Risk Factors Affecting Development and Persistence of Preschool Wheezing: Consensus Document of the Emilia-Romagna Asthma (ERA) Study Group
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pathogenesis of Preschool Wheezing
3.1.1. PICO Question 1. What Is the Role of Infection in the Pathogenesis of Preschool Wheezing?
Executive Summary
3.1.2. PICO Question 2. What Is the Role of Atopy in the Pathogenesis of Preschool Wheezing?
Executive Summary
3.2. Risk Factors for Wheeze Development
3.2.1. PICO Question 3. Does the Presence of Risk Factors Such as Allergy/Atopy Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.2. PICO Question 4. Does the Presence of Risk Factors Such as Previous Respiratory Tract Infection or Bronchiolitis Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.3. PICO Question 5. Does Pollution Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.4. PICO Question 6. Does Genetics Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.5. PICO Question 7. Does Obesity Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.6. PICO Question 8. Do Prematurity and Other Perinatal Factors Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.7. PICO Question 9. Does Smoke Exposure Influence the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.2.8. PICO Question 10. Is Immunodeficiency a Risk Factor for the Onset and the Evolution of Preschool Wheezing?
Executive Summary
3.3. Protective Factors for Wheeze Development
3.3.1. PICO Question 11. Are Probiotics Protective for Preschool Wheezing Development?
Executive Summary
3.3.2. PICO Question 12. Is Vitamin D Supplementation Protective for Preschool Wheezing Development?
Executive Summary
3.3.3. PICO Question 13. Is Breastfeeding Protective for Preschool Wheezing Development?
Executive Summary
3.3.4. Question 14. Is Influenza Vaccination Protective for Preschool Wheezing Development?
Executive Summary
3.3.5. Question 15. Are Immunomodulators Protective for Preschool Wheezing Development?
Executive Summary
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, F.D.; Wright, A.L.; Taussig, L.M.; Holberg, C.J.; Halonen, M.; Morgan, W.J. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N. Engl. J. Med. 1995, 332, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorman, J.E.; Akinbami, L.J.; Bailey, C.M.; Zahran, H.S.; King, M.E.; Johnson, C.A.; Liu, X. National Surveillance of Asthma: United States, 2001–2010. Vital Health Statistics. Ser. 3 Anal. Epidemiol. Stud. 2012, 1–58. Available online: https://europepmc.org/article/med/24252609 (accessed on 20 September 2022).
- Paton, J. Paediatric Asthma 2015—British Thoracic Society. Audit-Reports. Available online: https://www.brit-thoracic.org.uk (accessed on 15 October 2022).
- Principi, N.; Daleno, C.; Esposito, S. Human rhinoviruses and severe respiratory infections: Is it possible to identify at-risk patients early? Expert Rev. Anti Infect. Ther. 2014, 12, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.F.M.; Pattaroni, C.; Cook, J.; Gregory, L.; Alonso, A.M.; Fleming, L.J.; Lloyd, C.M.; Bush, A.; Marsland, B.J.; Saglani, S. Lower airway microbiota associates with inflammatory phenotype in severe preschool wheeze. J. Allergy Clin. Immunol. 2019, 143, 1607–1610.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffarelli, C.; Garrubba, M.; Greco, C.; Mastrorilli, C.; Dascola, C.P. Asthma and Food Allergy in Children: Is There a Connection or Interaction? Front. Pediatr. 2016, 4, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deliu, M.; Fontanella, S.; Haider, S.; Sperrin, M.; Geifman, N.; Murray, C.; Simpson, A.; Custovic, A. Longitudinal trajectories of severe wheeze exacerbations from infancy to school age and their association with early-life risk factors and late asthma outcomes. Clin. Exp. Allergy 2020, 50, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fainardi, V.; Caffarelli, C.; Bergamini, B.M.; Biserna, L.; Bottau, P.; Corinaldesi, E.; Dondi, A.; Fornaro, M.; Guidi, B.; Lombardi, F.; et al. Management of Children with Acute Asthma Attack: A RAND/UCLA Appropriateness Approach. Int. J. Environ. Res. Public Health 2021, 18, 12775. [Google Scholar] [CrossRef]
- Brozek, J.L.; Akl, E.A.; Jaeschke, R.; Lang, D.M.; Bossuyt, P.; Glasziou, P.; Helfand, M.; Ueffing, E.; Alonso-Coello, P.; Meerpohl, J.; et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines: Part 2 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy 2009, 64, 1109–1116. [Google Scholar] [CrossRef]
- Fainardi, V.; Caffarelli, C.; Deolmi, M.; Skenderaj, K.; Meoli, A.; Morini, R.; Bergamini, B.M.; Bertelli, L.; Biserna, L.; Bottau, P.; et al. Management of Preschool Wheezing: Guideline from the Emilia-Romagna Asthma (ERA) Study Group. J. Clin. Med. 2022, 11, 4763. [Google Scholar] [CrossRef]
- Krzysztofiak, A.; Chiappini, E.; Venturini, E.; Gargiullo, L.; Roversi, M.; Montagnani, C.; Bozzola, E.; Chiurchiu, S.; Vecchio, D.; Castagnola, E.; et al. Italian consensus on the therapeutic management of uncomplicated acute hematogenous osteomyelitis in children. Ital. J. Pediatr. 2021, 47, 179. [Google Scholar] [CrossRef]
- Andrews, J.C.; Schünemann, H.J.; Oxman, A.D.; Pottie, K.; Meerpohl, J.J.; Coello, P.A.; Rind, D.; Montori, V.M.; Brito, J.P.; Norris, S.; et al. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation’s direction and strength. J. Clin. Epidemiol. 2013, 66, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Lemanske, R.F., Jr.; Jackson, D.J.; Gangnon, R.E.; Evans, M.D.; Li, Z.; Shult, P.A.; Kirk, C.J.; Reisdorf, E.; Roberg, K.A.; Anderson, E.L.; et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J. Allergy Clin. Immunol. 2005, 116, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Fujitsuka, A.; Tsukagoshi, H.; Arakawa, M.; Goto-Sugai, K.; Ryo, A.; Okayama, Y.; Mizuta, K.; Nishina, A.; Yoshizumi, M.; Kaburagi, Y.; et al. A molecular epidemiological study of respiratory viruses detected in Japanese children with acute wheezing illness. BMC Infect. Dis. 2011, 11, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeyama, A.; Hashimoto, K.; Sato, M.; Sato, T.; Tomita, Y.; Maeda, R.; Ito, M.; Katayose, M.; Kawasaki, Y.; Hosoya, M. Clinical and epidemiologic factors related to subsequent wheezing after virus-induced lower respiratory tract infections in hospitalized pediatric patients younger than 3 years. Eur. J. Pediatr. 2014, 173, 959–966. [Google Scholar] [CrossRef]
- Leino, A.; Lukkarinen, M.; Turunen, R.; Vuorinen, T.; Söderlund-Venermo, M.; Vahlberg, T.; Camargo, C.A., Jr.; Bochkov, Y.A.; Gern, J.E.; Jartti, T. Pulmonary function and bronchial reactivity 4 years after the first virus-induced wheezing. Allergy 2019, 74, 518–526. [Google Scholar] [CrossRef]
- Stern, D.A.; Guerra, S.; Halonen, M.; Wright, A.L.; Martinez, F.D. Low IFN-gamma production in the first year of life as a predictor of wheeze during childhood. J. Allergy Clin. Immunol. 2007, 120, 835–841. [Google Scholar] [CrossRef]
- Chawes, B.L.; Poorisrisak, P.; Johnston, S.L.; Bisgaard, H. Neonatal bronchial hyperresponsiveness precedes acute severe viral bronchiolitis in infants. J. Allergy Clin. Immunol. 2012, 130, 354–361.e3. [Google Scholar] [CrossRef]
- Heymann, P.W.; Carper, H.T.; Murphy, D.D.; Platts-Mills, T.A.; Patrie, J.; McLaughlin, A.P.; Erwin, E.A.; Shaker, M.S.; Hellems, M.; Peerzada, J.; et al. Viral infections in relation to age, atopy, and season of admission among children hospitalized for wheezing. J. Allergy Clin. Immunol. 2004, 114, 239–247. [Google Scholar] [CrossRef]
- De Winter, J.J.; Bont, L.; Wilbrink, B.; van der Ent, C.K.; Smit, H.A.; Houben, M.L. Rhinovirus wheezing illness in infancy is associated with medically attended third year wheezing in low risk infants: Results of a healthy birth cohort study. Immun. Inflamm. Dis. 2015, 3, 398–405. [Google Scholar] [CrossRef]
- Van der Gugten, A.C.; van der Zalm, M.M.; Uiterwaal, C.S.; Wilbrink, B.; Rossen, J.W.; van der Ent, C.K. Human rhinovirus and wheezing: Short and long-term associations in children. Pediatr. Infect. Dis. J. 2013, 32, 827–833. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Zhu, Y.; Song, Y.; Su, X.; Yang, L.; Li, M. Association between rhinovirus wheezing illness and the development of childhood asthma: A meta-analysis. BMJ Open 2017, 7, e013034. [Google Scholar] [CrossRef]
- Midulla, F.; Pierangeli, A.; Cangiano, G.; Bonci, E.; Salvadei, S.; Scagnolari, C.; Moretti, C.; Antonelli, G.; Ferro, V.; Papoff, P. Rhinovirus bronchiolitis and recurrent wheezing: 1-year follow-up. Eur. Respir. J. 2012, 39, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan-Gordo, C.; Bassat, Q.; Díez-Padrisa, N.; Morais, L.; Machevo, S.; Nhampossa, T.; Quintó, L.; Alonso, P.L.; Roca, A. Lower respiratory tract infections associated with rhinovirus during infancy and increased risk of wheezing during childhood. A cohort study. PLoS ONE 2013, 8, e69370. [Google Scholar] [CrossRef] [PubMed]
- Midulla, F.; Nicolai, A.; Ferrara, M.; Gentile, F.; Pierangeli, A.; Bonci, E.; Scagnolari, C.; Moretti, C.; Antonelli, G.; Papoff, P. Recurrent wheezing 36 months after bronchiolitis is associated with rhinovirus infections and blood eosinophilia. Acta Paediatr. 2014, 103, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.A.; Colin, A.A. Infantile respiratory syncytial virus and human rhinovirus infections: Respective role in inception and persistence of wheezing. Eur. Respir. J. 2015, 45, 774–789. [Google Scholar] [CrossRef] [Green Version]
- Feldman, A.S.; He, Y.; Moore, M.L.; Hershenson, M.B.; Hartert, T.V. Toward primary prevention of asthma. Reviewing the evidence for early-life respiratory viral infections as modifiable risk factors to prevent childhood asthma. Am. J. Respir. Crit. Care Med. 2015, 191, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.M.; Lemanske, R.F., Jr.; Evans, M.D.; Vang, F.; Pappas, T.; Gangnon, R.; Jackson, D.J.; Gern, J.E. Human rhinovirus species and season of infection determine illness severity. Am. J. Respir. Crit. Care Med. 2012, 186, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Skevaki, C.L.; Psarras, S.; Volonaki, E.; Pratsinis, H.; Spyridaki, I.S.; Gaga, M.; Georgiou, V.; Vittorakis, S.; Telcian, A.G.; Maggina, P.; et al. Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features. Clin. Transl. Allergy 2012, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Legg, J.P.; Hussain, I.R.; Warner, J.A.; Johnston, S.L.; Warner, J.O. Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am. J. Respir. Crit. Care Med. 2003, 168, 633–639. [Google Scholar] [CrossRef]
- Esposito, S.; Daleno, C.; Tagliabue, C.; Scala, A.; Tenconi, R.; Borzani, I.; Fossali, E.; Pelucchi, C.; Piralla, A.; Principi, N. Impact of rhinoviruses on pediatric community-acquired pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1637–1645. [Google Scholar] [CrossRef]
- Ballarini, S.; Rossi, G.A.; Principi, N.; Esposito, S. Dysbiosis in Pediatrics Is Associated with Respiratory Infections: Is There a Place for Bacterial-Derived Products? Microorganisms 2021, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Schwerk, N.; Brinkmann, F.; Soudah, B.; Kabesch, M.; Hansen, G. Wheeze in preschool age is associated with pulmonary bacterial infection and resolves after antibiotic therapy. PLoS ONE 2011, 6, e27913. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Ballarini, S.; Argentiero, A.; Ruggiero, L.; Rossi, G.A.; Principi, N. Microbiota profiles in pre-school children with respiratory infections: Modifications induced by the oral bacterial lysate OM-85. Front. Cell. Infect. Microbiol. 2022, 12, 789436. [Google Scholar] [CrossRef] [PubMed]
- De Schutter, I.; Dreesman, A.; Soetens, O.; De Waele, M.; Crokaert, F.; Verhaegen, J.; Piérard, D.; Malfroot, A. In young children, persistent wheezing is associated with bronchial bacterial infection: A retrospective analysis. BMC Pediatr. 2012, 12, 83. [Google Scholar] [CrossRef] [Green Version]
- Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015, 17, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Robinson, P.F.M.; Fontanella, S.; Ananth, S.; Alonso, A.M.; Cook, J.; Kaya-de Vries, D.; Polo Silveira, L.; Gregory, L.; Lloyd, C.; Fleming, L.; et al. Recurrent Severe Preschool Wheeze: From Prespecified Diagnostic Labels to Underlying Endotypes. Am. J. Respir. Crit. Care Med. 2021, 204, 523–535. [Google Scholar] [CrossRef]
- Bacharier, L.B.; Guilbert, T.W.; Mauger, D.T.; Boehmer, S.; Beigelman, A.; Fitzpatrick, A.M.; Jackson, D.J.; Baxi, S.N.; Benson, M.; Burnham, C.D.; et al. Early Administration of Azithromycin and Prevention of Severe Lower Respiratory Tract Illnesses in Preschool Children with a History of Such Illnesses: A Randomized Clinical Trial. JAMA 2015, 314, 2034–2044, Erratum in JAMA 2016, 315, 204; Erratum in JAMA 2016, 315, 419. [Google Scholar] [CrossRef]
- Stokholm, J.; Chawes, B.L.; Vissing, N.H.; Bjarnadóttir, E.; Pedersen, T.M.; Vinding, R.K.; Schoos, A.M.; Wolsk, H.M.; Thorsteinsdóttir, S.; Hallas, H.W.; et al. Azithromycin for episodes with asthma-like symptoms in young children aged 1–3 years: A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2016, 4, 19–26. [Google Scholar] [CrossRef]
- Esposito, S.; Blasi, F.; Arosio, C.; Fioravanti, L.; Fagetti, L.; Droghetti, R.; Tarsia, P.; Allegra, L.; Principi, N. Importance of acute Mycoplasma pneumoniae and Chlamydia pneumoniae infections in children with wheezing. Eur. Respir. J. 2000, 16, 1142–1146. [Google Scholar] [CrossRef]
- Esposito, S.; Droghetti, R.; Bosis, S.; Claut, L.; Marchisio, P.; Principi, N. Cytokine secretion in children with acute Mycoplasma pneumoniae infection and wheeze. Pediatr. Pulmonol. 2002, 34, 122–127. [Google Scholar] [CrossRef]
- Liu, C.; Makrinioti, H.; Saglani, S.; Bowman, M.; Lin, L.L.; Camargo, C.A., Jr.; Hasegawa, K.; Zhu, Z. Microbial dysbiosis and childhood asthma development: Integrated role of the airway and gut microbiome, environmental exposures, and host metabolic and immune response. Front. Immunol. 2022, 13, 1028209. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Camargo, C.A., Jr.; Raita, Y.; Freishtat, R.J.; Fujiogi, M.; Hahn, A.; Mansbacj, J.M.; Spergel, J.M.; Pérez-Losada, M.; Hasegawa, K. Nasopharyngeal airway dual-transcriptome of infants with severe bronchiolitis and risk of childhood asthma: A multicenter prospective study. J. Allergy Clin. Immunol. 2022, 150, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.A.T.M.; de Steenhuijsen Piters, W.A.A.; van Houten, M.A.; Chu, M.L.J.N.; Biesbroek, G.; Kool, J.; Pernet, P.; de Groot, P.C.M.; Eijkemans, M.J.C.; Keijser, B.J.F.; et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am. J. Respir. Crit. Care Med. 2017, 196, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Thavagnanam, S.; Williamson, G.; Ennis, M.; Heaney, L.G.; Shields, M.D. Does airway allergic inflammation pre-exist before late onset wheeze in children? Pediatr. Allergy Immunol. 2010, 21, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Lezmi, G.; Deschildre, A.; Abou Taam, R.; Fayon, M.; Blanchon, S.; Troussier, F.; Mallinger, P.; Mahut, B.; Gosset, P.; de Blic, J. Remodelling and inflammation in preschoolers with severe recurrent wheeze and asthma outcome at school age. Clin. Exp. Allergy 2018, 48, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Saglani, S.; Payne, D.N.; Zhu, J.; Wang, Z.; Nicholson, A.G.; Bush, A.; Jeffery, P.K. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am. J. Respir. Crit. Care Med. 2007, 176, 858–864. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.A.; Vonk, J.W.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; van Dongen, J.; et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017, 49, 1752–1757. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Lee, P.H.; Chaffin, M.D.; Chung, W.; Loh, P.O.; Lu, Q.; Christiani, D.C.; Liang, L. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat. Genet. 2018, 50, 857–864. [Google Scholar] [CrossRef]
- Guiddir, T.; Saint-Pierre, P.; Purenne-Denis, E.; Lambert, N.; Laoudi, Y.; Couderc, R.; Gouvis-Echraghi, R.; Amat, F.; Just, J. Neutrophilic Steroid-Refractory Recurrent Wheeze and Eosinophilic Steroid-Refractory Asthma in Children. J. Allergy Clin. Immunol. Pract. 2017, 5, 1351–1361.e2. [Google Scholar] [CrossRef] [Green Version]
- Turato, G.; Barbato, A.; Baraldo, S.; Zanin, M.E.; Bazzan, E.; Lokar-Oliani, K.; Calabrese, F.; Panizzolo, C.; Snijders, D.; Maestrelli, P.; et al. Nonatopic children with multitrigger wheezing have airway pathology comparable to atopic asthma. Am. J. Respir. Crit. Care Med. 2008, 178, 476–482. [Google Scholar] [CrossRef]
- Just, J.; Nicoloyanis, N.; Chauvin, M.; Pribil, C.; Grimfeld, A.; Duru, G. Lack of eosinophilia can predict remission in wheezy infants? Clin. Exp. Allergy 2008, 38, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Jackson, D.J.; Mauger, D.T.; Boehmer, S.J.; Phipatanakul, W.; Sheehan, W.J.; Moy, J.N.; Paul, I.M.; Bacharier, L.B.; Cabana, M.D.; et al. Individualized therapy for persistent asthma in young children. J. Allergy Clin. Immunol. 2016, 138, 1608–1618.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Principi, N. Pharmacological approach to wheezing in preschool children. Expert Opin. Pharmacother. 2014, 15, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Wakiguchi, H.; Saito, H.; Matsumoto, K. Presence of eosinophils in nasal secretion during acute respiratory tract infection in young children predicts subsequent wheezing within two months. Allergol. Int. 2008, 57, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zou, Y.; Zhai, J.; Li, J.; Liu, J.; Ma, C.; Jin, X.; Zhao, L. Phenotypes of the inflammatory cells in the induced sputum from young children or infants with recurrent wheezing. Pediatr. Res. 2019, 85, 489–493. [Google Scholar] [CrossRef]
- Ater, D.; Bar, B.E.; Fireman, N.; Fireman, E.; Shai, H.; Tasher, D.; Dalal, I.; Mandelberg, A. Asthma-predictive-index, bronchial-challenge, sputum eosinophils in acutely wheezing preschoolers. Pediatr. Pulmonol. 2014, 49, 952–959. [Google Scholar] [CrossRef]
- De Sousa, R.B.; Medeiros, D.; Sarinho, E.; Rizzo, J.Â.; Silva, A.R.; Bianca, A.C. Risk factors for recurrent wheezing in infants: A case-control study. Rev. Saude Publica 2016, 50, 15. [Google Scholar] [CrossRef] [Green Version]
- Quah, P.L.; Huang, C.H.; Shek, L.P.; Chua, K.Y.; Lee, B.W.; Kuo, I.C. Hyper-responsive T-cell cytokine profile in association with development of early childhood wheeze but not eczema at 2 years. Asian Pac. J. Allergy Immunol. 2014, 32, 84–92. [Google Scholar] [CrossRef]
- Sly, P.D.; Boner, A.L.; Björksten, B.; Bush, A.; Custovic, A.; Eigenmann, P.A.; Gern, J.E.; Gerritsen, J.; Hamelmann, E.; Helms, P.J.; et al. Early identification of atopy in the prediction of persistent asthma in children. Lancet 2008, 372, 1100–1106. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.M.; Saglani, S. Development of allergic immunity in early life. Immunol. Rev. 2017, 278, 101–115. [Google Scholar] [CrossRef]
- Lynch, S.V.; Wood, R.A.; Boushey, H.; Bacharier, L.B.; Bloomberg, G.R.; Kattan, M.; O’Connor, G.T.; Sandel, M.T.; Calatroni, A.; Matsui, E.; et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J. Allergy Clin. Immunol. 2014, 134, 593–601.e12. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.; Granell, R.; Heron, J.; Sherriff, A.; Simpson, A.; Woodcock, A.; Strachan, D.P.; Shaheen, S.O.; Sterne, J.A. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax 2008, 63, 974–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, J.; Belfar, S.; Wanin, S.; Pribil, C.; Grimfeld, A.; Duru, G. Impact of innate and environmental factors on wheezing persistence during childhood. J. Asthma 2010, 47, 412–416. [Google Scholar] [CrossRef]
- Arshad, S.H.; Karmaus, W.; Raza, A.; Kurukulaaratchy, R.J.; Matthews, S.M.; Holloway, J.W.; Sadeghnejad, A.; Zhang, H.; Roberts, G.; Ewart, S.L. The effect of parental allergy on childhood allergic diseases depends on the sex of the child. J. Allergy Clin. Immunol. 2012, 130, 427–434.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, F.; Hose, A.J.; Mueller-Rompa, S.; Brick, T.; Hämäläinen, A.M.; Peet, A.; Tillmann, V.; Niemelä, O.; Siljander, H.; Knip, M.; et al. Development of atopic sensitization in Finnish and Estonian children: A latent class analysis in a multicenter cohort. J. Allergy Clin. Immunol. 2019, 143, 1904–1913.e9. [Google Scholar] [CrossRef] [Green Version]
- Donohue, K.M.; Al-alem, U.; Perzanowski, M.S.; Chew, G.L.; Johnson, A.; Divjan, A.; Kelvin, E.A.; Hoepner, L.A.; Perera, F.P.; Miller, R.L. Anti-cockroach and anti-mouse IgE are associated with early wheeze and atopy in an inner-city birth cohort. J. Allergy Clin. Immunol. 2008, 122, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.L.; Huang, W.T.; Wang, C.M. Treatment of allergic rhinitis reduces acute asthma exacerbation risk among asthmatic children aged 2–18 years. J. Microbiol. Immunol. Infect. 2019, 52, 991–999. [Google Scholar] [CrossRef]
- Von Kobyletzki, L.B.; Bornehag, C.G.; Hasselgren, M.; Larsson, M.; Lindström, C.B.; Svensson, Å. Eczema in early childhood is strongly associated with the development of asthma and rhinitis in a prospective cohort. BMC Dermatol. 2012, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Saunes, M.; Øien, T.; Dotterud, C.K.; Romundstad, P.R.; Storrø, O.; Holmen, T.L.; Johnsen, R. Early eczema and the risk of childhood asthma: A prospective, population-based study. BMC Pediatr. 2012, 12, 168. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.Y.; Yang, C.H.; Su, K.W.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; Lai, S.H.; Chen, L.C.; Yeh, K.W.; Huang, J.L. Early-onset eczema is associated with increased milk sensitization and risk of rhinitis and asthma in early childhood. J. Microbiol. Immunol. Infect. 2020, 53, 1008–1013. [Google Scholar] [CrossRef]
- Ekbäck, M.; Tedner, M.; Devenney, I.; Oldaeus, G.; Norrman, G.; Strömberg, L.; Fälth-Magnusson, K. Severe eczema in infancy can predict asthma development. A prospective study to the age of 10 years. PLoS ONE 2014, 9, e99609. [Google Scholar] [CrossRef] [PubMed]
- Boersma, N.A.; Meijneke, R.W.H.; Kelder, J.C.; van der Ent, C.K.; Balemans, W.A.F. Sensitization predicts asthma development among wheezing toddlers in secondary healthcare. Pediatr. Pulmonol. 2017, 52, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, E.M.; Koplin, J.J.; Dharmage, S.C.; Gurrin, L.C.; Peters, R.L.; McWilliam, V.; Ponsonby, A.L.; Dwyer, T.; Lowe, A.J.; Tang, M.L.K.; et al. Food Allergy Is an Important Risk Factor for Childhood Asthma, Irrespective of Whether It Resolves. J. Allergy Clin. Immunol. Pract. 2018, 6, 1336–1341.e3. [Google Scholar] [CrossRef] [PubMed]
- Illi, S.; von Mutius, E.; Lau, S.; Nickel, R.; Niggemann, B.; Sommerfeld, C.; Wahn, U.; Multicenter Allergy Study Group. The pattern of atopic sensitization is associated with the development of asthma in childhood. J. Allergy Clin. Immunol. 2001, 108, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Illi, S.; von Mutius, E.; Lau, S.; Niggemann, B.; Grüber, C.; Wahn, U.; Multicentre Allergy Study (MAS) Group. Perennial allergen sensitisation early in life and chronic asthma in children: A birth cohort study. Lancet 2006, 368, 763–770. [Google Scholar] [CrossRef]
- Kenmoe, S.; Bowo-Ngandji, A.; Kengne-Nde, C.; Ebogo-Belobo, J.T.; Mbaga, D.S.; Mahamat, G.; Demeni Emoh, C.P.; Njouom, R. Association between early viral LRTI and subsequent wheezing development, a meta-analysis and sensitivity analyses for studies comparable for confounding factors. PLoS ONE 2021, 16, e0249831. [Google Scholar] [CrossRef]
- Kovesi, T.A.; Cao, Z.; Osborne, G.; Egeland, G.M. Severe early lower respiratory tract infection is associated with subsequent respiratory morbidity in preschool Inuit children in Nunavut, Canada. J. Asthma 2011, 48, 241–247. [Google Scholar] [CrossRef]
- Lin, H.W.; Lin, S.C. Environmental factors association between asthma and acute bronchiolitis in young children—A perspective cohort study. Eur. J. Pediatr. 2012, 171, 1645–1650. [Google Scholar] [CrossRef]
- Mikalsen, I.B.; Halvorsen, T.; Eide, G.E.; Øymar, K. Severe bronchiolitis in infancy: Can asthma in adolescence be predicted? Pediatr. Pulmonol. 2013, 48, 538–544. [Google Scholar] [CrossRef]
- Jeng, M.J.; Lee, Y.S.; Tsao, P.C.; Yang, C.F.; Soong, W.J. A longitudinal study on early hospitalized airway infections and subsequent childhood asthma. PLoS ONE 2015, 10, e0121906. [Google Scholar] [CrossRef]
- Nicolai, A.; Frassanito, A.; Nenna, R.; Cangiano, G.; Petrarca, L.; Papoff, P.; Pierangeli, A.; Scagnolari, C.; Moretti, C.; Midulla, F. Risk Factors for Virus-Induced Acute Respiratory Tract Infections in Children Younger Than 3 Years and Recurrent Wheezing at 36 Months Follow-Up After Discharge. Pediatr. Infect. Dis. J. 2017, 36, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Díez-Domingo, J.; Pérez-Yarza, E.G.; Melero, J.A.; Sánchez-Luna, M.; Aguilar, M.D.; Blasco, A.J.; Alfaro, N.; Lázaro, P. Social, economic, and health impact of the respiratory syncytial virus: A systematic search. BMC Infect. Dis. 2014, 14, 544. [Google Scholar] [CrossRef] [Green Version]
- Rinawi, F.; Kassis, I.; Tamir, R.; Kugelman, A.; Srugo, I.; Miron, D. Bronchiolitis in young infants: Is it a risk factor for recurrent wheezing in childhood? World J. Pediatr. 2017, 13, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Skirrow, H.; Wincott, T.; Cecil, E.; Bottle, A.; Costelloe, C.; Saxena, S. Preschool respiratory hospital admissions following infant bronchiolitis: A birth cohort study. Arch. Dis. Child. 2019, 104, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Dumas, O.; Hasegawa, K.; Mansbach, J.M.; Sullivan, A.F.; Piedra, P.A.; Camargo, C.A., Jr. Severe bronchiolitis profiles and risk of recurrent wheeze by age 3 years. J. Allergy Clin. Immunol. 2019, 143, 1371–1379.e7. [Google Scholar] [CrossRef] [Green Version]
- Bacharier, L.B.; Cohen, R.; Schweiger, T.; Yin-Declue, H.; Christie, C.; Zheng, J.; Schechtman, K.B.; Strunk, R.C.; Castro, M. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J. Allergy Clin. Immunol. 2012, 130, 91–100.e3. [Google Scholar] [CrossRef] [Green Version]
- Mansbach, J.M.; Hasegawa, K.; Geller, R.J.; Espinola, J.A.; Sullivan, A.F.; Camargo, C.A., Jr.; MARC-35 Investigators. Bronchiolitis severity is related to recurrent wheezing by age 3 years in a prospective, multicenter cohort. Pediatr. Res. 2020, 87, 428–430. [Google Scholar] [CrossRef]
- Régnier, S.A.; Huels, J. Association between respiratory syncytial virus hospitalizations in infants and respiratory sequelae: Systematic review and meta-analysis. Pediatr. Infect. Dis. J. 2013, 32, 820–826. [Google Scholar] [CrossRef]
- Coutts, J.; Fullarton, J.; Morris, C.; Grubb, E.; Buchan, S.; Rodgers-Gray, B.; Thwaites, R. Association between respiratory syncytial virus hospitalization in infancy and childhood asthma. Pediatr. Pulmonol. 2020, 55, 1104–1110. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Van-Tam, J.; Wyffels, V.; Smulders, M.; Mazumder, D.; Tyagi, R.; Gupta, N.; Gavart, S.; Fleischhackl, R. Cumulative incidence of post-infection asthma or wheezing among young children clinically diagnosed with respiratory syncytial virus infection in the United States: A retrospective database analysis. Influenza Other Respir. Viruses 2020, 14, 730–738. [Google Scholar] [CrossRef]
- Shi, T.; Ooi, Y.; Zaw, E.M.; Utjesanovic, N.; Campbell, H.; Cunningham, S.; Bont, L.; Nair, H.; RESCEU Investigators. Association Between Respiratory Syncytial Virus-Associated Acute Lower Respiratory Infection in Early Life and Recurrent Wheeze and Asthma in Later Childhood. J. Infect. Dis. 2020, 222 (Suppl. 7), S628–S633. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.R.; Stewart, D.L.; Buysman, E.K.; Fernandes, A.W.; Jafri, H.S.; Mahadevia, P.J. Serious early childhood wheezing after respiratory syncytial virus lower respiratory tract illness in preterm infants. Clin. Ther. 2010, 32, 2422–2432. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.J.; Masaquel, A.S.; Li, S.X.; Walsh, E.M.; Kipnis, P. Persistent recurring wheezing in the fifth year of life after laboratory-confirmed, medically attended respiratory syncytial virus infection in infancy. BMC Pediatr. 2013, 13, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Szatkowski, L.; Moreton, W.; Fiaschi, L.; McKeever, T.; Gibson, J.; Sharkey, D. Early childhood respiratory morbidity and antibiotic use in ex-preterm infants: A primary care population-based cohort study. Eur. Respir. J. 2020, 56, 2000202. [Google Scholar] [CrossRef] [PubMed]
- Van Wijhe, M.; Johannesen, C.K.; Simonsen, L.; Jørgensen, I.M.; RESCEU Investigators; Fischer, T.K. A retrospective cohort study on infant respiratory tract infection hospitalizations and recurrent wheeze and asthma risk: Impact of respiratory syncytial virus. J. Infect. Dis. 2022, 226, S55–S62. [Google Scholar] [CrossRef] [PubMed]
- Brunwasser, S.M.; Snyder, B.M.; Driscoll, A.J.; Fell, D.B.; Savitz, D.A.; Feikin, D.R.; Skidmore, B.; Bhat, N.; Bont, L.J.; Dupont, W.D.; et al. Assessing the strength of evidence for a causal effect of respiratory syncytial virus lower respiratory tract infections on subsequent wheezing illness: A systematic review and meta-analysis. Lancet Respir. Med. 2020, 8, 795–806, Erratum in Lancet Respir. Med. 2021, 9, e10. [Google Scholar] [CrossRef]
- Korppi, M.; Kotaniemi-Syrjänen, A.; Waris, M.; Vainionpää, R.; Reijonen, T.M. Rhinovirus-associated wheezing in infancy: Comparison with respiratory syncytial virus bronchiolitis. Pediatr. Infect. Dis. J. 2004, 23, 995–999. [Google Scholar] [CrossRef]
- Jartti, T.; Gern, J.E. Rhinovirus-associated wheeze during infancy and asthma development. Curr. Respir. Med. Rev. 2011, 7, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Sun, Q.; Jiang, W.; Chen, Z.; Huang, L.; Wang, M.; Ji, W.; Shao, X.; Yan, Y. Prevalence of rhinovirus in wheezing children: A comparison with respiratory syncytial virus wheezing. Braz. J. Infect. Dis. 2016, 20, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.W.; Bizzintino, J.; Ferrari, G.; Khoo, S.K.; Zhang, G.; Whelan, S.; Lee, W.M.; Bochkov, Y.A.; Geelhoed, G.C.; Goldblatt, J.; et al. Human rhinovirus species C infection in young children with acute wheeze is associated with increased acute respiratory hospital admissions. Am. J. Respir. Crit. Care Med. 2013, 188, 1358–1364. [Google Scholar] [CrossRef] [Green Version]
- Jartti, T.; Kuusipalo, H.; Vuorinen, T.; Söderlund-Venermo, M.; Allander, T.; Waris, M.; Hartiala, J.; Ruuskanen, O. Allergic sensitization is associated with rhinovirus-, but not other virus-, induced wheezing in children. Pediatr. Allergy Immunol. 2010, 21, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Mansbach, J.M.; Bochkov, Y.A.; Gern, J.E.; Piedra, P.A.; Bauer, C.S.; Teach, S.J.; Wu, S.; Sullivan, A.F.; Camargo, C.A., Jr. Association of Rhinovirus C Bronchiolitis and Immunoglobulin E Sensitization During Infancy with Development of Recurrent Wheeze. JAMA Pediatr. 2019, 173, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Reimerink, J.; Stelma, F.; Rockx, B.; Brouwer, D.; Stobberingh, E.; van Ree, R.; Dompeling, E.; Mommers, M.; Thijs, C.; Koopmans, M. Early-life rotavirus and norovirus infections in relation to development of atopic manifestation in infants. Clin. Exp. Allergy 2009, 39, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Williams, G.; Jalaludin, B.; Baker, P. Panel studies of air pollution on children’s lung function and respiratory symptoms: A literature review. J. Asthma 2012, 49, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Nordling, E.; Berglind, N.; Melén, E.; Emenius, G.; Hallberg, J.; Nyberg, F.; Pershagen, G.; Svartengren, M.; Wickman, M.; Bellander, T. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology 2008, 19, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Freid, R.D.; Qi, Y.S.; Espinola, J.A.; Cash, R.E.; Aryan, Z.; Sullivan, A.F.; Camargo, C.A., Jr. Proximity to Major Roads and Risks of Childhood Recurrent Wheeze and Asthma in a Severe Bronchiolitis Cohort. Int. J. Environ. Res. Public Health 2021, 18, 4197. [Google Scholar] [CrossRef] [PubMed]
- Brunst, K.J.; Ryan, P.H.; Brokamp, C.; Bernstein, D.; Reponen, T.; Lockey, J.; Hershey, G.K.K.; Levin, L.; Grinshpun, S.A.; LeMasters, G. Timing and Duration of Traffic-related Air Pollution Exposure and the Risk for Childhood Wheeze and Asthma. Am. J. Respir. Crit. Care Med. 2015, 192, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Hasunuma, H.; Sato, T.; Iwata, T.; Kohno, Y.; Nitta, H.; Odajima, H.; Ohara, T.; Omori, T.; Ono, M.; Yamazaki, S.; et al. Association between traffic-related air pollution and asthma in preschool children in a national Japanese nested case-control study. BMJ Open 2016, 6, e010410. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Galeone, C.; Lelii, M.; Longhi, B.; Ascolese, B.; Senatore, L.; Prada, E.; Montinaro, V.; Malerba, S.; Patria, M.F.; et al. Impact of air pollution on respiratory diseases in children with recurrent wheezing or asthma. BMC Pulm. Med. 2014, 14, 130. [Google Scholar] [CrossRef] [Green Version]
- Bonato, M.; Gallo, E.; Turrin, M.; Bazzan, E.; Baraldi, F.; Saetta, M.; Gregori, D.; Papi, A.; Contoli, M.; Baraldo, S. Air Pollution Exposure Impairs Airway Epithelium IFN-β Expression in Pre-School Children. Front. Immunol. 2021, 12, 731968. [Google Scholar] [CrossRef]
- Bonato, M.; Gallo, E.; Bazzan, E.; Marson, G.; Zagolin, L.; Cosio, M.G.; Barbato, A.; Saetta, M.; Gregori, D.; Baraldo, S. Air Pollution Relates to Airway Pathology in Children with Wheezing. Ann. Am. Thorac. Soc. 2021, 18, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Norbäck, D.; Lu, C.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Sun, Y.; Sundell, J.; et al. Onset and remission of childhood wheeze and rhinitis across China—Associations with early life indoor and outdoor air pollution. Environ. Int. 2019, 123, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Holst, G.J.; Pedersen, C.B.; Thygesen, M.; Brandt, J.; Geels, C.; Bønløkke, J.H.; Sigsgaard, T. Air pollution and family related determinants of asthma onset and persistent wheezing in children: Nationwide case-control study. BMJ 2020, 370, m2791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, J.; Shi, Y.; Quan, C.; Ho, H.C.; Song, Y.; Zhang, L. Early-life exposure to submicron particulate air pollution in relation to asthma development in Chinese preschool children. J. Allergy Clin. Immunol. 2021, 148, 771–782.e12. [Google Scholar] [CrossRef]
- Brand, A.; McLean, K.E.; Henderson, S.B.; Fournier, M.; Liu, L.; Kosatsky, T.; Smargiassi, A. Respiratory hospital admissions in young children living near metal smelters, pulp mills and oil refineries in two Canadian provinces. Environ. Int. 2016, 94, 24–32. [Google Scholar] [CrossRef]
- Makrinioti, H.; Camargo, C.A.; Zhu, Z.; Freishtat, R.J.; Hasegawa, K. Air pollution, bronchiolitis, and asthma: The role of nasal microRNAs. Lancet Respir. Med. 2022, 10, 733–734. [Google Scholar] [CrossRef]
- Ji, H.; Myers, J.M.B.; Brandt, E.B.; Brokamp, C.; Ryan, P.H.; Hershey, G.K.K. Air pollution, epigenetics, and asthma. Allergy Asthma Clin. Immunol. 2016, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Yang, I.V.; Schwartz, D.A. Epigenetic regulation of immune function in asthma. J. Allergy Clin. Immunol. 2022, 150, 259–265. [Google Scholar] [CrossRef]
- Cai, J.; Li, B.; Yu, W.; Wang, H.; Du, C.; Zhang, Y.; Huang, C.; Zhao, Z.; Deng, Q.; Yang, X.; et al. Household dampness-related exposures in relation to childhood asthma and rhinitis in China: A multicentre observational study. Environ. Int. 2019, 126, 735–746. [Google Scholar] [CrossRef]
- Saijo, Y.; Yoshioka, E.; Sato, Y.; Azuma, H.; Tanahashi, Y.; Ito, Y.; Kobayashi, S.; Minatoya, M.; Bamai, Y.A.; Yamazaki, K.; et al. Relations of mold, stove, and fragrance products on childhood wheezing and asthma: A prospective cohort study from the Japan Environment and Children’s Study. Indoor Air 2022, 32, e12931. [Google Scholar] [CrossRef]
- Mikeš, O.; Vrbová, M.; Klánová, J.; Čupr, P.; Švancara, J.; Pikhart, H. Early-life exposure to household chemicals and wheezing in children. Sci. Total Environ. 2019, 663, 418–425. [Google Scholar] [CrossRef]
- Parks, J.; McCandless, L.; Dharma, C.; Brook, J.; Turvey, S.E.; Mandhane, P.; Becker, A.B.; Kozyrskyj, A.L.; Azad, M.B.; Moraes, T.J.; et al. Association of use of cleaning products with respiratory health in a Canadian birth cohort. CMAJ 2020, 192, E154–E161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.C.; Lin, H.W. Urbanization factors associated with childhood asthma and prematurity: A population-based analysis aged from 0 to 5 years in Taiwan by using Cox regression within a hospital cluster model. J. Asthma 2015, 52, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Casas, M.; Morales, E.; Valvi, D.; Ballesteros-Gómez, A.; Luque, N.; Rubio, S.; Monfort, N.; Ventura, R.; Martínez, D.; et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J. Allergy Clin. Immunol. 2015, 135, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H.; Bønnelykke, K.; Sleiman, P.M.; Brasholt, M.; Chawes, B.; Kreiner-Møller, E.; Stage, M.; Kim, C.; Tavendale, R.; Baty, F.; et al. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am. J. Respir. Crit. Care Med. 2009, 179, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Halapi, E.; Gudbjartsson, D.F.; Jonsdottir, G.M.; Bjornsdottir, U.S.; Thorleifsson, G.; Helgadottir, H.; Williams, C.; Koppelman, G.H.; Heinzmann, A.; Boezen, H.M.; et al. A sequence variant on 17q21 is associated with age at onset and severity of asthma. Eur. J. Hum. Genet. 2010, 18, 902–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koponen, P.; Nuolivirta, K.; Virta, M.; Helminen, M.; Hurme, M.; Korppi, M. Polymorphism of the rs1800896 IL10 promoter gene protects children from post-bronchiolitis asthma. Pediatr. Pulmonol. 2014, 49, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Amat, F.; Louha, M.; Benet, M.; Guiddir, T.; Bourgoin-Heck, M.; Saint-Pierre, P.; Paluel-Marmont, C.; Fontaine, C.; Lambert, N.; Couderc, R.; et al. The IL-4 rs2070874 polymorphism may be associated with the severity of recurrent viral-induced wheeze. Pediatr. Pulmonol. 2017, 52, 1435–1442. [Google Scholar] [CrossRef]
- Korppi, M.; Teräsjärvi, J.; Lauhkonen, E.; Törmänen, S.; He, Q.; Nuolivirta, K. Interleukin-1 receptor-associated kinase-4 gene variation may increase post-bronchiolitis asthma risk. Acta Paediatr. 2021, 110, 952–958. [Google Scholar] [CrossRef]
- Koponen, P.; Vuononvirta, J.; Nuolivirta, K.; Helminen, M.; He, Q.; Korppi, M. The association of genetic variants in toll-like receptor 2 subfamily with allergy and asthma after hospitalization for bronchiolitis in infancy. Pediatr. Infect. Dis. J. 2014, 33, 463–466. [Google Scholar] [CrossRef]
- Törmänen, S.; Korppi, M.; Teräsjärvi, J.; Vuononvirta, J.; Koponen, P.; Helminen, M.; He, Q.; Nuolivirta, K. Polymorphism in the gene encoding toll-like receptor 10 may be associated with asthma after bronchiolitis. Sci. Rep. 2017, 7, 2956. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, E.M.; van de Kant, K.D.; Jöbsis, Q.; Penders, J.; van Schooten, F.J.; Quaak, M.; den Hartog, G.J.; Koppelman, G.H.; van Schayck, C.P.; van Eys, G.; et al. Integrative genomic analysis identifies a role for intercellular adhesion molecule 1 in childhood asthma. Pediatr. Allergy Immunol. 2014, 25, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marenholz, I.; Kerscher, T.; Bauerfeind, A.; Esparza-Gordillo, J.; Nickel, R.; Keil, T.; Lau, S.; Rohde, K.; Wahn, U.; Lee, Y.A. An interaction between filaggrin mutations and early food sensitization improves the prediction of childhood asthma. J. Allergy Clin. Immunol. 2009, 123, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.E.; Peters, U. The effect of obesity on lung function. Expert Rev. Respir. Med. 2018, 12, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Lowe, J.; Kotecha, S.J.; Watkins, W.J.; Kotecha, S. Effect of fetal and infant growth on respiratory symptoms in preterm-born children. Pediatr. Pulmonol. 2018, 53, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Kotecha, S.J.; Lowe, J.; Granell, R.; Watkins, W.J.; Henderson, A.J.; Kotecha, S. The effect of catch-up growth in the first year of life on later wheezing phenotypes. Eur. Respir. J. 2020, 56, 2000884. [Google Scholar] [CrossRef]
- Mensink-Bout, S.M.; Santos, S.; van Meel, E.R.; Oei, E.H.G.; de Jongste, J.C.; Jaddoe, V.W.V.; Duijts, L. General and Organ Fat Assessed by Magnetic Resonance Imaging and Respiratory Outcomes in Childhood. Am. J. Respir. Crit. Care Med. 2020, 201, 348–355. [Google Scholar] [CrossRef]
- Sonnenschein-van der Voort, A.M.; Jaddoe, V.W.; Raat, H.; Moll, H.A.; Hofman, A.; de Jongste, J.C.; Duijts, L. Fetal and infant growth and asthma symptoms in preschool children: The Generation R Study. Am. J. Respir. Crit. Care Med. 2012, 185, 731–737. [Google Scholar] [CrossRef]
- Pike, K.C.; Crozier, S.R.; Lucas, J.S.; Inskip, H.M.; Robinson, S.; Southampton Women’s Survey Study Group; Roberts, G.; Godfrey, K.M. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. Thorax 2010, 65, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lai, H.J.; Roberg, K.A.; Gangnon, R.E.; Evans, M.D.; Anderson, E.L.; Pappas, T.E.; Dasilva, D.F.; Tisler, C.J.; Salazar, L.P.; et al. Early childhood weight status in relation to asthma development in high-risk children. J. Allergy Clin. Immunol. 2010, 126, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.S.; Canoy, D.; Buchan, I.; Woodcock, A.; Simpson, A.; Custovic, A. Body mass index in young children and allergic disease: Gender differences in a longitudinal study. Clin. Exp. Allergy 2011, 41, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Rzehak, P.; Wijga, A.H.; Keil, T.; Eller, E.; Bindslev-Jensen, C.; Smit, H.A.; Weyler, J.; Dom, S.; Sunyer, J.; Mendez, M.; et al. Body mass index trajectory classes and incident asthma in childhood: Results from 8 European Birth Cohorts—A Global Allergy and Asthma European Network initiative. J. Allergy Clin. Immunol. 2013, 131, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Miliku, K.; Gaddipati, S.; Choi, J.; Ambalavanan, A.; Tran, M.M.; Reyna, M.; Sbihi, H.; Lou, W.; Parvulescu, P.; et al. Wheeze trajectories: Determinants and outcomes in the CHILD Cohort Study. J. Allergy Clin. Immunol. 2022, 149, 2153–2165. [Google Scholar] [CrossRef]
- Crump, C. Preterm birth and mortality in adulthood: A systematic review. J. Perinatol. 2020, 40, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Shapiro-Mendoza, C.K.; Hall, L.R.; Satten, G.A. Late preterm birth and risk of developing asthma. J. Pediatr. 2010, 157, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.M.; Poulsen, G.; Field, D.J.; Kurinczuk, J.J.; Wolke, D.; Alfirevic, Z.; Quigley, M.A. Effects of gestational age at birth on health outcomes at 3 and 5 years of age: Population based cohort study. BMJ 2012, 344, e896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Been, J.V.; Lugtenberg, M.J.; Smets, E.; van Schayck, C.P.; Kramer, B.W.; Mommers, M.; Sheikh, A. Preterm birth and childhood wheezing disorders: A systematic review and meta-analysis. PLoS Med. 2014, 11, e1001596. [Google Scholar] [CrossRef] [Green Version]
- Voge, G.A.; Katusic, S.K.; Qin, R.; Juhn, Y.J. Risk of Asthma in Late Preterm Infants: A Propensity Score Approach. J. Allergy Clin. Immunol. Pract. 2015, 3, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Leps, C.; Carson, C.; Quigley, M.A. Gestational age at birth and wheezing trajectories at 3–11 years. Arch. Dis. Child. 2018, 103, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Pike, K.C.; Lucas, J.S. Respiratory consequences of late preterm birth. Paediatr. Respir. Rev. 2015, 16, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Simões, M.C.R.D.S.; Inoue, Y.; Matsunaga, N.Y.; Carvalho, M.R.V.; Ribeiro, G.L.T.; Morais, E.O.; Ribeiro, M.A.G.O.; Morcillo, A.M.; Ribeiro, J.D.; Toro, A.A.D.C. Recurrent wheezing in preterm infants: Prevalence and risk factors. J. Pediatr. 2019, 95, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Algert, C.S.; Bowen, J.R.; Lain, S.L.; Allen, H.D.; Vivian-Taylor, J.M.; Roberts, C.L. Pregnancy exposures and risk of childhood asthma admission in a population birth cohort. Pediatr. Allergy Immunol. 2011, 22, 836–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Yu, Y.; Story, R.E.; Pongracic, J.A.; Gupta, R.; Pearson, C.; Ortiz, K.; Bauchner, H.C.; Wang, X. Prematurity, chorioamnionitis, and the development of recurrent wheezing: A prospective birth cohort study. J. Allergy Clin. Immunol. 2008, 121, 878–884.e6. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Hanada, K.; Pak, K.; Saito-Abe, M.; Sato, M.; Ohya, Y.; Japan Environment and Children’s Study (JECS) Group. Better maternal quality of life in pregnancy yields better offspring respiratory outcomes: A birth cohort. Ann. Allergy Asthma Immunol. 2021, 126, 713–721.e1. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Olsen, J.; Agerbo, E.; Yuan, W.; Sigsgaard, T.; Li, J. Prenatal stress and childhood asthma in the offspring: Role of age at onset. Eur. J. Public Health 2015, 25, 1042–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smejda, K.; Polanska, K.; Merecz-Kot, D.; Krol, A.; Hanke, W.; Jerzynska, J.; Stelmach, W.; Majak, P.; Stelmach, I. Maternal Stress During Pregnancy and Allergic Diseases in Children During the First Year of Life. Respir. Care 2018, 63, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Stick, S.M.; Burton, P.R.; Gurrin, L.; Sly, P.D.; LeSouëf, P.N. Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet 1996, 348, 1060–1064. [Google Scholar] [CrossRef]
- Lin, J.; Yuan, S.; Dong, B.; Zhang, J.; Zhang, L.; Wu, J.; Chen, J.; Tang, M.; Zhang, B.; Wang, H.; et al. The Associations of Caesarean Delivery with Risk of Wheezing Diseases and Changes of T Cells in Children. Front. Immunol. 2021, 12, 793762. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Q.; Zhao, Y.; Wang, W.; Fang, F.; Bao, Y. Is elective cesarean section associated with a higher risk of asthma? A meta-analysis. J. Asthma 2015, 52, 16–25. [Google Scholar] [CrossRef]
- Abdullah, K.; Zhu, J.; Gershon, A.; Dell, S.; To, T. Effect of asthma exacerbation during pregnancy in women with asthma: A population-based cohort study. Eur. Respir. J. 2020, 55, 1901335. [Google Scholar] [CrossRef]
- Gonçalves, D.M.M.; Wandalsen, G.F.; Scavacini, A.S.; Lanza, F.C.; Goulart, A.L.; Solé, D.; Dos Santos, A.M.N. Pulmonary function in former very low birth weight preterm infants in the first year of life. Respir. Med. 2018, 136, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Den Dekker, H.T.; Jaddoe, V.W.V.; Reiss, I.K.; de Jongste, J.C.; Duijts, L. Fetal and Infant Growth Patterns and Risk of Lower Lung Function and Asthma. The Generation R Study. Am. J. Respir. Crit. Care Med. 2018, 197, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.A.; Osman, L.M.; Godden, D.J.; Campbell, D.M.; Douglas, J.G. Relationship between birth weight and adult lung function: Controlling for maternal factors. Thorax 2003, 58, 1061–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Dekker, H.T.; Sonnenschein-van der Voort, A.M.M.; de Jongste, J.C.; Anessi-Maesano, I.; Arshad, S.H.; Barros, H.; Beardsmore, C.S.; Bisgaard, H.; Phar, S.C.; Craig, L.; et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016, 137, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
- Principi, N.; Di Pietro, G.M.; Esposito, S. Bronchopulmonary dysplasia: Clinical aspects and preventive and therapeutic strategies. J. Transl. Med. 2018, 16, 36. [Google Scholar] [CrossRef] [Green Version]
- Hollams, E.M.; de Klerk, N.H.; Holt, P.G.; Sly, P.D. Persistent effects of maternal smoking during pregnancy on lung function and asthma in adolescents. Am. J. Respir. Crit. Care Med. 2014, 189, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Gilliland, F.D.; Li, Y.F.; Peters, J.M. Effects of maternal smoking during pregnancy and environmental tobacco smoke on asthma and wheezing in children. Am. J. Respir. Crit. Care Med. 2001, 163, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Indinnimeo, L.; Porta, D.; Forastiere, F.; De Vittori, V.; De Castro, G.; Zicari, A.M.; Tancredi, G.; Melengu, T.; Duse, M. Prevalence and risk factors for atopic disease in a population of preschool children in Rome: Challenges to early intervention. Int. J. Immunopathol. Pharmacol. 2016, 29, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Selby, A.; Munro, A.; Grimshaw, K.E.; Cornelius, V.; Keil, T.; Grabenhenrich, L.; Clausen, M.; Dubakiene, R.; Fiocchi, A.; Kowalski, M.L.; et al. Prevalence estimates and risk factors for early childhood wheeze across Europe: The EuroPrevall birth cohort. Thorax 2018, 73, 1049–1061. [Google Scholar] [CrossRef]
- Burke, H.; Leonardi-Bee, J.; Hashim, A.; Pine-Abata, H.; Chen, Y.; Cook, D.G.; Britton, J.R.; McKeever, T.M. Prenatal and passive smoke exposure and incidence of asthma and wheeze: Systematic review and meta-analysis. Pediatrics 2012, 129, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Vardavas, C.I.; Hohmann, C.; Patelarou, E.; Martinez, D.; Henderson, A.J.; Granell, R.; Sunyer, J.; Torrent, M.; Fantini, M.P.; Gori, D.; et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children. Eur. Respir. J. 2016, 48, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Collet, C.; Fayon, M.; Francis, F.; Galode, F.; Bui, S.; Debelleix, S. The First 1000 Days: Impact of Prenatal Tobacco Smoke Exposure on Hospitalization Due to Preschool Wheezing. Healthcare 2021, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Bolat, E.; Arikoglu, T.; Sungur, M.A.; Batmaz, S.B.; Kuyucu, S. Prevalence and risk factors for wheezing and allergic diseases in preschool children: A perspective from the Mediterranean coast of Turkey. Allergol. Immunopathol. 2017, 45, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, U.M.; Buyuktiryaki, B.; Cavkaytar, O.; Yılmaz, E.A.; Soyer, O.; Sackesen, C.; Tuncer, A.; Sekerel, B.E. Recurrent wheezing in the first three years of life: Short-term prognosis and risk factors. J. Asthma 2013, 50, 370–375. [Google Scholar] [CrossRef]
- Robison, R.G.; Kumar, R.; Arguelles, L.M.; Hong, X.; Wang, G.; Apollon, S.; Bonzagni, A.; Ortiz, K.; Pearson, C.; Pongracic, J.A.; et al. Maternal smoking during pregnancy, prematurity and recurrent wheezing in early childhood. Pediatr. Pulmonol. 2012, 47, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Lodge, C.J.; Zaloumis, S.; Lowe, A.J.; Gurrin, L.C.; Matheson, M.C.; Axelrad, C.; Bennett, C.M.; Hill, D.J.; Hosking, C.S.; Svanes, C.; et al. Early-life risk factors for childhood wheeze phenotypes in a high-risk birth cohort. J. Pediatr. 2014, 164, 289–294. [Google Scholar] [CrossRef]
- Yilmaz, O.; Turkeli, A.; Onur, E.; Bilge, S.; Yuksel, H. Secondhand tobacco smoke and severity in wheezing children: Nasal oxidant stress and inflammation. J. Asthma 2018, 55, 477–482. [Google Scholar] [CrossRef]
- Sadeghnejad, A.; Karmaus, W.; Arshad, S.H.; Kurukulaaratchy, R.; Huebner, M.; Ewart, S. IL13 gene polymorphisms modify the effect of exposure to tobacco smoke on persistent wheeze and asthma in childhood, a longitudinal study. Respir. Res. 2008, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Bals, R.; Boyd, J.; Esposito, S.; Foronjy, R.; Hiemstra, P.S.; Jiménez-Ruiz, C.A.; Katsaounou, P.; Lindberg, A.; Metz, C.; Schober, W.; et al. Electronic cigarettes: A task force report from the European Respiratory Society. Eur. Respir. J. 2019, 53, 1801151. [Google Scholar] [CrossRef] [Green Version]
- McCusker, C.; Upton, J.; Warrington, R. Primary immunodeficiency. Allergy Asthma Clin. Immunol. 2018, 14 (Suppl. 2), 61. [Google Scholar] [CrossRef]
- Ozbek, B.; Ayvaz, D.Ç.; Esenboga, S.; Halaçlι, S.O.; Aytekin, E.S.; Yaz, I.; Tan, Ç.; Tezcan, I. In case of recurrent wheezing and bronchiolitis: Think again, it may be a primary immunodeficiency. Asian Pac. J. Allergy Immunol. 2019. Online ahead of print. [Google Scholar] [CrossRef]
- Siriaksorn, S.; Suchaitanawanit, S.; Trakultivakorn, M. Allergic rhinitis and immunoglobulin deficiency in preschool children with frequent upper respiratory illness. Asian Pac. J. Allergy Immunol. 2011, 29, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sandin, A.; Björkstén, B.; Böttcher, M.F.; Englund, E.; Jenmalm, M.C.; Bråbäck, L. High salivary secretory IgA antibody levels are associated with less late-onset wheezing in IgE-sensitized infants. Pediatr. Allergy Immunol. 2011, 22, 477–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, A.; Mermiri, D.; Taousani, S.; Triga, M.; Nicolaidou, P.; Priftis, K.N. Bronchial hyper-responsiveness in selective IgA deficiency. Pediatr. Allergy Immunol. 2005, 16, 495–500. [Google Scholar] [CrossRef]
- Cinicola, B.L.; Pulvirenti, F.; Capponi, M.; Bonetti, M.; Brindisi, G.; Gori, A.; De Castro, G.; Anania, C.; Duse, M.; Zicari, A.M. Selective IgA Deficiency and Allergy: A Fresh Look to an Old Story. Medicina 2022, 58, 129. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Park, J.S.; Chu, S.Y.; Kwon, E.; Kim, H.; Callaway, Z. Low immunoglobulin G4 subclass level is associated with recurrent wheezing in young children. Asia Pac. Allergy 2020, 10, e43. [Google Scholar] [CrossRef]
- Zaitsu, M.; Matsuo, M. Transient low IgG4 levels cause recurrent wheezing requiring multiple hospitalizations in infancy. Pediatr. Pulmonol. 2022, 57, 1631–1634. [Google Scholar] [CrossRef]
- Prescott, S.L.; Björkstén, B. Probiotics for the prevention or treatment of allergic diseases. J. Allergy Clin. Immunol. 2007, 120, 255–262. [Google Scholar] [CrossRef]
- Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The Role of the Microbiome in Asthma: The Gut-Lung Axis. Int. J. Mol. Sci. 2018, 20, 123. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.B.; Kozyrskyj, A.L. Perinatal programming of asthma: The role of gut microbiota. Clin. Dev. Immunol. 2012, 2012, 932072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Karlsson, C.; Olsson, C.; Adlerberth, I.; Wold, A.E.; Strachan, D.P.; Martricardi, P.M.; Aberg, N.; Perkin, M.R.; Tripodi, S.; et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J. Allergy Clin. Immunol. 2008, 121, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 2012, 129, 434–440.e1-2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, T.; Yu, J.; Oh, M.H.; Zhu, Z. The atopic march: Progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol. Res. 2011, 3, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, F.; Liu, Y.; Gu, F. Intestinal microbiota dysbiosis in children with recurrent respiratory tract infections. Microb. Pathog. 2019, 136, 103709. [Google Scholar] [CrossRef]
- Stokholm, J.; Thorsen, J.; Blaser, M.J.; Rasmussen, M.A.; Hjelmsø, M.; Shah, S.; Christensen, E.D.; Chawes, B.L.; Bønnelykke, K.; Brix, S.; et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci. Transl. Med. 2020, 12, eaax9929. [Google Scholar] [CrossRef]
- Arrieta, M.C.; Stiemsma, L.T.; Dimitriu, P.A.; Thorson, L.; Russell, S.; Yurist-Doutsch, S.; Kuzeljevic, B.; Gold, M.J.; Britton, H.M.; Lefebvre, D.L.; et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015, 7, 307ra152. [Google Scholar] [CrossRef]
- Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 2014, 44, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Bannier, M.A.G.E.; van Best, N.; Bervoets, L.; Savelkoul, P.H.M.; Hornef, M.W.; van de Kant, K.D.G.; Jöbsis, Q.; Dompeling, E.; Penders, J. Gut microbiota in wheezing preschool children and the association with childhood asthma. Allergy 2020, 75, 1473–1476. [Google Scholar] [CrossRef]
- Jensen, M.P.; Meldrum, S.; Taylor, A.L.; Dunstan, J.A.; Prescott, S.L. Early probiotic supplementation for allergy prevention: Long-term outcomes. J. Allergy Clin. Immunol. 2012, 130, 1209–1211.e5. [Google Scholar] [CrossRef]
- Cabana, M.D.; McKean, M.; Caughey, A.B.; Fong, L.; Lynch, S.; Wong, A.; Leong, R.; Boushey, H.A.; Hilton, J.F. Early Probiotic Supplementation for Eczema and Asthma Prevention: A Randomized Controlled Trial. Pediatrics 2017, 140, e20163000. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Di Costanzo, M.; Bedogni, G.; Amoroso, A.; Cosenza, L.; Di Scala, C.; Granata, V.; Nocerino, R. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J. Allergy Clin. Immunol. 2017, 139, 1906–1913.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Jiang, P.; Liu, J.; Sun, R.; Zhu, L. Association between probiotic supplementation and asthma incidence in infants: A meta-analysis of randomized controlled trials. J. Asthma 2020, 57, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Cuello-Garcia, C.A.; Brożek, J.L.; Fiocchi, A.; Pawankar, R.; Yepes-Nuñez, J.J.; Terracciano, L.; Gandhi, S.; Agarwal, A.; Zhang, Y.; Schünemann, H.J. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015, 136, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Coneys, J.G.; Kozyrskyj, A.L.; Field, C.J.; Ramsey, C.D.; Becker, A.B.; Friesen, C.; Abou-Setta, A.M.; Zarychanski, R. Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze: Systematic review and meta-analysis. BMJ 2013, 347, f6471. [Google Scholar] [CrossRef] [Green Version]
- Kuitunen, M.; Kukkonen, K.; Juntunen-Backman, K.; Korpela, R.; Poussa, T.; Tuure, T.; Haahtela, T.; Savilahti, E. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 2009, 123, 335–341. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Y.; He, C.; Dai, J. Probiotics supplementation in children with asthma: A systematic review and meta-analysis. J. Paediatr. Child. Health 2018, 54, 953–961. [Google Scholar] [CrossRef]
- Rose, M.A.; Stieglitz, F.; Köksal, A.; Schubert, R.; Schulze, J.; Zielen, S. Efficacy of probiotic Lactobacillus GG on allergic sensitization and asthma in infants at risk. Clin. Exp. Allergy 2010, 40, 1398–1405. [Google Scholar] [CrossRef]
- Rose, M.A.; Schubert, R.; Schulze, J.; Zielen, S. Follow-up of probiotic Lactobacillus GG effects on allergic sensitization and asthma in infants at risk. Clin. Exp. Allergy 2011, 41, 1819–1821. [Google Scholar] [CrossRef]
- Elazab, N.; Mendy, A.; Gasana, J.; Vieira, E.R.; Quizon, A.; Forno, E. Probiotic administration in early life, atopy, and asthma: A meta-analysis of clinical trials. Pediatrics 2013, 132, e666–e676. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Lelii, M. Vitamin D and respiratory tract infections in childhood. BMC Infect. Dis. 2015, 15, 487. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, P.E.; Hawrylowicz, C.M. Vitamin D in Asthma: Mechanisms of Action and Considerations for Clinical Trials. Chest 2018, 153, 1229–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xystrakis, E.; Kusumakar, S.; Boswell, S.; Peek, E.; Urry, Z.; Richards, D.F.; Adikibi, T.; Pridgeon, C.; Dallman, M.; Loke, T.K.; et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Investig. 2006, 116, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, E.S.; Nanzer, A.M.; Pfeffer, P.E.; Richards, D.F.; Timms, P.M.; Martineau, A.R.; Griffiths, C.J.; Corrigan, C.J.; Hawrylowicz, C.M. Distinct endotypes of steroid-resistant asthma characterized by IL-17A(high) and IFN-γ(high) immunophenotypes: Potential benefits of calcitriol. J. Allergy Clin. Immunol. 2015, 136, 628–637.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, N.; Luo, G.; Yang, X.; Cheng, Y.; Zhang, Y.; Wang, X.; Wang, X.; Xie, T.; Li, G.; Liu, Z.; et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE 2014, 9, e111599. [Google Scholar] [CrossRef]
- Gupta, A.; Sjoukes, A.; Richards, D.; Banya, W.; Hawrylowicz, C.; Bush, A.; Saglani, S. Relationship between serum vitamin D, disease severity, and airway remodeling in children with asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 1342–1349. [Google Scholar] [CrossRef] [Green Version]
- Damera, G.; Fogle, H.W.; Lim, P.; Goncharova, E.A.; Zhao, H.; Banerjee, A.; Tliba, O.; Krymskaya, V.P.; Panettieri, R.A., Jr. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. Br. J. Pharmacol. 2009, 158, 1429–1441. [Google Scholar] [CrossRef]
- Principi, N.; Bianchini, S.; Baggi, E.; Esposito, S. Implications of maternal vitamin D deficiency for the fetus, the neonate and the young infant. Eur. J. Nutr. 2013, 52, 859–867. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Vitamin D Deficiency During Pregnancy and Autism Spectrum Disorders Development. Front. Psychiatry 2020, 10, 987. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Litonjua, A.A.; O’Connor, G.T.; Zeiger, R.S.; Bacharier, L.; Schatz, M.; Carey, V.J.; Weiss, S.T.; Mirzakhani, H. Effect of early and late prenatal vitamin D and maternal asthma status on offspring asthma or recurrent wheeze. J. Allergy Clin. Immunol. 2021, 147, 1234–1241.e3. [Google Scholar] [CrossRef]
- Knihtilä, H.M.; Stubbs, B.J.; Carey, V.J.; Laranjo, N.; Chu, S.H.; Kelly, R.S.; Zeiger, R.S.; Bacharier, L.B.; O’Connor, G.T.; Lasky-Su, J.; et al. Low gestational vitamin D level and childhood asthma are related to impaired lung function in high-risk children. J. Allergy Clin. Immunol. 2021, 148, 110–119.e9. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qin, Z.; Gao, J.; Jiang, Z.; Chai, Y.; Guan, L.; Ge, Y.; Chen, Y. Vitamin D supplementation during pregnancy and the risk of wheezing in offspring: A systematic review and dose-response meta-analysis. J. Asthma 2019, 56, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Knihtilä, H.M.; Kelly, R.S.; Brustad, N.; Huang, M.; Kachroo, P.; Chawes, B.L.; Stokholm, J.; Bønnelykke, K.; Pedersen, C.T.; Bisgaard, H.; et al. Maternal 17q21 genotype influences prenatal vitamin D effects on offspring asthma/recurrent wheeze. Eur. Respir. J. 2021, 58, 2002012. [Google Scholar] [CrossRef] [PubMed]
- Dogru, M.; Kirmizibekmez, H.; Yesiltepe Mutlu, R.G.; Aktas, A.; Ozturkmen, S. Clinical effects of vitamin D in children with asthma. Int. Arch. Allergy Immunol. 2014, 164, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Demirel, S.; Guner, S.N.; Celiksoy, M.H.; Sancak, R. Is vitamin D insufficiency to blame for recurrent wheezing? Int. Forum Allergy Rhinol. 2014, 4, 980–985. [Google Scholar] [CrossRef]
- Beigelman, A.; Zeiger, R.S.; Mauger, D.; Strunk, R.C.; Jackson, D.J.; Martinez, F.D.; Morgan, W.J.; Covar, R.; Szefler, S.J.; Taussig, L.M.; et al. The association between vitamin D status and the rate of exacerbations requiring oral corticosteroids in preschool children with recurrent wheezing. J. Allergy Clin. Immunol. 2014, 133, 1489–1492.e1-3. [Google Scholar] [CrossRef] [Green Version]
- Stenberg Hammar, K.; Hedlin, G.; Konradsen, J.R.; Nordlund, B.; Kull, I.; Giske, C.G.; Pedroletti, C.; Söderhäll, C.; Melén, E. Subnormal levels of vitamin D are associated with acute wheeze in young children. Acta Paediatr. 2014, 103, 856–861. [Google Scholar] [CrossRef]
- Al-Zayadneh, E.; Alnawaiseh, N.A.; Ajarmeh, S.; Altarawneh, A.H.; Albataineh, E.M.; AlZayadneh, E.; Shatanawi, A.; Alzayadneh, E.M. Vitamin D deficiency in children with bronchial asthma in southern Jordan: A cross-sectional study. J. Int. Med. Res. 2020, 48, 300060520974242. [Google Scholar] [CrossRef]
- Turkeli, A.; Ayaz, O.; Uncu, A.; Ozhan, B.; Bas, V.N.; Tufan, A.K.; Yilmaz, O.; Yuksel, H. Effects of vitamin D levels on asthma control and severity in pre-school children. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 26–36. [Google Scholar]
- Urrutia-Pereira, M.; Solé, D. Is Vitamin D Deficiency a Marker of Severity of Wheezing in Children? A Cross-sectional Study. J. Investig. Allergol. Clin. Immunol. 2016, 26, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Omand, J.A.; To, T.; O’Connor, D.L.; Parkin, P.C.; Birken, C.S.; Thorpe, K.E.; Maguire, J.L. 25-hydroxyvitamin D and health service utilization for asthma in early childhood. Pediatr. Pulmonol. 2018, 53, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Adam-Bonci, T.I.; Cherecheș-Panța, P.; Bonci, E.A.; Man, S.C.; Cutaș-Benedec, A.; Drugan, T.; Pop, R.M.; Irimie, A. Suboptimal Serum 25-Hydroxy-Vitamin D Is Associated with a History of Recent Disease Exacerbation in Pediatric Patients with Bronchial Asthma or Asthma-Suggestive Recurrent Wheezing. Int. J. Environ. Res. Public Health 2020, 17, 6545. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, F.M.; Jensen, M.; Mailhot, G.; Alos, N.; White, J.; Rousseau, E.; Tse, S.M.; Khamessan, A.; Vinet, B. Impact of two oral doses of 100,000 IU of vitamin D3 in preschoolers with viral-induced asthma: A pilot randomised controlled trial. Trials 2019, 20, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueter, K.; Jones, A.P.; Siafarikas, A.; Lim, E.M.; Prescott, S.L.; Palmer, D.J. In “High-Risk” Infants with Sufficient Vitamin D Status at Birth, Infant Vitamin D Supplementation Had No Effect on Allergy Outcomes: A Randomized Controlled Trial. Nutrients 2020, 12, 1747. [Google Scholar] [CrossRef] [PubMed]
- Vlieg-Boerstra, B.; de Jong, N.; Meyer, R.; Agostoni, C.; De Cosmi, V.; Grimshaw, K.; Milani, G.P.; Muraro, A.; Oude Elberink, H.; Pali-Schöll, I.; et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy 2022, 77, 1373–1388. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol. Assess. 2019, 23, 1–44. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Camargo, C.A., Jr.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, C.; Mei, J.; Zhu, L.; Kong, H. Vitamin D can safely reduce asthma exacerbations among corticosteroid-using children and adults with asthma: A systematic review and meta-analysis of randomized controlled trials. Nutr. Res. 2021, 92, 49–61. [Google Scholar] [CrossRef]
- Midodzi, W.K.; Rowe, B.H.; Majaesic, C.M.; Saunders, L.D.; Senthilselvan, A. Early life factors associated with incidence of physician-diagnosed asthma in preschool children: Results from the Canadian Early Childhood Development cohort study. J. Asthma 2010, 47, 7–13. [Google Scholar] [CrossRef]
- Klopp, A.; Vehling, L.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; CHILD Study Investigators; Azad, M.B. Modes of Infant Feeding and the Risk of Childhood Asthma: A Prospective Birth Cohort Study. J. Pediatr. 2017, 190, 192–199.e2. [Google Scholar] [CrossRef]
- Leung, J.Y.; Kwok, M.K.; Leung, G.M.; Schooling, C.M. Breastfeeding and childhood hospitalizations for asthma and other wheezing disorders. Ann. Epidemiol. 2016, 26, 7.e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Dehaas, E.; Chaudhary, N.; O’Byrne, P.; Satia, I.; Kurmi, O.P. Breastfeeding and risk of childhood asthma: A systematic review and meta-analysis. ERJ Open Res. 2021, 7, 00504-2021. [Google Scholar] [CrossRef] [PubMed]
- Elliott, L.; Henderson, J.; Northstone, K.; Chiu, G.Y.; Dunson, D.; London, S.J. Prospective study of breast-feeding in relation to wheeze, atopy, and bronchial hyperresponsiveness in the Avon Longitudinal Study of Parents and Children (ALSPAC). J. Allergy Clin. Immunol. 2008, 122, 49–54.e3. [Google Scholar] [CrossRef] [Green Version]
- Dogaru, C.M.; Nyffenegger, D.; Pescatore, A.M.; Spycher, B.D.; Kuehni, C.E. Breastfeeding and childhood asthma: Systematic review and meta-analysis. Am. J. Epidemiol. 2014, 179, 1153–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patria, M.F.; Tenconi, R.; Esposito, S. Efficacy and safety of influenza vaccination in children with asthma. Expert Rev. Vaccines 2012, 11, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Grohskopf, L.A.; Sokolow, L.Z.; Broder, K.R.; Walter, E.B.; Fry, A.M.; Jernigan, D.B. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018–2019 Influenza Season. MMWR Recomm. Rep. 2018, 67, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, S.; Argentiero, A.; Camilloni, B.; Silvestri, E.; Alunno, A.; Esposito, S. Vaccination against Paediatric Respiratory Pathogens. Vaccines 2019, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.Y.; Choi, U.Y.; Kwon, H.J.; Jeong, D.C.; Rhim, J.W.; Ma, S.H.; Lee, K.I.; Kang, J.H. Immunogenicity and safety of an inactivated trivalent split influenza virus vaccine in young children with recurrent wheezing. Clin. Vaccine Immunol. 2013, 20, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Bergen, R.; Black, S.; Shinefield, H.; Lewis, E.; Ray, P.; Hansen, J.; Walker, R.; Hessel, C.; Cordova, J.; Mendelman, P.M. Safety of cold-adapted live attenuated influenza vaccine in a large cohort of children and adolescents. Pediatr. Infect. Dis. J. 2004, 23, 138–144. [Google Scholar] [CrossRef]
- Miller, E.K.; Dumitrescu, L.; Cupp, C.; Dorris, S.; Taylor, S.; Sparks, R.; Fawkes, D.; Frontiero, V.; Rezendes, A.M.; Marchant, C.; et al. Atopy history and the genomics of wheezing after influenza vaccination in children 6–59 months of age. Vaccine 2011, 29, 3431–3437. [Google Scholar] [CrossRef] [Green Version]
- Baxter, R.P.; Lewis, N.; Fireman, B.; Hansen, J.; Klein, N.P.; Ortiz, J.R. Live Attenuated Influenza Vaccination Before 3 Years of Age and Subsequent Development of Asthma: A 14-year Follow-up Study. Pediatr. Infect. Dis. J. 2018, 37, 383–386, Erratum in Pediatr. Infect. Dis. J. 2018, 37, 611. [Google Scholar] [CrossRef] [PubMed]
- Gaglani, M.J.; Piedra, P.A.; Riggs, M.; Herschler, G.; Fewlass, C.; Glezen, W.P. Safety of the intranasal, trivalent, live attenuated influenza vaccine (LAIV) in children with intermittent wheezing in an open-label field trial. Pediatr. Infect. Dis. J. 2008, 27, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Sokolow, A.G.; Stallings, A.P.; Kercsmar, C.; Harrington, T.; Jimenez-Truque, N.; Zhu, Y.; Sokolow, K.; Moody, M.A.; Schlaudecker, E.P.; Walter, E.B.; et al. Safety of Live Attenuated Influenza Vaccine in Children With Asthma. Pediatrics 2022, 149, e2021055432. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J.; Fleming, L.; Saglani, S.; Southern, J.; Andrews, N.J.; Miller, E.; SNIFFLE-4 Study Investigators. Safety of live attenuated influenza vaccine (LAIV) in children with moderate to severe asthma. J. Allergy Clin. Immunol. 2020, 145, 1157–1164.e6. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, C.S.; Wu, X.; Knuf, M.; Wutzler, P. The efficacy of intranasal live attenuated influenza vaccine in children 2 through 17 years of age: A meta-analysis of 8 randomized controlled studies. Vaccine 2012, 30, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Toivonen, L.; Karppinen, S.; Schuez-Havupalo, L.; Teros-Jaakkola, T.; Vuononvirta, J.; Mertsola, J.; He, Q.; Waris, M.; Peltola, V. Burden of Recurrent Respiratory Tract Infections in Children: A Prospective Cohort Study. Pediatr. Infect. Dis. J. 2016, 35, e362–e369. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Esposito, S.; Cavagna, R.; Bosis, S.; Droghetti, R.; Faelli, N.; Tosi, S.; Begliatti, E.; Snoopy Study Group. Recurrent respiratory tract infections in pediatric age: A population-based survey of the therapeutic role of macrolides. J. Chemother. 2003, 15, 53–59. [Google Scholar] [CrossRef]
- Esposito, S.; Soto-Martinez, M.E.; Feleszko, W.; Jones, M.H.; Shen, K.L.; Schaad, U.B. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: A systematic review of mechanistic and clinical evidence. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 198–209. [Google Scholar] [CrossRef]
- Esposito, S.; Bianchini, S.; Bosis, S.; Tagliabue, C.; Coro, I.; Argentiero, A.; Principi, N. A randomized, placebo-controlled, double-blinded, single-centre, phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections. J. Transl. Med. 2019, 17, 284. [Google Scholar] [CrossRef]
- Cao, C.; Wang, J.; Li, Y.; Li, Y.; Ma, L.; Abdelrahim, M.E.A.; Zhu, Y. Efficacy and safety of OM-85 in paediatric recurrent respiratory tract infections which could have a possible protective effect on COVID-19 pandemic: A meta-analysis. Int. J. Clin. Pract. 2021, 75, e13981. [Google Scholar] [CrossRef]
- Yin, J.; Xu, B.; Zeng, X.; Shen, K. Broncho-Vaxom in pediatric recurrent respiratory tract infections: A systematic review and meta-analysis. Int. Immunopharmacol. 2018, 54, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Schaad, U.B. OM-85 BV, an immunostimulant in pediatric recurrent respiratory tract infections: A systematic review. World J. Pediatr. 2010, 6, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Musio, A. Immunostimulants and prevention of recurrent respiratory tract infections. J. Biol. Regul. Homeost. Agents 2013, 27, 627–636. [Google Scholar] [PubMed]
- Razi, C.H.; Harmancı, K.; Abacı, A.; Özdemir, O.; Hızlı, S.; Renda, R.; Keskin, F. The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J. Allergy Clin. Immunol. 2010, 126, 763–769. [Google Scholar] [CrossRef] [PubMed]
Question | Answer |
---|---|
Section 1. Pathogenesis of preschool wheezing | |
Q1. What is the role of infection in the pathogenesis of preschool wheezing? | There is evidence that mainly viruses can trigger wheezing in young children. RSV and HRV are the main viruses involved in wheezing pathogenesis. |
Q2. What is the role of atopy in the pathogenesis of preschool wheezing? | Recurrent multi-trigger wheezing often presents a severe clinical spectrum, can be associated with atopy more frequently than EVW and might expose the child to a higher risk of developing asthma at a later age. Aeroallergen sensitization and blood eosinophils can be used as biomarkers to identify responses to ICS in a recurrent preschool wheeze. |
Section 2. Risk factors for wheeze development | |
Q3. Does the presence of risk factors such as allergy/atopy influence the onset and the evolution of preschool wheezing? | Young children with recurrent wheezing with atopic eczema, sensitized to allergens or blood eosinophilia, are at higher risk of asthma at a later age. |
Q4. Does the presence of risk factors such as previous respiratory tract infection/bronchiolitis influence the onset and evolution of preschool wheezing? | Infants with bronchiolitis represent a high-risk group for recurrent wheezing. |
Q5. Does pollution influence the onset and evolution of preschool wheezing? | Traffic-related air pollution may favour wheezing, likely via a reduced response to viral infections. Both outdoor and indoor pollution can influence the respiratory health of young children from conception and birth. |
Q6. Does genetics influence the onset and the evolution of preschool wheezing? | Some individuals have a genetic susceptibility and are predisposed to develop preschool wheezing at first and eventually asthma later in life. At present, little can be done to modify genetic susceptibility, but environmental exposures can be adjusted to reduce this risk and potentially work on primary asthma prevention. |
Q7. Does obesity influence the onset and the evolution of preschool wheezing? | Rapid weight gain in infancy and high BMI is associated with an increased risk of wheezing in preschool age. |
Q8. Do prematurity and other perinatal factors influence the onset and the evolution of preschool wheezing? | Preterm birth and low birth weight are important early life risk factors for wheezing disorders in childhood. Extremely preterm infants are at the highest risk for respiratory problems and may have lower lung function trajectories across all ages. |
Q9. Does smoke exposure influence the onset and the evolution of preschool wheezing? | Maternal smoking during uterine fetal life and subsequent second and third-hand smoke exposure increase the risk of wheezing in preschool children, particularly those with a family history of allergy. |
Q10. Is immunodeficiency a risk factor for the onset and the evolution of preschool wheezing? | PID must be suspected in case of persistent wheeze refractory to therapies and a history of pulmonary or systemic infections with unusual organisms. IgA deficiency can predispose the child to recurrent infections, including wheezing. |
Section 3. Protective factors for wheeze development | |
Q11. Are probiotics protective for preschool wheezing development? | Probiotic administration to reduce wheezing development is not recommended. |
Q12. Is vitamin D supplementation protective for preschool wheezing development? | Vitamin D supplementation during the winter season may decrease the risk of RTIs and wheezing exacerbations. |
Q13. Is breastfeeding protective for preschool wheezing development? | Maternal breastfeeding protects from preschool wheezing. |
Q14. Is influenza vaccination protective for preschool wheezing development? | Influenza vaccination is recommended for its efficacy and safety in young children ≥6 months of age with wheezing. |
Q15. Are non-specific immunomodulators protective for preschool wheezing development? | Prophylaxis with non-specific immunomodulators can be considered in children with recurrent EVW to reduce the number of episodes during the winter season. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grandinetti, R.; Fainardi, V.; Caffarelli, C.; Capoferri, G.; Lazzara, A.; Tornesello, M.; Meoli, A.; Bergamini, B.M.; Bertelli, L.; Biserna, L.; et al. Risk Factors Affecting Development and Persistence of Preschool Wheezing: Consensus Document of the Emilia-Romagna Asthma (ERA) Study Group. J. Clin. Med. 2022, 11, 6558. https://doi.org/10.3390/jcm11216558
Grandinetti R, Fainardi V, Caffarelli C, Capoferri G, Lazzara A, Tornesello M, Meoli A, Bergamini BM, Bertelli L, Biserna L, et al. Risk Factors Affecting Development and Persistence of Preschool Wheezing: Consensus Document of the Emilia-Romagna Asthma (ERA) Study Group. Journal of Clinical Medicine. 2022; 11(21):6558. https://doi.org/10.3390/jcm11216558
Chicago/Turabian StyleGrandinetti, Roberto, Valentina Fainardi, Carlo Caffarelli, Gaia Capoferri, Angela Lazzara, Marco Tornesello, Aniello Meoli, Barbara Maria Bergamini, Luca Bertelli, Loretta Biserna, and et al. 2022. "Risk Factors Affecting Development and Persistence of Preschool Wheezing: Consensus Document of the Emilia-Romagna Asthma (ERA) Study Group" Journal of Clinical Medicine 11, no. 21: 6558. https://doi.org/10.3390/jcm11216558
APA StyleGrandinetti, R., Fainardi, V., Caffarelli, C., Capoferri, G., Lazzara, A., Tornesello, M., Meoli, A., Bergamini, B. M., Bertelli, L., Biserna, L., Bottau, P., Corinaldesi, E., De Paulis, N., Dondi, A., Guidi, B., Lombardi, F., Magistrali, M. S., Marastoni, E., Pastorelli, S., ... on behalf of the Emilia-Romagna Asthma (ERA) Study Group. (2022). Risk Factors Affecting Development and Persistence of Preschool Wheezing: Consensus Document of the Emilia-Romagna Asthma (ERA) Study Group. Journal of Clinical Medicine, 11(21), 6558. https://doi.org/10.3390/jcm11216558