Serum Zinc and Long-Term Prognosis after Acute Traumatic Brain Injury with Intracranial Injury: A Multicenter Prospective Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Data Sources
2.2. Study Population
2.3. Outcome Measures
2.4. Analysis of Serum Zinc
2.5. Measurements and Variables
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, T.S.; Jing, R.; McFaull, S.R.; Cusimano, M.D. Health & Economic Burden of Traumatic Brain Injury in the Emergency Department. Can. J. Neurol. Sci. 2016, 43, 238–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayani, N.A.; Homan, S.; Yun, S.; Zhu, B.P. Health and economic burden of traumatic brain injury: Missouri, 2001–2005. Public Health Rep. 2009, 124, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.A.; López, K.D.; Echeverri, R.A.; Pastor, L.; Rueda, S.; Fernández, L.L.; Mantilla, D.S.; Díaz, M.F.; Ramírez, M.C.; Barragán, D.C.; et al. Utility of biomarkers in traumatic brain injury: A narrative review. Colomb. J. Anesthesiol. 2020, 48, 155–161. [Google Scholar] [CrossRef]
- Simon, D.W.; McGeachy, M.J.; Bayir, H.; Clark, R.S.; Loane, D.J.; Kochanek, P.M. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 2017, 13, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Dadas, A.; Washington, J.; Diaz-Arrastia, R.; Janigro, D. Biomarkers in traumatic brain injury (TBI): A review. Neuropsychiatr. Dis. Treat. 2018, 14, 2989–3000. [Google Scholar] [CrossRef] [Green Version]
- Gower-Winter, S.D.; Levenson, C.W. Zinc in the central nervous system: From molecules to behavior. Biofactors 2012, 38, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Blakemore, L.J.; Trombley, P.Q. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front. Cell. Neurosci 2017, 11, 297. [Google Scholar] [CrossRef] [Green Version]
- Saghazadeh, A.; Ahangari, N.; Hendi, K.; Saleh, F.; Rezaei, N. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis. Rev. Neurosci. 2017, 28, 783–809. [Google Scholar] [CrossRef]
- Isaev, N.K.; Stelmashook, E.V.; Genrikhs, E.E. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer’s disease. Rev. Neurosci. 2020, 31, 233–243. [Google Scholar] [CrossRef]
- Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the Brain: Friend or Foe? Int. J. Mol. Sci. 2020, 21, 8941. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Kim, J.H.; Kim, H.J.; Lee, B.E.; Kim, I.Y.; Sohn, M.; Suh, S.W. Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus. J. Trace Elem. Med. Biol. 2014, 28, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Hellmich, H.L.; Eidson, K.; Cowart, J.; Crookshanks, J.; Boone, D.K.; Shah, S.; Uchida, T.; DeWitt, D.S.; Prough, D.S. Chelation of neurotoxic zinc levels does not improve neurobehavioral outcome after traumatic brain injury. Neurosci. Lett. 2008, 440, 155–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, S.W.; Chen, J.W.; Motamedi, M.; Bell, B.; Listiak, K.; Pons, N.F.; Danscher, G.; Frederickson, C.J. Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 2000, 852, 268–273. [Google Scholar] [CrossRef]
- Yeiser, E.C.; Vanlandingham, J.W.; Levenson, C.W. Moderate zinc deficiency increases cell death after brain injury in the rat. Nutr. Neurosci. 2002, 5, 345–352. [Google Scholar] [CrossRef] [PubMed]
- McClain, C.J.; Twyman, D.L.; Ott, L.G.; Rapp, R.P.; Tibbs, P.A.; Norton, J.A.; Kasarskis, E.J.; Dempsey, R.J.; Young, B. Serum and urine zinc response in head-injured patients. J. Neurosurg. 1986, 64, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Levenson, C.W. Zinc and Traumatic Brain Injury: From Chelation to Supplementation. Med. Sci. 2020, 8, 36. [Google Scholar] [CrossRef]
- Cope, E.C.; Morris, D.R.; Levenson, C.W. Improving treatments and outcomes: An emerging role for zinc in traumatic brain injury. Nutr Rev 2012, 70, 410–413. [Google Scholar] [CrossRef]
- Cope, E.C.; Morris, D.R.; Scrimgeour, A.G.; Levenson, C.W. Use of zinc as a treatment for traumatic brain injury in the rat: Effects on cognitive and behavioral outcomes. Neurorehabil. Neural Repair 2012, 26, 907–913. [Google Scholar] [CrossRef]
- Kodama, H.; Tanaka, M.; Naito, Y.; Katayama, K.; Moriyama, M. Japan’s Practical Guidelines for Zinc Deficiency with a Particular Focus on Taste Disorders, Inflammatory Bowel Disease, and Liver Cirrhosis. Int. J. Mol. Sci. 2020, 21, 2941. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.; Ro, Y.S.; Park, J.H.; Moon, S.B.; Lee, S.G.W.; Park, G.J.; Ryu, H.H.; Shin, S.D. Vitamin D Deficiency and Prognosis after Traumatic Brain Injury with Intracranial Injury: A Multi-Center Observational Study. J. Neurotrauma 2022, 39, 1408–1416. [Google Scholar] [CrossRef]
- De Paula, R.C.; Aneni, E.C.; Costa, A.P.; Figueiredo, V.N.; Moura, F.A.; Freitas, W.M.; Quaglia, L.A.; Santos, S.N.; Soares, A.A.; Nadruz, W., Jr.; et al. Low zinc levels is associated with increased inflammatory activity but not with atherosclerosis, arteriosclerosis or endothelial dysfunction among the very elderly. BBA Clin. 2014, 2, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokokawa, H.; Fukuda, H.; Saita, M.; Miyagami, T.; Takahashi, Y.; Hisaoka, T.; Naito, T. Serum zinc concentrations and characteristics of zinc deficiency/marginal deficiency among Japanese subjects. J. Gen. Fam. Med. 2020, 21, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Hong, D.K.; Jeong, J.H.; Lee, B.E.; Koh, J.Y.; Suh, S.W. Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 2020, 38, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Solati, Z.; Jazayeri, S.; Tehrani-Doost, M.; Mahmoodianfard, S.; Gohari, M.R. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial. Nutr. Neurosci. 2015, 18, 162–168. [Google Scholar] [CrossRef]
- Corona, C.; Masciopinto, F.; Silvestri, E.; Viscovo, A.D.; Lattanzio, R.; Sorda, R.L.; Ciavardelli, D.; Goglia, F.; Piantelli, M.; Canzoniero, L.M.; et al. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death Dis. 2010, 1, e91. [Google Scholar] [CrossRef] [Green Version]
- Young, B.; Ott, L.; Kasarskis, E.; Rapp, R.; Moles, K.; Dempsey, R.J.; Tibbs, P.A.; Kryscio, R.; McClain, C. Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J. Neurotrauma 1996, 13, 25–34. [Google Scholar] [CrossRef]
- Cope, E.C.; Morris, D.R.; Gower-Winter, S.D.; Brownstein, N.C.; Levenson, C.W. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury. Exp. Neurol. 2016, 279, 96–103. [Google Scholar] [CrossRef]
- Lovell, M.A.; Xie, C.; Markesbery, W.R. Protection against amyloid beta peptide toxicity by zinc. Brain Res. 1999, 823, 88–95. [Google Scholar] [CrossRef]
- Hagmeyer, S.; Cristóvão, J.S.; Mulvihill, J.J.E.; Boeckers, T.M.; Gomes, C.M.; Grabrucker, A.M. Zinc Binding to S100B Affords Regulation of Trace Metal Homeostasis and Excitotoxicity in the Brain. Front. Mol. Neurosci. 2018, 10, 456. [Google Scholar] [CrossRef]
- Foote, J.W.; Delves, H.T. Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J. Clin. Pathol. 1984, 37, 1050–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.J.; Chen, W.; Chen, L.; Guo, Y.J.; Zeng, J.S.; Li, G.Y.; Tong, W.S. Involvement of tau phosphorylation in traumatic brain injury patients. Acta Neurol. Scand. 2017, 135, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Z.; Liu, F.; Xu, C.; Li, J.Y.; Xu, Y.J. Selenium and Zinc against Abeta25-35-Induced Cytotoxicity and Tau Phosphorylation in PC12 Cells and Inhibits gamma-cleavage of APP. Biol. Trace Elem. Res. 2018, 184, 442–449. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, S.; Bergdahl, A. Zinc Homeostasis in Diabetes Mellitus and Vascular Complications. Biomedicines 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Masood, N.; Baloch, G.H.; Ghori, R.A.; Memon, I.A.; Memon, M.A.; Memon, M.S. Serum zinc and magnesium in type-2 diabetic patients. J. Coll. Physicians Surg. Pak. 2009, 19, 483–486. [Google Scholar]
- Lin, C.C.; Huang, Y.L. Chromium, zinc and magnesium status in type 1 diabetes. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 588–592. [Google Scholar] [CrossRef]
- Hamedifard, Z.; Farrokhian, A.; Reiner, Z.; Bahmani, F.; Asemi, Z.; Ghotbi, M.; Taghizadeh, M. The effects of combined magnesium and zinc supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Lipids Health Dis. 2020, 19, 112. [Google Scholar] [CrossRef]
Total | Serum Zinc Group | |||||
---|---|---|---|---|---|---|
Low, 0.0~79.9 | Low–Normal, 80.0~100.0 | High–Normal, 100.1~120.0 | High 120.1~320.0 | p-Value | ||
N (%) | N (%) | N (%) | N (%) | N (%) | ||
Total | 487 | 43 | 114 | 136 | 194 | |
Serum zinc levels [mcg/dl], median (IQR) | 112.0 (95.0–142.0) | 69.4 (65.2–74.6) | 91.2 (86.3–96.1) | 109.2 (105.9–114.4) | 147.7 (134.6–175.2) | |
Age, year, median (IQR) | 67 (55–77) | 64 (51–77) | 71 (57–77) | 68 (58–78.5) | 64 (53–74) | 0.09 |
Male sex | 334 (68.6) | 32 (74.4) | 79 (69.3) | 88 (64.7) | 135 (69.6) | 0.63 |
Education, >12 years | 218 (44.8) | 19 (44.2) | 53 (46.5) | 53 (39.0) | 93 (47.9) | 0.43 |
Pre-injury disability, GOS 1–4 | 9 (1.8) | – | 2 (1.8) | 4 (2.9) | 3 (1.5) | 0.75 |
Comorbidities | ||||||
Hypertension | 182 (37.4) | 14 (32.6) | 39 (34.2) | 54 (39.7) | 75 (38.7) | 0.71 |
Diabetes mellitus | 122 (25.1) | 14 (32.6) | 28 (24.6) | 43 (31.6) | 37 (19.1) | 0.04 |
Chronic liver disease | 22 (4.5) | 3 (7.0) | 4 (3.5) | 6 (4.4) | 9 (4.6) | 0.83 |
Hemodialysis | 18 (3.7) | – | 7 (6.1) | 8 (5.9) | 3 (1.5) | 0.04 |
Coagulopathy | 11 (2.3) | – | 7 (6.1) | 1 (0.7) | 3 (1.5) | 0.01 |
Antiplatelet or anticoagulation | 61 (12.5) | 3 (7.0) | 17 (14.9) | 18 (13.2) | 23 (11.9) | 0.58 |
Mechanism of injury | 0.02 | |||||
Road traffic injury | 210 (43.1) | 18 (41.9) | 58 (50.9) | 49 (36.0) | 85 (43.8) | |
Fall | 204 (41.9) | 12 (27.9) | 44 (38.6) | 66 (48.5) | 82 (42.3) | |
Others | 73 (15.0) | 13 (30.2) | 12 (10.5) | 21 (15.4) | 27 (13.9) | |
Prehospital alertness | 133 (27.3) | 6 (14.0) | 27 (23.7) | 34 (25.0) | 66 (34.0) | 0.02 |
GCS in the ED, median (IQR) | 15 (9–15) | 12 (4–15) b,c | 15 (7–15) | 15 (11–15) | 15 (10–15) | 0.02 |
Laboratory findings, median (IQR) | ||||||
Hemoglobin [g/dL] | 12 (10–13) | 10 (8.8–11) a,b,c | 11 (10–13) b,c | 12 (11–13) | 13 (11–14) | <0.01 |
Platelet [103/μL] | 194 (159–244) | 168 (144–228) | 200 (165–242) | 189 (152–245) | 198 (167–244) | 0.07 |
PT INR | 1.0 (0.9–1.1) | 1.1 (1–1.2) a,b,c | 1.0 (0.9–1.1) | 1.0 (0.9–1.1) | 1.0 (0.9–1.0) | <0.01 |
Types of intracranial injury | ||||||
Diffuse axonal injury | 34 (7.0) | 4 (9.3) | 6 (5.3) | 7 (5.1) | 17 (8.8) | 0.47 |
Subdural hemorrhage | 359 (73.7) | 30 (69.8) | 84 (73.7) | 99 (72.8) | 146 (75.3) | 0.89 |
Epidural hemorrhage | 74 (15.2) | 8 (18.6) | 13 (11.4) | 28 (20.6) | 25 (12.9) | 0.14 |
Subarachnoid hemorrhage | 200 (41.1) | 14 (32.6) | 51 (44.7) | 52 (38.2) | 83 (42.8) | 0.46 |
Intracerebral hemorrhage | 115 (23.6) | 13 (30.2) | 33 (28.9) | 30 (22.1) | 39 (20.1) | 0.23 |
Intraventricular hemorrhage | 41 (8.4) | 7 (16.3) | 7 (6.1) | 7 (5.1) | 20 (10.3) | 0.07 |
AIS of head injury, 3–6 | 407 (83.6) | 38 (88.4) | 100 (87.7) | 110 (80.9) | 159 (82.0) | 0.36 |
Injury severity score | 17 (10–25) | 22 (16–27) c | 19.5 (13–25) c | 16 (10–25) | 16 (9–22) | <0.01 |
Transfusion in the ED | 127 (26.1) | 21 (48.8) b,c | 41 (36.0) b,c | 27 (19.9) | 38 (19.6) | <0.01 |
Any operation | 138 (28.3) | 14 (32.6) | 30 (26.3) | 42 (30.9) | 52 (26.8) | 0.74 |
Outcomes | ||||||
ED mortality | 15 (3.1) | 1 (2.3) | 5 (4.4) | 3 (2.2) | 6 (3.1) | |
1-month GOS | 0.19 | |||||
Death | 95 (19.5) | 15 (34.9) | 28 (24.6) | 24 (17.6) | 28 (14.4) | |
Vegetative state | 6 (1.2) | – | 3 (2.6) | 1 (0.7) | 2 (1.0) | |
Severe disability | 45 (9.2) | 3 (7.0) | 8 (7.0) | 14 (10.3) | 20 (10.3) | |
Moderate disability | 38 (7.8) | 4 (9.3) | 8 (7.0) | 9 (6.6) | 17 (8.8) | |
Good recovery | 303 (62.2) | 21 (48.8) | 67 (58.8) | 88 (64.7) | 127 (65.5) | |
6-month GOS | 0.35 | |||||
Death | 103 (21.1) | 15 (34.9) | 29 (25.4) | 29 (21.3) | 30 (15.5) | |
Vegetative state | 8 (1.6) | – | 2 (1.8) | 2 (1.5) | 4 (2.1) | |
Severe disability | 33 (6.8) | 4 (9.3) | 6 (5.3) | 8 (5.9) | 15 (7.7) | |
Moderate disability | 35 (7.2) | 4 (9.3) | 8 (7.0) | 8 (5.9) | 15 (7.7) | |
Good recovery | 308 (63.2) | 20 (46.5) | 69 (60.5) | 89 (65.4) | 130 (67.0) |
Outcome | Unadjusted Model | Model 1 | Model 2 | |
---|---|---|---|---|
n/N (%) | OR (95% CIs) | Adjusted OR (95% CIs) | Adjusted OR (95% CIs) | |
6-month mortality | ||||
Low, 0.0~79.9 mcg/dL | 15/43 (34.9) | 1.98 (0.93–4.18) | 1.92 (1.63–2.26) | 1.91 (1.60–2.28) |
Low–normal, 80.0~100.0 mcg/dL | 29/114 (25.4) | 1.26 (0.70–2.27) | 1.27 (0.71–2.25) | 1.14 (0.67–1.94) |
High–normal, 100.1~120.0 mcg/dL | 29/136 (21.3) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 30/194 (15.5) | 0.68 (0.38–1.19) | 0.78 (0.48–1.25) | 0.72 (0.44–1.16) |
6-month disability, GOS 1–3 | ||||
Low, 0.0~79.9 mcg/dL | 19/43 (44.2) | 1.97 (0.97–4.00) | 1.98 (1.66–2.37) | 1.95 (1.62–2.36) |
Low–normal, 80.0~100.0 mcg/dL | 37/114 (32.5) | 1.20 (0.70–2.05) | 1.23 (0.92–1.63) | 1.15 (0.91–1.46) |
High–normal, 100.1~120.0 mcg/dL | 39/136 (28.7) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 49/194 (25.3) | 0.84 (0.51–1.38) | 0.93 (0.66–1.31) | 0.88 (0.61–1.27) |
1-month mortality | ||||
Low, 0.0~79.9 mcg/dL | 15/43 (34.9) | 2.50 (1.16–5.38) | 2.56 (2.00–3.29) | 2.52 (1.92–3.30) |
Low–normal, 80.0~100.0 mcg/dL | 28/114 (24.6) | 1.52 (0.82–2.81) | 1.57 (0.76–3.25) | 1.41 (0.74–2.68) |
High–normal, 100.1~120.0 mcg/dL | 24/136 (17.6) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 28/194 (14.4) | 0.79 (0.43–1.43) | 0.91 (0.50–1.63) | 0.84 (0.48–1.48) |
1-month disability, GOS 1–3 | ||||
Low, 0.0~79.9 mcg/dL | 18/43 (41.9) | 1.79 (0.88–3.65) | 1.94 (1.48–2.54) | 1.90 (1.45–2.49) |
Low–normal, 80.0~100.0 mcg/dL | 39/114 (34.2) | 1.29 (0.76–2.21) | 1.39 (0.97–1.98) | 1.32 (0.93–1.86) |
High–normal, 100.1~120.0 mcg/dL | 39/136 (28.7) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 50/194 (25.8) | 0.86 (0.53–1.41) | 0.93 (0.56–1.54) | 0.92 (0.56–1.51) |
Time from Injury to Blood Sample Collection | |||
---|---|---|---|
0–18 h (N= 475) | 0–12 h (N = 456) | 0–6 h (N = 414) | |
Adjusted OR (95% CI) | Adjusted OR (95% CI) | Adjusted OR (95% CI) | |
6-month mortality | |||
Low, 0.0~79.9 mcg/dL | 1.76 (1.47–2.10) | 1.80 (1.49–2.17) | 1.90 (1.62–2.24) |
Low–normal, 80.0~100.0 mcg/dL | 1.04 (0.62–1.76) | 1.01 (0.56–1.82) | 1.03 (0.59–1.79) |
High–normal, 100.1~120.0 mcg/dL | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 0.69 (0.42–1.15) | 0.74 (0.47–1.16) | 0.83 (0.55–1.25) |
6-month disability, GOS 1–3 | |||
Low, 0.0~79.9 mcg/dL | 1.77 (1.48–2.12) | 1.80 (1.47–2.21) | 1.83 (1.43–2.35) |
Low–normal, 80.0~100.0 mcg/dL | 1.05 (0.83–1.33) | 1.01 (0.77–1.31) | 1.13 (0.88–1.44) |
High–normal, 100.1~120.0 mcg/dL | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 0.84 (0.57–1.25) | 0.84 (0.59–1.21) | 0.98 (0.70–1.36) |
1-month mortality | |||
Low, 0.0~79.9 mcg/dL | 2.32 (1.78–3.03) | 2.43 (1.80–3.28) | 2.39 (1.85–3.09) |
Low–normal, 80.0~100.0 mcg/dL | 1.29 (0.68–2.44) | 1.28 (0.63–2.60) | 1.19 (0.63–2.26) |
High–normal, 100.1~120.0 mcg/dL | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 0.81 (0.44–1.48) | 0.88 (0.50–1.53) | 0.97 (0.60–1.57) |
1-month disability, GOS 1–3 | |||
Low, 0.0~79.9 mcg/dL | 1.73 (1.30–2.30) | 1.90 (1.56–2.31) | 1.81 (1.53–2.13) |
Low–normal, 80.0~100.0 mcg/dL | 1.20 (0.82–1.76) | 1.20 (0.94–1.54) | 1.30 (0.98–1.72) |
High–normal, 100.1~120.0 mcg/dL | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 0.88 (0.52–1.49) | 0.94 (0.60–1.48) | 1.06 (0.67–1.68) |
Outcome | Unadjusted Model | Model 1 | Model 2 | |
---|---|---|---|---|
n/N (%) | OR (95% CI) | Adjusted OR (95% CI) | Adjusted OR (95% CI) | |
6-month mortality | ||||
Low, 0.0~79.9 mcg/dL | 6/14 (42.9) | 4.63 (1.18–18.12) | 8.63 (4.03–18.49) | 9.13 (4.01–20.81) |
Low–normal, 80.0~100.0 mcg/dL | 6/28 (21.4) | 1.68 (0.48–5.86) | 1.99 (0.94–4.22) | 1.98 (0.86–4.53) |
High–normal, 100.1~120.0 mcg/dL | 6/43 (14.0) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 6/37 (16.2) | 1.19 (0.35–4.08) | 1.51 (0.45–5.14) | 1.34 (0.41–4.37) |
6-month disability, GOS 1–3 | ||||
Low, 0.0~79.9 mcg/dL | 6/14 (42.9) | 2.48 (0.69–8.84) | 5.16 (2.88–9.25) | 6.63 (3.61–12.15) |
Low–normal, 80.0~100.0 mcg/dL | 8/28 (28.6) | 1.32 (0.45–3.90) | 2.05 (1.13–3.72) | 2.37 (1.38–4.07) |
High–normal, 100.1~120.0 mcg/dL | 10/43 (23.3) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 10/37 (27.0) | 1.22 (0.44–3.37) | 1.85 (0.51–6.75) | 1.75 (0.53–5.71) |
1-month mortality | ||||
Low, 0.0~79.9 mcg/dL | 6/14 (42.9) | 5.70 (1.39–23.36) | 11.63 (3.89–34.77) | 10.71 (3.67–31.28) |
Low–normal, 80.0~100.0 mcg/dL | 6/28 (21.4) | 2.07 (0.57–7.59) | 2.60 (0.91–7.46) | 2.40 (0.77–7.53) |
High–normal, 100.1~120.0 mcg/dL | 5/43 (11.6) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 6/37 (16.2) | 1.47 (0.41–5.28) | 1.99 (0.55–7.16) | 1.71 (0.47–6.19) |
1-month disability, GOS 1–3 | ||||
Low, 0.0~79.9 mcg/dL | 6/14 (42.9) | 1.94 (0.56–6.77) | 3.22 (1.33–7.78) | 3.76 (1.67–8.50) |
Low–normal, 80.0~100.0 mcg/dL | 9/28 (32.1) | 1.22 (0.43–3.45) | 1.75 (0.99–3.09) | 1.87 (1.11–3.13) |
High–normal, 100.1~120.0 mcg/dL | 12/43 (27.9) | 1.00 | 1.00 | 1.00 |
High, 120.1~ mcg/dL | 10/37 (27.0) | 0.96 (0.36–2.56) | 1.16 (0.57–2.38) | 1.02 (0.49–2.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.H.; Ro, Y.S.; Yoon, H.; Lee, S.G.W.; Jung, E.; Moon, S.B.; Park, G.J.; Shin, S.D. Serum Zinc and Long-Term Prognosis after Acute Traumatic Brain Injury with Intracranial Injury: A Multicenter Prospective Study. J. Clin. Med. 2022, 11, 6496. https://doi.org/10.3390/jcm11216496
Kim KH, Ro YS, Yoon H, Lee SGW, Jung E, Moon SB, Park GJ, Shin SD. Serum Zinc and Long-Term Prognosis after Acute Traumatic Brain Injury with Intracranial Injury: A Multicenter Prospective Study. Journal of Clinical Medicine. 2022; 11(21):6496. https://doi.org/10.3390/jcm11216496
Chicago/Turabian StyleKim, Ki Hong, Young Sun Ro, Hanna Yoon, Stephen Gyung Won Lee, Eujene Jung, Sung Bae Moon, Gwan Jin Park, and Sang Do Shin. 2022. "Serum Zinc and Long-Term Prognosis after Acute Traumatic Brain Injury with Intracranial Injury: A Multicenter Prospective Study" Journal of Clinical Medicine 11, no. 21: 6496. https://doi.org/10.3390/jcm11216496