joystick for people with multiple sclerosis. J. Rehabil. Res. Dev. 2014, 51, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Health and Welfare. How We Manage Stroke in Australia; AIHW: Canberra, Australian, 2006.
- Chen, Y.P.; Kang, L.J.; Chuang, T.Y.; Doong, J.L.; Lee, S.J.; Tsai, M.W.; Jeng, S.F.; Sung, W.H. Use of virtual reality to improve upper-extremity control in children with cerebral palsy: A single-subject design. Phys. Ther. 2007, 87, 1441–1457. [Google Scholar] [CrossRef] [Green Version]
- Azulay, J.-P.; Mesure, S.; Blin, O. Influence of visual cues on gait in Parkinson’s disease: Contribution to attention or sensory dependence? J. Neurol. Sci. 2006, 248, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Androwis, G.J.; Sandroff, B.M.; Niewrzol, P.; Fakhoury, F.; Wylie, G.R.; Yue, G.; DeLuca, J. A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 51, 102936. [Google Scholar] [CrossRef] [PubMed]
- Androwis, G.J.; Pilkar, R.; Ramanujam, A.; Nolan, K.J. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke. Front. Neurol 2018, 9, 630. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Motl, R.W.; Reed, W.R.; Barbey, A.K.; Benedict, R.H.B.; DeLuca, J. Integrative CNS Plasticity With Exercise in MS: The PRIMERS (PRocessing, Integration of Multisensory Exercise-Related Stimuli) Conceptual Framework. Neurorehabil. Neural Repair 2018, 32, 847–862. [Google Scholar] [CrossRef]
- Jensen, S.K.; Yong, V.W. Activity-Dependent and Experience-Driven Myelination Provide New Directions for the Management of Multiple Sclerosis. Trends Neurosci. 2016, 39, 356–365. [Google Scholar] [CrossRef]
- Drużbicki, M.; Guzik, A.; Przysada, G.; Perenc, L.; Brzozowska-Magoń, A.; Cygoń, K.; Boczula, G.; Bartosik-Psujek, H. Effects of Robotic Exoskeleton-Aided Gait Training in the Strength, Body Balance, and Walking Speed in Individuals With Multiple Sclerosis: A Single-Group Preliminary Study. Arch. Phys. Med. Rehabil. 2021, 102, 175–184. [Google Scholar] [CrossRef]
- McGibbon, C.; Sexton, A.; Gryfe, P.; Dutta, T.; Jayaraman, A.; Deems-Dluhy, S.; Novak, A.; Fabara, E.; Adans-Dester, C.; Bonato, P. Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disabil. Rehabil. Assist. Technol. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- De Luca, R.; Russo, M.; Gasparini, S.; Leonardi, S.; Foti Cuzzola, M.; Sciarrone, F.; Zichittella, C.; Sessa, E.; Maggio, M.G.; De Cola, M.C.; et al. Do people with multiple sclerosis benefit from PC-based neurorehabilitation? A pilot study. Appl. Neuropsychol. Adult 2021, 28, 427–435. [Google Scholar] [CrossRef]
- De Luca, R.; Leonardi, S.; Spadaro, L.; Russo, M.; Aragona, B.; Torrisi, M.; Maggio, M.G.; Bramanti, A.; Naro, A.; De Cola, M.C.; et al. Improving Cognitive Function in Patients with Stroke: Can Computerized Training Be the Future? J. Stroke Cerebrovasc. Dis. 2018, 27, 1055–1060. [Google Scholar] [CrossRef]
- De Luca, R.; Calabrò, R.S.; Gervasi, G.; De Salvo, S.; Bonanno, L.; Corallo, F.; De Cola, M.C.; Bramanti, P. Is computer-assisted training effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study. Disabil. Health J. 2014, 7, 356–360. [Google Scholar] [CrossRef] [PubMed]
Symptom | Rehabilitation Goals | Method | Assessment Test |
---|---|---|---|
Gait management (up to 93% of patients after 10 years of diagnosis [91,92]) | Increasing lower limb and trunk strength Enhancing gait speed and endurance Improving gait kinematics Maintaining neuroplasticity | Strength training [5] Endurance Training [6] Robotic-assisted gait training [7] Speed-intensive gait training [115] Ankle–foot orthoses [8] Proprioceptive neuromuscular facilitation [130,131] Virtual Reality [235] Robotic Exoskeletons [236] | Subjective methods: 2-Minute Walk Test (2MWT) [9] 6-Minute Walk Test (6MWT) [9] Timed 25-Foot Walk test (T25FW) [10] 12-Item Multiple Sclerosis Walking Scale (MSWS-12) [11] Expanded Disability Status Scale (EDSS) Objective methods: Wearable sensors combined with surface electromyography (sEMG) [217] Accelerometers [221] |
Balance and coordination management (80% of cases [237,238]) | Preventing falls Enhancing walking stability Posture control Reduce energy requirements Increase continuity of movement | Frenkel exercises [14] Stabilometric platform [15] Hippotherapy [127] The Bobath concept [128] Proprioceptive neuromuscular facilitation [130,131] Virtual Reality [239] Robotic Exoskeletons [236] | Subjective methods: Trunk impairment scale (TIS) [222] Berg balance scale (BBS) [223] International cooperative ataxia rating scale (ICARS) [224] Objective methods: Video processed BBS [228,229] Mobile apps [230] Nine-hole peg test (NHPT) [226] |
Fatigue management (75–95% of cases [133,134,135]) | Improve mental and physical energy Inflammation reduction Improving depressive symptoms Quality of sleep improvement | Aerobic training [138] Strength exercises [138] Neuromotor exercises (dancing, tai chi, yoga, pilates) [138] Breathing exercises [138] Cryotherapy [141] Pulsed electromagnetic field therapy [143] Functional electrical stimulation [145,146] Hydrotherapy [169] | Subjective methods: Quality of Life (QoL) [202,204] |
Spasticity Management (40–60% of patients [124]) | Maintain neuroplasticity Prevent contracture Prevent joint malformation Preserve muscle length Improve ROM of ankle dorsiflexion Decrease hypertonia in the calf muscles Enhance strength of the antigravity muscles | Physical training Vibration therapy Hydrotherapy [168,169] Electrotherapy [158,159] Electromagnetic fields [161,162] Cryotherapy [152,153] Therapeutic standing on an Oswestry standing frame [149] Proprioceptive neuromuscular facilitation [130,131] | Subjective methods: Ashworth scale (AS) [149,231] Modified Ashworth Scale (MAS) [149,231] Objective methods: Wearable sensors combined with surface electromyography (sEMG) [217] |
Dysphagia management (around 43% of patients [170]) | Speech improvement Avoid malnutrition, dehydration and aspiration pneumonia Maintain healthy weight | Speech–language therapy [173,174] Physical exercises [174] Botulinum toxin injections [174,176,177] Electrotherapy [174] Occupational therapy [174] Transcranial direct current stimulation [178] | Subjective methods: Mann assessment of swallowing ability (MASA) [232] Eating assessment tool (EAT-10) [174,234] Dysphagia in multiple sclerosis (DYMUS) [174,234] Objective methods: Penetration-aspiration scale (PAS) [233] |
Overactive bladder management (between 63% and 68% of cases [179]) | Increasing resting tension of the pelvic diaphragm Enhanced control over urination mechanism Increase bladder capacity | Pelvic floor muscle training [178,180] Bladder training [182] Weight loss [183] Electrostimulation therapy [74] Botulinum toxin injections [174,180] | Subjective methods: Activities of Daily Living (ADL) [16] |
Cognitive Rehabilitation (34–65% of cases [184]) | Reduce emotional disorders Improve emotional control Improve memory, attention and learning Enhance stress management | Cognitive behavioral therapy Neurocognitive rehabilitation [186] Aerobic exercises Transcranial direct current stimulation [192] Computer-assisted cognitive rehabilitation [240] | Subjective methods: Quality of Life (QoL) [201,203] Activities of Daily Living (ADL) [208] Objective methods: Montreal Cognitive Assessment Test (MoCA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sîrbu, C.A.; Thompson, D.-C.; Plesa, F.C.; Vasile, T.M.; Jianu, D.C.; Mitrica, M.; Anghel, D.; Stefani, C. Neurorehabilitation in Multiple Sclerosis—A Review of Present Approaches and Future Considerations. J. Clin. Med. 2022, 11, 7003. https://doi.org/10.3390/jcm11237003
Sîrbu CA, Thompson D-C, Plesa FC, Vasile TM, Jianu DC, Mitrica M, Anghel D, Stefani C. Neurorehabilitation in Multiple Sclerosis—A Review of Present Approaches and Future Considerations. Journal of Clinical Medicine. 2022; 11(23):7003. https://doi.org/10.3390/jcm11237003
Chicago/Turabian StyleSîrbu, Carmen Adella, Dana-Claudia Thompson, Florentina Cristina Plesa, Titus Mihai Vasile, Dragoș Cătălin Jianu, Marian Mitrica, Daniela Anghel, and Constantin Stefani. 2022. "Neurorehabilitation in Multiple Sclerosis—A Review of Present Approaches and Future Considerations" Journal of Clinical Medicine 11, no. 23: 7003. https://doi.org/10.3390/jcm11237003
APA StyleSîrbu, C. A., Thompson, D. -C., Plesa, F. C., Vasile, T. M., Jianu, D. C., Mitrica, M., Anghel, D., & Stefani, C. (2022). Neurorehabilitation in Multiple Sclerosis—A Review of Present Approaches and Future Considerations. Journal of Clinical Medicine, 11(23), 7003. https://doi.org/10.3390/jcm11237003