Does Pitavastatin Therapy for Patients with Type 2 Diabetes and Dyslipidemia Affect Serum Adiponectin Levels and Insulin Sensitivity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Outcome Measures
2.3. Primary Data Analysis
3. Results
3.1. Baseline Characteristics of Study Subjects
3.2. Effect of Pitavastatin on Lipid Profile, Total Adiponectin, HMW Adiponectin, HOMA-IR, and HOMA-β
3.3. Association between Adiponectin and HMW Adiponectin, and HOMA-IR and HOMA-β as Insulin Sensitivity Markers
3.4. Total Adiponectin Changes in the PITA Group with Baseline above 15%
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandran, M.; Phillips, S.A.; Ciaraldi, T.; Henry, R.R. Adiponectin: More than just another fat cell hormone? Diabetes Care 2003, 26, 2442–2450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, P.A.; Di Gregorio, G.B.; Lu, T.; Rassouli, N.; Ranganathan, G. Adiponectin expression from human adipose tissue: Relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003, 52, 1779–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christou, G.; Kiortsis, D. Adiponectin and lipoprotein metabolism. Obes. Rev. 2013, 14, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Kodama, Y.; Takano, H.; Umetani, K.; Fujioka, D.; Saito, Y.; Kawabata, K.-i.; Obata, J.-E.; Kitta, Y.; Kobayashi, T. Increase in circulating levels of adiponectin after treatment with statin and fibrate in patients with coronary artery disease and hyperlipidemia. Atherosclerosis 2007, 193, 449–451. [Google Scholar] [CrossRef]
- Arita, Y.; Kihara, S.; Ouchi, N.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Kumada, M.; Hotta, K.; Nishida, M.; Takahashi, M.; et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 2002, 105, 2893–2898. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Horikoshi, M.; Yamauchi, T.; Yago, H.; Miyazaki, O.; Ebinuma, H.; Imai, Y.; Nagai, R.; Kadowaki, T. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 2006, 29, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Zocchi, M.; Della Porta, M.; Lombardoni, F.; Scrimieri, R.; Zuccotti, G.V.; Maier, J.A.; Cazzola, R. A Potential Interplay between HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022, 10, 1344. [Google Scholar] [CrossRef]
- Wolff, A.; Frank, M.; Staehlke, S.; Peters, K. A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022, 11, 1313. [Google Scholar] [CrossRef]
- Calton, E.; Miller, V.; Soares, M. Factors determining the risk of the metabolic syndrome: Is there a central role for adiponectin? Eur. J. Clin. Nutr. 2013, 67, 485–491. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soran, H.; France, M.; Adam, S.; Iqbal, Z.; Ho, J.H.; Durrington, P.N. Quantitative evaluation of statin effectiveness versus intolerance and strategies for management of intolerance. Atherosclerosis 2020, 306, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Norrie, J.; Sattar, N.; Neely, R.D.; Cobbe, S.M.; Ford, I.; Isles, C.; Lorimer, A.R.; Macfarlane, P.W.; McKillop, J.H.; et al. Pravastatin and the development of diabetes mellitus: Evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 2001, 103, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, D.S.; DiNicolantonio, J.J.; O’Keefe, J.H. Is statin-induced diabetes clinically relevant? A comprehensive review of the literature. Diabetes Obes. Metab. 2014, 16, 689–694. [Google Scholar] [CrossRef]
- Newman, C.B.; Preiss, D.; Tobert, J.A.; Jacobson, T.A.; Page, R.L., 2nd; Goldstein, L.B.; Chin, C.; Tannock, L.R.; Miller, M.; Raghuveer, G.; et al. Statin Safety and Associated Adverse Events: A Scientific Statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e38–e81. [Google Scholar] [CrossRef] [Green Version]
- Nakata, M.; Nagasaka, S.; Kusaka, I.; Matsuoka, H.; Ishibashi, S.; Yada, T. Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): Implications in glycaemic control. Diabetologia 2006, 49, 1881–1892. [Google Scholar] [CrossRef] [Green Version]
- Banach, M.; Malodobra-Mazur, M.; Gluba, A.; Katsiki, N.; Rysz, J.; Dobrzyn, A. Statin therapy and new-onset diabetes: Molecular mechanisms and clinical relevance. Curr. Pharm. Des. 2013, 19, 4904–4912. [Google Scholar] [CrossRef]
- Sattar, N.A.; Ginsberg, H.; Ray, K.; Chapman, M.J.; Arca, M.; Averna, M.; Betteridge, D.J.; Bhatnagar, D.; Bilianou, E.; Carmena, R.; et al. The use of statins in people at risk of developing diabetes mellitus: Evidence and guidance for clinical practice. Atherosclerosis. Suppl. 2014, 15, 1–15. [Google Scholar] [CrossRef]
- Sirtori, C.R.; Yamashita, S.; Greco, M.F.; Corsini, A.; Watts, G.F.; Ruscica, M. Recent advances in synthetic pharmacotherapies for dyslipidaemias. Eur. J. Prev. Cardiol. 2020, 27, 1576–1596. [Google Scholar] [CrossRef]
- Bredy, C.; Ministeri, M.; Kempny, A.; Alonso-Gonzalez, R.; Swan, L.; Uebing, A.; Diller, G.P.; Gatzoulis, M.A.; Dimopoulos, K. New York Heart Association (NYHA) classification in adults with congenital heart disease: Relation to objective measures of exercise and outcome. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.K.; Ko, S.H.; Kim, B.Y.; Kang, E.S.; Noh, J.; Kim, S.K.; Park, S.O.; Hur, K.Y.; Chon, S.; Moon, M.K.; et al. 2019 Clinical Practice Guidelines for Type 2 Diabetes Mellitus in Korea. Diabetes Metab. J. 2019, 43, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Preiss, D.; Seshasai, S.R.; Welsh, P.; Murphy, S.A.; Ho, J.E.; Waters, D.D.; DeMicco, D.A.; Barter, P.; Cannon, C.P.; Sabatine, M.S.; et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: A meta-analysis. JAMA 2011, 305, 2556–2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, D.D.; Ho, J.E.; Boekholdt, S.M.; DeMicco, D.A.; Kastelein, J.J.; Messig, M.; Breazna, A.; Pedersen, T.R. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: Effect of baseline risk factors for diabetes. J. Am. Coll. Cardiol. 2013, 61, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M.J.; Orsoni, A.; Robillard, P.; Hounslow, N.; Sponseller, C.A.; Giral, P. Effect of high-dose pitavastatin on glucose homeostasis in patients at elevated risk of new-onset diabetes: Insights from the CAPITAIN and PREVAIL-US studies. Curr. Med. Res. Opin. 2014, 30, 775–784. [Google Scholar] [CrossRef]
- Takagi, T.; Matsuda, M.; Abe, M.; Kobayashi, H.; Fukuhara, A.; Komuro, R.; Kihara, S.; Caslake, M.J.; McMahon, A.; Shepherd, J.; et al. Effect of pravastatin on the development of diabetes and adiponectin production. Atherosclerosis 2008, 196, 114–121. [Google Scholar] [CrossRef]
- Thakker, D.; Nair, S.; Pagada, A.; Jamdade, V.; Malik, A. Statin use and the risk of developing diabetes: A network meta-analysis. Pharmacoepidemiol. Drug Saf. 2016, 25, 1131–1149. [Google Scholar] [CrossRef]
- Carmena, R.; Betteridge, D.J. Diabetogenic Action of Statins: Mechanisms. Curr. Atheroscler. Rep. 2019, 21, 23. [Google Scholar] [CrossRef]
- Swerdlow, D.I.; Preiss, D.; Kuchenbaecker, K.B.; Holmes, M.V.; Engmann, J.E.; Shah, T.; Sofat, R.; Stender, S.; Johnson, P.C.; Scott, R.A.; et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: Evidence from genetic analysis and randomised trials. Lancet 2015, 385, 351–361. [Google Scholar] [CrossRef]
- Xiao, X.; Luo, Y.; Peng, D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front. Cardiovasc. Med. 2022, 9, 879355. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shin, H.J.; Ding, E.L.; van Dam, R.M. Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2009, 302, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaboldi, L.; Corsini, A. Could changes in adiponectin drive the effect of statins on the risk of new-onset diabetes? The case of pitavastatin. Atherosclerosis. Suppl. 2015, 16, 1–27. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Kondapally Seshasai, S.R.; Kurogi, K.; Michishita, I.; Nozue, T.; Sugiyama, S.; Tsimikas, S.; Yoshida, H.; Ray, K.K. Effect of pitavastatin on glucose, HbA1c and incident diabetes: A meta-analysis of randomized controlled clinical trials in individuals without diabetes. Atherosclerosis 2015, 241, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Yoshida, H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int. J. Mol. Sci. 2019, 20, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Inami, N.; Nomura, S.; Shouzu, A.; Omoto, S.; Kimura, Y.; Takahashi, N.; Tanaka, A.; Nanba, M.; Shouda, Y.; Iwasaka, T. Effects of pitavastatin on adiponectin in patients with hyperlipidemia. Pathophysiol. Haemost. Thromb. 2007, 36, 1–8. [Google Scholar] [CrossRef]
- Chruściel, P.; Sahebkar, A.; Rembek-Wieliczko, M.; Serban, M.-C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Mosteoru, S.; Blaha, M.J.; Martin, S.S. Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis 2016, 253, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Han, K.H.; Chung, W.B.; Her, S.H.; Park, T.H.; Rha, S.W.; Choi, S.Y.; Jung, K.T.; Park, J.S.; Kim, P.J.; et al. Safety and Efficacy of Pitavastatin in Patients with Impaired Fasting Glucose and Hyperlipidemia: A Randomized, Open-labeled, Multicentered, Phase IV Study. Clin. Ther. 2020, 42, 2036–2048. [Google Scholar] [CrossRef]
- Braun, L.R.; Feldpausch, M.N.; Czerwonka, N.; Weiss, J.; Branch, K.; Lee, H.; Martinez-Salazar, E.L.; Torriani, M.; Sponseller, C.A.; Grinspoon, S.K.; et al. Effects of Pitavastatin on Insulin Sensitivity and Liver Fat: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2018, 103, 4176–4186. [Google Scholar] [CrossRef]
Pitavastatin | Control | p-Value | |
---|---|---|---|
(n = 44) | (n = 49) | ||
Age (year) | 58.6 ± 9.6 | 58.6 ± 9.2 | 0.9652 |
Sex, male, n (%) | 24 (54.5) | 28 (57.1) | 0.823 |
Weight (kg) | 68.9 ± 13.1 | 67.4 ± 10.8 | 0.5264 |
Height (cm) | 170.7 ± 43.9 | 162.7 ± 8.5 | 0.2128 |
BMI (kg/m2) | 25.0 ± 4.9 | 25.4 ± 3.2 | 0.6466 |
Waist circumference (cm) | 88.1 ± 8.1 | 86.6 ± 9.6 | 0.4261 |
SBP (mmHg) | 121.4 ± 17.2 | 126.4 ± 13.2 | 0.1193 |
DBP (mmHg) | 69.6 ± 9.9 | 77.1 ± 9.6 | 0.0003 |
HbA1c (%) | 6.7 ± 0.7 | 6.6 ± 0.6 | 0.5133 |
Fasting glucose (mg/dL) | 134.4 ± 26.6 | 135.0 ± 23.8 | 0.9079 |
Total cholesterol (mg/dL) | 210.3 ±28.0 | 207.5 ± 19.6 | 0.5771 |
HDL-cholesterol (mg/dL) | 48.2 ± 10.4 | 47.6 ± 9.2 | 0.7738 |
LDL-cholesterol (mg/dL) | 137.0 ± 21.0 | 132.0 ± 15.8 | 0.2078 |
Creatinine (mg/dL) | 0.84 ± 0.2 | 0.81 ± 0.2 | 0.578 |
eGFR (mL/min/1.73 m2) | 87.7 ± 16.3 | 88.0 ± 16.6 | 0.9352 |
Insulin (μIU/mL) | 25.1 (17.8–35.4) | 23.9 (17.73–32.12) | 0.8217 |
HOMA-β (%) | 130.2 (91.1–186.1) | 125.8 (91.5–172.8) | 0.8843 |
HOMA-IR | 8.2 (5.7–11.6) | 7.8 (5.8–10.6) | 0.8618 |
Triglyceride (mg/dL) | 135.4 (115.1–159.3) | 151.6 (130.9–175.5) | 0.2994 |
AST (U/L) | 21.6 (19.8–23.7) | 23.7 (21.6–26.0) | 0.1561 |
ALT (U/L) | 22.7 (19.7–26.1) | 23.5 (20.7–26.7) | 0.7003 |
Adiponectin (μg/mL) | 5.0 (4.2–6.1) | 4.6 (3.8–5.6) | 0.5275 |
HMW Adiponectin (μg/mL) | 3.3 (2.57–4.16) | 2.8 (2.16–3.6) | 0.3414 |
Baseline | p-Value | 12 Weeks | p-Value | 24 Weeks | p-Value | |
---|---|---|---|---|---|---|
HA1c (%) | 0.5133 | 0.5256 | 0.5806 | |||
Control | 6.6 ± 0.6 | 6.6 ± 0.7 | 6.7 ± 0.8 | |||
Pitavastatin | 6.7 ± 0.7 | 6.7 ± 1.2 | 6.8 ± 0.9 | |||
Glucose (mg/dL) | 0.9079 | 0.5349 | 0.3104 | |||
Control | 135.0 ± 23.8 | 135.9 ± 26.3 | 142.0 ± 30.4 | |||
Pitavastatin | 134.4 ± 26.6 | 132.4 ± 25.9 | 135.5 ± 28.0 | |||
TC (mg/dL) | 0.5771 | <0.0001 | <0.0001 | |||
Control | 207.5 ± 19.6 | 195.5 ± 30.0 | 199.7 ± 29.4 | |||
Pitavastatin | 210.3 ± 28.0 | 159.0 ± 27.9 | 154.8 ± 28.7 | |||
TG (mg/dL) * | 0.2994 | 0.2677 | 0.0691 | |||
Control | 151.6 (130.9–175.5) | 139.9 (119.4–164.0) | 148.0 (127.0–172.4) | |||
Pitavastatin | 135.4 (115.1–159.3) | 123.5 (105.5–144.7) | 121.6 (104.8–141.2) | |||
HDL-C (mg/dL) | 0.7738 | 0.3014 | 0.482 | |||
Control | 47.6 ± 9.2 | 46.3 ± 10.4 | 47.2 ± 10.0 | |||
Pitavastatin | 48.2 ± 10.4 | 48.4 ± 8.2 | 48.8 ± 10.7 | |||
LDL-C (mg/dL) | 0.2078 | <0.0001 | <0.0001 | |||
Control | 132.0 ± 15.8 | 124.0 ± 25.7 | 124.3 ± 25.7 | |||
Pitavastatin | 137.0 ± 21.0 | 89.1 ± 26.76 | 86.9 ± 30.3 | |||
HOMA-β (%) | 0.8843 | 0.8915 | 0.7313 | |||
Control | 125.8 (91.5–172.8) | 123.4 (91.4–166.6) | 114.6 (81.9–160.4) | |||
Pitavastatin | 130.2 (91.1–186.1) | 119.12 (76.7–185.1) | 105.07 (71.5–154.5) | |||
HOMA-IR | 0.8618 | 0.5921 | 0.3645 | |||
Control | 7.8 (5.8–10.6) | 7.7 (5.8–10.2) | 8.0 (5.7–11.1) | |||
Pitavastatin | 8.2 (5.7–11.7) | 6.7 (4.5–10.1) | 6.3 (4.3–9.5) | |||
Adiponectin (µg/mL) * | 0.5275 | 0.4306 | 0.4198 | |||
Control | 4.6 (3.8–5.6) | 4.2 (3.5–5.1) | 4.2 (3.5–5.0) | |||
Pitavastatin | 5.0 (4.2–6.1) | 4.7 (3.9–5.7) | 4.7 (3.8–5.7) | |||
HMW | 0.3414 | 0.417 | 0.2937 | |||
Control | 2.8 (2.2–3.6) | 2.0 (1.5–2.6) | 2.0 (1.6–2.7) | |||
Pitavastatin | 3.3 (2.6–4.2) | 2.3 (1.8–3.0) | 2.5 (1.9–3.2) |
n (%) | OR (95% C.I.) | |||
---|---|---|---|---|
Crude | Model 1 | Model 2 | ||
Control | 7 (14.3) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) |
Pitavastatin | 14 (31.8) | 2.8 (1.009–7.774) | 4.951 (1.411–17.378) | 4.86 (1.292–18.275) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, M.-H.; Lee, J.-M.; Chang, S.-A. Does Pitavastatin Therapy for Patients with Type 2 Diabetes and Dyslipidemia Affect Serum Adiponectin Levels and Insulin Sensitivity? J. Clin. Med. 2022, 11, 6756. https://doi.org/10.3390/jcm11226756
Lee J, Kim M-H, Lee J-M, Chang S-A. Does Pitavastatin Therapy for Patients with Type 2 Diabetes and Dyslipidemia Affect Serum Adiponectin Levels and Insulin Sensitivity? Journal of Clinical Medicine. 2022; 11(22):6756. https://doi.org/10.3390/jcm11226756
Chicago/Turabian StyleLee, Jeongmin, Min-Hee Kim, Jung-Min Lee, and Sang-Ah Chang. 2022. "Does Pitavastatin Therapy for Patients with Type 2 Diabetes and Dyslipidemia Affect Serum Adiponectin Levels and Insulin Sensitivity?" Journal of Clinical Medicine 11, no. 22: 6756. https://doi.org/10.3390/jcm11226756