The Importance of Monitoring Neurodevelopmental Outcomes for Preterm Infants: A Comparison of the AIMS, GMA, Pull to Sit Maneuver and ASQ-3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Analytic Strategy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Yeh, C.J.; Blanchard, S.B. Ages and Stages Questionnaire: A global screening scale. Bol. Méd. Hosp. Infant. México 2017, 74, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. Neural substrate and clinical significance of general movements: An update. Dev. Med. Child Neurol. 2018, 60, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salavati, S.; Berghuis, S.A.; Bosch, T.; Hitzert, M.M.; Baptist, D.H.; Mebius, M.J.; Bos, A.F. A comparison of the early motor repertoire of very preterm infants and term infants. Eur. J. Paediatr. Neurol. 2021, 32, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Chao, Y.-H.; Huang, C.-M.; Wei, F.-C.; Chien, L.-Y. Effectiveness of applying empowerment strategies when establishing a support group for parents of preterm infants: Empowerment for parents of preterm infants. J. Clin. Nurs. 2010, 19, 1729–1737. [Google Scholar] [CrossRef]
- Melnyk, B.M.; Feinstein, N.F. Reducing Hospital Expenditures With the COPE (Creating Opportunities for Parent Empowerment) Program for Parents and Premature Infants: An Analysis of Direct Healthcare Neonatal Intensive Care Unit Costs and Savings. Nurs. Adm. Q. 2009, 33, 32–37. [Google Scholar] [CrossRef]
- Cusson, R.M. Factors Influencing Language Development in Preterm Infants. J. Obstet. Gynecol. Neonatal Nurs. 2003, 32, 402–409. [Google Scholar] [CrossRef]
- Miles, M.S.; Holditch-Davis, D.; Burchinal, P.; Nelson, D. Distress and Growth Outcomes in Mothers of Medically Fragile Infants. Nurs. Res. 1999, 48, 129–140. [Google Scholar] [CrossRef]
- Pinelli, J. Effects of Family Coping and Resources on Family Adjustment and Parental Stress in the Acute Phase of the NICU Experience. Neonatal Netw. 2000, 19, 27–37. [Google Scholar] [CrossRef]
- Power, N.; Franck, L. Parent participation in the care of hospitalized children: A systematic review. J. Adv. Nurs. 2008, 62, 622–641. [Google Scholar] [CrossRef]
- van der Pal, S.M.; Alpay, L.L.; van Steenbrugge, G.J.; Detmar, S.B. An Exploration of Parents’ Experiences and Empowerment in the Care for Preterm Born Children. J. Child Fam. Stud. 2013, 23, 1081–1089. [Google Scholar] [CrossRef]
- Fuentefria, R.d.N.; Silveira, R.C.; Procianoy, R.S. Motor development of preterm infants assessed by the Alberta Infant Motor Scale: Systematic review article. J. Pediatr. 2017, 93, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, R.E.; Ferrara, T.B.; Couser, R.J.; Payne, N.R.; Connett, J.E. Survival and Long-Term Neurodevelopmental Outcome of Extremely Premature Infants Born at 23–26 Weeks’ Gestational Age at a Tertiary Center. Pediatrics 2004, 113, e1–e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Liu, G.; Feng, Z.; Tan, X.; Yang, C.; Ye, X.; Dai, Y.; Liang, W.; Ye, X.; Mo, J.; et al. Short-term outcomes of extremely preterm infants at discharge: A multicenter study from Guangdong province during 2008–2017. BMC Pediatr. 2019, 19, 405. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Garcia, C.V.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, J.; Asamoah, F.K.; Singhvi, D.; Kwan, A.W.; Morris, J.K.; Aladangady, N. Haemoglobin level at birth is associated with short term outcomes and mortality in preterm infants. BMC Med. 2015, 13, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widding, U.; Hägglöf, B.; Farooqi, A. Parents of preterm children narrate constructive aspects of their experiences. J. Clin. Nurs. 2019, 28, 4110–4118. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, C.Y.P.; Einspieler, C.; Genovesi, F.F.; Ibidi, S.M.; Hasue, R.H. The general movement checklist: A guide to the assessment of general movements during preterm and term age. J. Pediatr. 2021, 97, 445–452. [Google Scholar] [CrossRef]
- Einspieler, C.; Marschik, P.B.; Pansy, J.; Scheuchenegger, A.; Krieber, M.; Yang, H.; Kornacka, M.K.; Rowinska, E.; Soloveichick, M.; Bos, A.F. The general movement optimality score: A detailed assessment of general movements during preterm and term age. Dev. Med. Child Neurol. 2016, 58, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Gontijo, A.P.B.; Mambrini, J.V.d.; Mancini, M.C. Cross-country validity of the Alberta Infant Motor Scale using a Brazilian sample. Braz. J. Phys. Ther. 2021, 25, 444–449. [Google Scholar] [CrossRef]
- Harris, S.R.; Backman, C.L.; Mayson, T.A. Comparative predictive validity of the Harris Infant Neuromotor Test and the Alberta Infant Motor Scale: Predictive Validity of Infant Neuromotor Tests. Dev. Med. Child Neurol. 2009, 52, 462–467. [Google Scholar] [CrossRef]
- Malak, R.; Fechner, B.; Sikorska, D.; Rosołek, M.; Mojs, E.; Samborski, W.; Baum, E. Application of the Neonatal Behavioral Assessment Scale to Evaluate the Neurobehavior of Preterm Neonates. Brain Sci. 2021, 11, 1285. [Google Scholar] [CrossRef]
- Kodama, Y.; Okamoto, J.; Imai, K.; Asano, H.; Uchiyama, A.; Masamune, K.; Wada, M.; Muragaki, Y. Video-based neonatal state assessment method for timing of procedures. Pediatr. Int. 2021, 63, 685–692. [Google Scholar] [CrossRef]
- Canals, J.; Hernández-Martínez, C.; Esparó, G.; Fernández-Ballart, J. Neonatal Behavioral Assessment Scale as a predictor of cognitive development and IQ in full-term infants: A 6-year longitudinal study: Neonatal behaviour as early predictor of intelligence. Acta Paediatr. 2011, 100, 1331–1337. [Google Scholar] [CrossRef]
- Farber, E.A.; Vaughn, B.; Egeland, B. The relationship of prenatal maternal anxiety to infant behavior and moth-er-infant interaction during the first six months of life. Early Hum. Dev. 1981, 5, 267–277. [Google Scholar] [CrossRef]
- Malak, R.; Wiecheć, K.; Fechner, B.; Szczapa, T.; Kasperkowicz, J.; Matthews-Kozanecka, M.; Brzozowska, T.M.; Komisarek, O.; Samborski, W.; Mojs, E. The Influence of Parent Education on the Neurobehavior and Sucking Reflexes of Very Preterm Infants. Brain Sci. 2022, 12, 840. [Google Scholar] [CrossRef]
- Malak, R.; Sikorska, D.; Rosołek, M.; Baum, E.; Mojs, E.; Daroszewski, P.; Matecka, M.; Fechner, B.; Samborski, W. Impact of umbilical cord arterial pH, gestational age, and birth weight on neurodevelopmental outcomes for preterm neonates. Peer J. 2021, 9, e12043. [Google Scholar] [CrossRef]
- Malak, R.; Kozłowska, Z.; Owsiańska, Z.; Sikorska, D.; Andrusiewicz, M.; Szymankiewicz-Bręborowicz, M.; Samborski, W.; Szczapa, T. Cerebral tissue oxygenation during cranial osteopathic CV4 procedure in newborns. Adv. Clin. Exp. Med. 2020, 29, 1187–1191. [Google Scholar] [CrossRef]
- Ohgi, S.; Arisawa, K.; Takahashi, T.; Kusumoto, T.; Goto, Y.; Akiyama, T.; Saito, H. Neonatal behavioral assessment scale as a predictor of later developmental disabilities of low birth-weight and/or premature infants. Brain Dev. 2003, 25, 313–321. [Google Scholar] [CrossRef]
- Bodensteiner, J.B. The Evaluation of the Hypotonic Infant. Semin. Pediatr. Neurol. 2008, 15, 10–20. [Google Scholar] [CrossRef]
- Fauls, J.R.; Thompson, B.L.; Johnston, L.M. Validity of the Ages and Stages Questionnaire to identify young children with gross motor difficulties who require physiotherapy assessment. Dev. Med. Child Neurol. 2020, 62, 837–844. [Google Scholar] [CrossRef]
- Sheldrick, R.C.; Marakovitz, S.; Garfinkel, D.; Carter, A.S.; Perrin, E.C. Comparative Accuracy of Developmental Screening Questionnaires. JAMA Pediatr. 2020, 174, 366. [Google Scholar] [CrossRef]
- Bruggink, J.L.M.; Einspieler, C.; Butcher, P.R.; van Braeckel, K.N.J.A.; Prechtl, H.F.R.; Bos, A.F. The Quality of the Early Motor Repertoire in Preterm Infants Predicts Minor Neurologic Dysfunction at School Age. J. Pediatr. 2008, 153, 32–39. [Google Scholar] [CrossRef]
- Hamer, E.G.; Hadders-Algra, M. Prognostic significance of neurological signs in high-risk infants—A systematic review. Dev. Med. Child Neurol. 2016, 58, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Danks, M.; Flynn, E.J.; Gray, P.H.; Hurrion, E.M. ‘Low-normal’ motor skills in infants at high risk for poor developmental outcomes: A prevalence and prognostic study. Dev. Med. Child Neurol. 2022, 10.1111, 15267. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.R. Prechtl’s assessment of general movements: A diagnostic tool for the func-tional assessment of the young nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef]
- Kilbride, H.W.; Aylward, G.P.; Doyle, L.W.; Singer, L.T.; Lantos, J. Prognostic neurodevelopmental testing of preterm infants: Do we need to change the paradigm? J. Perinatol. 2017, 37, 475–479. [Google Scholar] [CrossRef]
- Reich, S.; Zhang, D.; Kulviciuns, T.; Bölte, S.; Nielsen-Saines, K.; Pokorny, F.B.; Peharz, R.; Poustka, L.; Wörgötter, F.; Einspieler, C.; et al. Novel AI driven approach to classify infant motor functions. Sci. Rep. 2021, 11, 9888. [Google Scholar] [CrossRef]
- Lackovic, M.; Nikolic, D.; Filimonovic, D.; Petronic, I.; Mihajlovic, S.; Golubovic, Z.; Pavicevic, P.; Cirovic, D. Reliability, Consistency and Temporal Stability of Alberta Infant Motor Scale in Serbian Infants. Children 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Kvestad, I.; Taneja, S.; Kumar, T.; Bhandari, N.; Strand, T.A.; Hysing, M. The assessment of developmental status using the Ages and Stages questionnaire-3 in nutritional research in north Indian young children. Nutr. J. 2013, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Malak, R.; Borek, J.; Sikorska, D.; Keczmer, P.; Samborski, W. Assessment of general movement among infants not at risk of developmental delay J. Med. Sci. 2020, 89, e393. [Google Scholar] [CrossRef]
- Tabaczyńska, A.; Malak, R.; Fechner, B.; Mojs, E.; Samborski, W.; Baum, E. The Comparison of Three Assessment Scales in a Neonatal Unit in Poland. Stud. Log. Gramm. Rhetor. 2021, 66, 635–646. [Google Scholar] [CrossRef]
- Osagie, I.E.; Givler, D.N. Infant Head Lag; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- van Haastert, I.C.; de Vries, L.S.; Helders, P.J.M.; Jongmans, M.J. Early gross motor development of preterm infants according to the Alberta Infant Motor Scale. J. Pediatr. 2006, 149, 617–622. [Google Scholar] [CrossRef]
- Tupsila, R.; Bennett, S.; Mato, L.; Keeratisiroj, O.; Siritaratiwat, W. Gross motor development of Thai healthy full-term infants aged from birth to 14 months using the Alberta Infant Motor Scale: Inter individual variability. Early Hum. Dev. 2020, 151, 105169. [Google Scholar] [CrossRef]
- Filho, G.G.D.A.F.; Lopes, A.C.; Bezerra, R.B.; Candido, A.d.M.; Arrais, N.; Pereira, S.A.; Lindquist, A.R. Assessment of child development in premature babies based on the ICF biopsychosocial model. Eur. J. Phys. Rehabil. Med. 2021, 57, 585–592. [Google Scholar] [CrossRef]
- Simard, M.-N.; Luu, T.M.; Gosselin, J. Concurrent Validity of Ages and Stages Questionnaires in Preterm Infants. Pediatrics 2012, 130, e108–e114. [Google Scholar] [CrossRef] [Green Version]
- Mughal, M.K.; Ginn, C.S.; Magill-Evans, J.; Benzies, K.M. Parenting stress and development of late preterm infants at 4 months corrected age. Res. Nurs. Health 2017, 40, 414–423. [Google Scholar] [CrossRef]
- Dogra, D.P.; Majumdar, A.K.; Sural, S.; Mukherjee, J.; Mukherjee, S.; Singh, A. Toward Automating Hammersmith Pulled-To-Sit Examination of Infants Using Feature Point Based Video Object Tracking. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 38–47. [Google Scholar] [CrossRef]
- Schmidt, J.L.; Castellanos-Brown, K.; Childress, S.; Bonhomme, N.; Oktay, J.S.; Sharon, F.T.; Kyler, P.; Davidoff, A.; Greene, C. The impact of false-positive newborn screening results on families: A qualitative study. Genet. Med. 2012, 14, 76–80. [Google Scholar] [CrossRef] [Green Version]
- DeLuca, J.M.; Kearney, M.H.; Norton, S.A.; Arnold, G.L. Internet use by parents of infants with positive newborn screens. J. Inherit. Metab. Dis. 2012, 35, 879–884. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Sheng, X.; Ni, Z. Empowerment programs for parental mental health of preterm infants: A meta-analysis. Patient Educ. Couns. 2021, 104, 1636–1643. [Google Scholar] [CrossRef]
- Armijo, I.; Schonhaut, L.; Cordero, M. Validation of the Chilean version of the Ages and Stages Questionnaire (ASQ-CL) in Community Health Settings. Early Hum. Dev. 2015, 91, 671–676. [Google Scholar] [CrossRef]
- Radecki, L.; Sand-Loud, N.; O’Connor, K.G.; Sharp, S.; Olson, L.M. Trends in the Use of Standardized Tools for Developmental Screening in Early Childhood: 2002–2009. Pediatrics 2011, 128, 14–19. [Google Scholar] [CrossRef]
- Limbos, M.M.; Joyce, D.P. Comparison of the ASQ and PEDS in Screening for Developmental Delay in Children Presenting for Primary Care. J. Dev. Behav. Pediatr. 2011, 32, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Hardy, S.; Haisley, L.; Manning, C.; Fein, D. Can Screening with the Ages and Stages Questionnaire Detect Au-tism? J. Dev. Behav. Pediatr. 2015, 36, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Vanvuchelen, M.; van Schuerbeeck, L.; Braeken, M.A. Screening accuracy of the parent-completed Ages and Stages Questionnaires—Second edition as a broadband screener for motor problems in preschoolers with autism spectrum disorders. Autism 2017, 21, 29–36. [Google Scholar] [CrossRef]
- Limperopoulos, C.; Bassan, H.; Sullivan, N.R.; Soul, J.S.; Robertson, R.L.; Moore, M.; Ringer, S.A.; Volpe, J.J.; du Plessis, A.J. Positive Screening for Autism in Ex-preterm Infants: Prevalence and Risk Factors. Pediatrics 2008, 121, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.; Johnson, S.; Hennessy, E.; Marlow, N. Screening for autism in extremely preterm infants: Problems in interpretation: Autism Screening in Extremely Preterm Infants. Dev. Med. Child Neurol. 2012, 54, 514–520. [Google Scholar] [CrossRef]
- Gray, P.H.; Edwards, D.M.; O’Callaghan, M.J.; Gibbons, K. Screening for autism spectrum disorder in very preterm infants during early childhood. Early Hum. Dev. 2015, 91, 271–276. [Google Scholar] [CrossRef]
Average age of gestation | 29 ± 2 | |
Average birth weight | 1230 g ± 229 | |
Delivery | Natural | 6 |
Cesarian section | 12 | |
Apgar Score | 8 | |
Umbilical cord arterial pH | 7.27 ± 1.82 | |
Domicile | Town | 13 |
Village | 5 | |
Education of mothers | Master’s degree | 9 |
Vocational school education | 4 | |
Secondary general education | 5 | |
Education of fathers | Master’s degree | 6 |
Vocational school education | 8 | |
Secondary general education | 4 |
GMA | Cramped—synchronized | Poor—repertoire | Fidgety |
2 | 8 | 6 | |
ASQ-3 | Refer ranges | Monitor—ranges | Typical ranges |
2 | 3 | 11 | |
Pull to sit (NBAS) | <4 points | 3–6 points | 7–9 points |
3 | 3 | 10 | |
AIMS | 72 ± 19.2 percentile |
p-Value | AIMS | GMA | Pull to Sit Maneuver | Gross Motor (ASQ-3) | Fine Motor (ASQ-3) |
---|---|---|---|---|---|
AIMS | 1 | 1 | 1 | 1 | |
GMA | 1 | 1 | 0.42 | 1 | |
Pull to sit maneuver | 1 | 1 | 1 | 1 | |
Gross motor (ASQ-3) | 1 | 0.42 | 1 | 1 | |
Fine Motor (ASQ-3) | 1 | 1 | 1 | 1 |
ANOVA Cochran’s Q Test | AIMS, GMA, Pull to Sit, ASQ-3 |
---|---|
Significance level | 0.05 |
Number of infants | 16 |
Degrees of freedom | 3 |
Statistics Q | 5.48 |
p value | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malak, R.; Fechner, B.; Stankowska, M.; Wiecheć, K.; Szczapa, T.; Kasperkowicz, J.; Matthews-Kozanecka, M.; Brzozowska, T.M.; Komisarek, O.; Daroszewski, P.; et al. The Importance of Monitoring Neurodevelopmental Outcomes for Preterm Infants: A Comparison of the AIMS, GMA, Pull to Sit Maneuver and ASQ-3. J. Clin. Med. 2022, 11, 6295. https://doi.org/10.3390/jcm11216295
Malak R, Fechner B, Stankowska M, Wiecheć K, Szczapa T, Kasperkowicz J, Matthews-Kozanecka M, Brzozowska TM, Komisarek O, Daroszewski P, et al. The Importance of Monitoring Neurodevelopmental Outcomes for Preterm Infants: A Comparison of the AIMS, GMA, Pull to Sit Maneuver and ASQ-3. Journal of Clinical Medicine. 2022; 11(21):6295. https://doi.org/10.3390/jcm11216295
Chicago/Turabian StyleMalak, Roksana, Brittany Fechner, Marta Stankowska, Katarzyna Wiecheć, Tomasz Szczapa, Joanna Kasperkowicz, Maja Matthews-Kozanecka, Teresa Matthews Brzozowska, Oskar Komisarek, Przemysław Daroszewski, and et al. 2022. "The Importance of Monitoring Neurodevelopmental Outcomes for Preterm Infants: A Comparison of the AIMS, GMA, Pull to Sit Maneuver and ASQ-3" Journal of Clinical Medicine 11, no. 21: 6295. https://doi.org/10.3390/jcm11216295
APA StyleMalak, R., Fechner, B., Stankowska, M., Wiecheć, K., Szczapa, T., Kasperkowicz, J., Matthews-Kozanecka, M., Brzozowska, T. M., Komisarek, O., Daroszewski, P., Samborski, W., & Mojs, E. (2022). The Importance of Monitoring Neurodevelopmental Outcomes for Preterm Infants: A Comparison of the AIMS, GMA, Pull to Sit Maneuver and ASQ-3. Journal of Clinical Medicine, 11(21), 6295. https://doi.org/10.3390/jcm11216295