Unmet Needs in TAVR: Conduction Disturbances and Management of Coronary Artery Disease
Abstract
:1. Introduction
2. Conduction Disturbances
3. New-Onset Persistent Left Bundle Branch Block
3.1. Incidence
3.2. Clinical Impact
3.2.1. High-Degree Atrioventricular Block and Permanent Pacemaker Implantation
3.2.2. Left Ventricular Ejection Fraction (LVEF) and Hospitalization for Heart Failure (HHF)
3.2.3. Mortality
4. Permanent Pacemaker Implantation
4.1. Incidence
4.2. Clinical Impact
4.3. Mortality
5. Unmet Needs
5.1. Pre-Procedural Management
5.2. Procedural Management
5.3. Post-Procedural Management
6. Concomitant Coronary Artery Disease in Patients Undergoing TAVR
6.1. Prevalence and Prognostic Impact
6.2. CAD Definition and Hemodynamics Assessment of the Stenosis
6.3. Heterogeneity in Endpoint Definition
6.4. Optimal Timing of Revascularization
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sorrentino, S.; Giustino, G.; Moalem, K.; Indolfi, C.; Mehran, R.; Dangas, G.D. Antithrombotic Treatment after Transcatheter Heart Valves Implant. Semin. Thromb. Hemost. 2018, 44, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Bourenane, H.; Galand, V.; Boulmier, D.; Leclercq, C.; Leurent, G.; Bedossa, M.; Behar, N.; Pichard, C.; Polin, B.; Tomasi, J.; et al. Electrophysiological Study-Guided Permanent Pacemaker Implantation in Patients With Conduction Disturbances Following Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2021, 149, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Giustino, G.; Sorrentino, S.; Mehran, R.; Faggioni, M.; Dangas, G. Cerebral Embolic Protection During TAVR. J. Am. Coll. Cardiol. 2017, 69, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Guedeney, P.; Tchétché, D.; Petronio, A.S.; Mehilli, J.; Sartori, S.; Lefèvre, T.; Presbitero, P.; Capranzano, P.; Iadanza, A.; Sardella, G.; et al. Impact of coronary artery disease and percutaneous coronary intervention in women undergoing transcatheter aortic valve replacement: From the WIN-TAVI registry. Catheter. Cardiovasc. Interv. 2019, 93, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Guedeney, P.; Sorrentino, S.; Mesnier, J.; De, R.S.; Indolfi, C.; Zeitouni, M.; Kerneis, M.; Silvain, J.; Montalescot, G.; Collet, J.-P. Single Versus Dual Antiplatelet Therapy Following TAVR. JACC Cardiovasc. Interv. 2021, 14, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Auffret, V.; Puri, R.; Urena, M.; Chamandi, C.; Rodriguez-Gabella, T.; Philippon, F.; Rodes-Cabau, J. Conduction Disturbances After Transcatheter Aortic Valve Replacement: Current Status and Future Perspectives. Circulation 2017, 136, 1049–1069. [Google Scholar] [CrossRef] [PubMed]
- Muntané-Carol, G.; Guimaraes, L.; Ferreira-Neto, A.N.; Wintzer-Wehekind, J.; Junquera, L.; Del Val, D.; Faroux, L.; Philippon, F.; Rodés-Cabau, J. How does new-onset left bundle branch block affect the outcomes of transcatheter aortic valve repair? Expert Rev. Med. Devices 2019, 16, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Sammour, Y.; Krishnaswamy, A.; Kumar, A.; Puri, R.; Tarakji, K.G.; Bazarbashi, N.; Harb, S.; Griffin, B.; Svensson, L.; Wazni, O.; et al. Incidence, Predictors, and Implications of Permanent Pacemaker Requirement After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2021, 14, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Rodes-Cabau, J.; Ellenbogen, K.A.; Krahn, A.D.; Latib, A.; Mack, M.; Mittal, S.; Muntane-Carol, G.; Nazif, T.M.; Sondergaard, L.; Urena, M.; et al. Management of Conduction Disturbances Associated With Transcatheter Aortic Valve Replacement: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 74, 1086–1106. [Google Scholar] [CrossRef] [PubMed]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef] [PubMed]
- Rodes-Cabau, J.; Urena, M.; Nombela-Franco, L.; Amat-Santos, I.; Kleiman, N.; Munoz-Garcia, A.; Atienza, F.; Serra, V.; Deyell, M.W.; Veiga-Fernandez, G.; et al. Arrhythmic Burden as Determined by Ambulatory Continuous Cardiac Monitoring in Patients With New-Onset Persistent Left Bundle Branch Block Following Transcatheter Aortic Valve Replacement: The MARE Study. JACC Cardiovasc. Interv. 2018, 11, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- De Torres-Alba, F.; Kaleschke, G.; Diller, G.P.; Vormbrock, J.; Orwat, S.; Radke, R.; Reinke, F.; Fischer, D.; Reinecke, H.; Baumgartner, H. Changes in the Pacemaker Rate After Transition From Edwards SAPIEN XT to SAPIEN 3 Transcatheter Aortic Valve Implantation: The Critical Role of Valve Implantation Height. JACC Cardiovasc Interv 2016, 9, 805–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonska, B.; Seeger, J.; Kessler, M.; von Keil, A.; Rottbauer, W.; Wohrle, J. Predictors for permanent pacemaker implantation in patients undergoing transfemoral aortic valve implantation with the Edwards Sapien 3 valve. Clin. Res. Cardiol. 2017, 106, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Schwerg, M.; Fulde, F.; Dreger, H.; Poller, W.C.; Stangl, K.; Laule, M. Optimized Implantation Height of the Edwards SAPIEN 3 Valve to Minimize Pacemaker Implantation After TAVI. J. Intervent. Cardiol. 2016, 29, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Husser, O.; Pellegrini, C.; Kessler, T.; Burgdorf, C.; Thaller, H.; Mayr, N.P.; Kasel, A.M.; Kastrati, A.; Schunkert, H.; Hengstenberg, C. Predictors of Permanent Pacemaker Implantations and New-Onset Conduction Abnormalities With the SAPIEN 3 Balloon-Expandable Transcatheter Heart Valve. JACC Cardiovasc. Interv. 2016, 9, 244–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, J.; Gerosa, G.; Lefèvre, T.; Leipsic, J.; Spence, M.; Thomas, M.; Thielmann, M.; Treede, H.; Wendler, O.; Walther, T. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J. Am. Coll. Cardiol. 2014, 64, 2235–2243. [Google Scholar] [CrossRef]
- Vahanian, A.; Urena, M.; Walther, T.; Treede, H.; Wendler, O.; Lefèvre, T.; Spence, M.S.; Redwood, S.; Kahlert, P.; Rodes-Cabau, J.; et al. Thirty-day outcomes in patients at intermediate risk for surgery from the SAPIEN 3 European approval trial. EuroInterv. J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2016, 12, e235–e243. [Google Scholar] [CrossRef]
- Finkelstein, A.; Birati, E.Y.; Abramowitz, Y.; Steinvil, A.; Sheinberg, N.; Biner, S.; Bazan, S.; Ben Gal, Y.; Halkin, A.; Arbel, Y.; et al. Transcatheter aortic valve implantation: A single-center experience of 300 cases. Isr. Med. Assoc. J. 2013, 15, 613–616. [Google Scholar]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Zaid, S.; Sengupta, A.; Okoli, K.; Tsoi, M.; Khan, A.; Ahmad, H.; Goldberg, J.B.; Undemir, C.; Rozenshtein, A.; Patel, N.; et al. Novel Anatomic Predictors of New Persistent Left Bundle Branch Block After Evolut Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2020, 125, 1222–1229. [Google Scholar] [CrossRef]
- Rao, G.; Sheth, S.; Donnelly, J.; Scatola, A.; Tariq, U.; Laighold, S.; Grines, C.; Rutkin, B. Early Real-World Experience with CoreValve Evolut PRO and R Systems for Transcatheter Aortic Valve Replacement. J. Intervent. Cardiol. 2019, 2019, 1906814. [Google Scholar] [CrossRef] [PubMed]
- Sticchi, A.; Gallo, F.; Marzo, V.D.; Won-keun, K.; Khokhar, A.A.; Zeus, T.; Toggweiler, S.; Marco, F.D.; Reimers, B.; Nombela-franco, L.; et al. Comparison of incidence and predictors of new left bundle branch block and permanent pacemaker implantation in a large multicentre contemporary TAVI registry using the Evolut R/pro system vs. the accurate neo valve. Eur. Heart J. Suppl. 2021, 23, suab134.044. [Google Scholar] [CrossRef]
- Tamburino, C.; Bleiziffer, S.; Thiele, H.; Scholtz, S.; Hildick-Smith, D.; Cunnington, M.; Wolf, A.; Barbanti, M.; Tchetchè, D.; Garot, P.; et al. Comparison of Self-Expanding Bioprostheses for Transcatheter Aortic Valve Replacement in Patients With Symptomatic Severe Aortic Stenosis. Circulation 2020, 142, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, G.; Linke, A.; Moellmann, H.; Redwood, S.; Frerker, C.; Kovac, J.; Walther, T. Multicentre clinical study evaluating a novel resheathable annular functioning self-expanding transcatheter aortic valve system: Safety and performance results at 30 days with the Portico system. EuroIntervention 2016, 12, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, T.; Manoharan, G.; Linke, A.; Möllmann, H.; Holzhey, D.; Worthley, S.G.; Kim, W.-K.; Schäfer, U. Incidence of new-onset left bundle branch block and predictors of new permanent pacemaker following transcatheter aortic valve replacement with the PorticoTM valve. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2018, 54, 467–474. [Google Scholar] [CrossRef]
- Toggweiler, S.; Nissen, H.; Mogensen, B.; Cuculi, F.; Fallesen, C.; Veien, K.T.; Brinkert, M.; Kobza, R.; Rück, A. Very low pacemaker rate following ACURATE neo transcatheter heart valve implantation. EuroInterv. J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2017, 13, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Brinkert, M.; Wolfrum, M.; Moccetti, F.; Bossard, M.; Berte, B.; Cuculi, F.; Kobza, R.; Toggweiler, S. Relevance of New Conduction Disorders After Implantation of the ACURATE Neo Transcatheter Heart Valve in the Aortic Valve Position. Am. J. Cardiol. 2020, 125, 783–787. [Google Scholar] [CrossRef]
- Regueiro, A.; Abdul-Jawad Altisent, O.; Del Trigo, M.; Campelo-Parada, F.; Puri, R.; Urena, M.; Philippon, F.; Rodes-Cabau, J. Impact of New-Onset Left Bundle Branch Block and Periprocedural Permanent Pacemaker Implantation on Clinical Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Interv. 2016, 9, e003635. [Google Scholar] [CrossRef]
- Ando, T.; Takagi, H. The Prognostic Impact of New-Onset Persistent Left Bundle Branch Block Following Transcatheter Aortic Valve Implantation: A Meta-analysis. Clin. Cardiol. 2016, 39, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Faroux, L.; Chen, S.; Muntané-Carol, G.; Regueiro, A.; Philippon, F.; Sondergaard, L.; Jørgensen, T.H.; Lopez-Aguilera, J.; Kodali, S.; Leon, M.; et al. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: A systematic review and meta-analysis. Eur. Heart J. 2020, 41, 2771–2781. [Google Scholar] [CrossRef]
- Akin, I.; Kische, S.; Paranskaya, L.; Schneider, H.; Rehders, T.C.; Trautwein, U.; Turan, G.; Bansch, D.; Thiele, O.; Divchev, D.; et al. Predictive factors for pacemaker requirement after transcatheter aortic valve implantation. BMC Cardiovasc. Disord. 2012, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Nazif, T.M.; Williams, M.R.; Hahn, R.T.; Kapadia, S.; Babaliaros, V.; Rodes-Cabau, J.; Szeto, W.Y.; Jilaihawi, H.; Fearon, W.F.; Dvir, D.; et al. Clinical implications of new-onset left bundle branch block after transcatheter aortic valve replacement: Analysis of the PARTNER experience. Eur. Heart J. 2014, 35, 1599–1607. [Google Scholar] [CrossRef] [Green Version]
- Urena, M.; Mok, M.; Serra, V.; Dumont, E.; Nombela-Franco, L.; DeLarochellière, R.; Doyle, D.; Igual, A.; Larose, E.; Amat-Santos, I.; et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J. Am. Coll. Cardiol. 2012, 60, 1743–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keßler, M.; Gonska, B.; Seeger, J.; Rottbauer, W.; Wöhrle, J. Long-term clinical outcome of persistent left bundle branch block after transfemoral aortic valve implantation. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2019, 93, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Urena, M.; Webb, J.G.; Cheema, A.; Serra, V.; Toggweiler, S.; Barbanti, M.; Cheung, A.; Ye, J.; Dumont, E.; DeLarochellière, R.; et al. Impact of new-onset persistent left bundle branch block on late clinical outcomes in patients undergoing transcatheter aortic valve implantation with a balloon-expandable valve. JACC Cardiovasc. Interv. 2014, 7, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Carrabba, N.; Valenti, R.; Migliorini, A.; Marrani, M.; Cantini, G.; Parodi, G.; Dovellini, E.V.; Antoniucci, D. Impact on left ventricular function and remodeling and on 1-year outcome in patients with left bundle branch block after transcatheter aortic valve implantation. Am. J. Cardiol. 2015, 116, 125–131. [Google Scholar] [CrossRef]
- Nazif, T.M.; Chen, S.; George, I.; Dizon, J.M.; Hahn, R.T.; Crowley, A.; Alu, M.C.; Babaliaros, V.; Thourani, V.H.; Herrmann, H.C.; et al. New-onset left bundle branch block after transcatheter aortic valve replacement is associated with adverse long-term clinical outcomes in intermediate-risk patients: An analysis from the PARTNER II trial. Eur. Heart J. 2019, 40, 2218–2227. [Google Scholar] [CrossRef] [Green Version]
- Chamandi, C.; Barbanti, M.; Munoz-Garcia, A.; Latib, A.; Nombela-Franco, L.; Gutierrez-Ibanez, E.; Veiga-Fernandez, G.; Cheema, A.N.; Cruz-Gonzalez, I.; Serra, V.; et al. Long-Term Outcomes in Patients With New-Onset Persistent Left Bundle Branch Block Following TAVR. JACC Cardiovasc. Interv. 2019, 12, 1175–1184. [Google Scholar] [CrossRef]
- Urena, M.; Webb, J.G.; Eltchaninoff, H.; Muñoz-García, A.J.; Bouleti, C.; Tamburino, C.; Nombela-Franco, L.; Nietlispach, F.; Moris, C.; Ruel, M.; et al. Late cardiac death in patients undergoing transcatheter aortic valve replacement: Incidence and predictors of advanced heart failure and sudden cardiac death. J. Am. Coll. Cardiol. 2015, 65, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, T.H.; De Backer, O.; Gerds, T.A.; Bieliauskas, G.; Svendsen, J.H.; Søndergaard, L. Immediate Post-Procedural 12-Lead Electrocardiography as Predictor of Late Conduction Defects After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2018, 11, 1509–1518. [Google Scholar] [CrossRef]
- Toggweiler, S.; Stortecky, S.; Holy, E.; Zuk, K.; Cuculi, F.; Nietlispach, F.; Sabti, Z.; Suciu, R.; Maier, W.; Jamshidi, P.; et al. The Electrocardiogram After Transcatheter Aortic Valve Replacement Determines the Risk for Post-Procedural High-Degree AV Block and the Need for Telemetry Monitoring. JACC Cardiovasc. Interv. 2016, 9, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Mangieri, A.; Lanzillo, G.; Bertoldi, L.; Jabbour, R.J.; Regazzoli, D.; Ancona, M.B.; Tanaka, A.; Mitomo, S.; Garducci, S.; Montalto, C.; et al. Predictors of Advanced Conduction Disturbances Requiring a Late (≥48 H) Permanent Pacemaker Following Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2018, 11, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Auffret, V.; Martins, R.P.; Daubert, C.; Leclercq, C.; Le Breton, H.; Mabo, P.; Donal, E. Idiopathic/Iatrogenic Left Bundle Branch Block-Induced Reversible Left Ventricle Dysfunction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Dobson, L.E.; Musa, T.A.; Uddin, A.; Fairbairn, T.A.; Bebb, O.J.; Swoboda, P.P.; Haaf, P.; Foley, J.; Garg, P.; Fent, G.J.; et al. The impact of trans-catheter aortic valve replacement induced left-bundle branch block on cardiac reverse remodeling. J. Cardiovasc. Magn. Reson. 2017, 19, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, T.H.; De Backer, O.; Gerds, T.A.; Bieliauskas, G.; Svendsen, J.H.; Sondergaard, L. Mortality and Heart Failure Hospitalization in Patients With Conduction Abnormalities After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 52–61. [Google Scholar] [CrossRef] [PubMed]
- van Rosendael, P.J.; Delgado, V.; Bax, J.J. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: A systematic review. Eur. Heart J. 2018, 39, 2003–2013. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Makkar, R.R.; Cheng, W.; Waksman, R.; Satler, L.F.; Chakravarty, T.; Groh, M.; Abernethy, W.; Russo, M.J.; Heimansohn, D.; Hermiller, J.; et al. Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): A randomised, controlled, non-inferiority trial. Lancet 2020, 396, 669–683. [Google Scholar] [CrossRef]
- Lanz, J.; Kim, W.-K.; Walther, T.; Burgdorf, C.; Möllmann, H.; Linke, A.; Redwood, S.; Thilo, C.; Hilker, M.; Joner, M.; et al. Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: A randomised non-inferiority trial. Lancet 2019, 394, 1619–1628. [Google Scholar] [CrossRef]
- Urena, M.; Webb, J.G.; Tamburino, C.; Muñoz-García, A.J.; Cheema, A.; Dager, A.E.; Serra, V.; Amat-Santos, I.J.; Barbanti, M.; Immè, S.; et al. Permanent pacemaker implantation after transcatheter aortic valve implantation: Impact on late clinical outcomes and left ventricular function. Circulation 2014, 129, 1233–1243. [Google Scholar] [CrossRef]
- Biner, S.; Michowitz, Y.; Leshem-Rubinow, E.; Topilsky, Y.; Ben-Assa, E.; Shimiaie, J.; Banai, S.; Keren, G.; Steinvil, A.; Finkelstein, A. Hemodynamic impact and outcome of permanent pacemaker implantation following transcatheter aortic valve implantation. Am. J. Cardiol. 2014, 113, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.; Zappulla, P.; Barbanti, M.; Cirasa, A.; Todaro, D.; Rapisarda, G.; Picci, A.; Platania, F.; Tosto, A.; Di Grazia, A.; et al. Pacemaker dependency after transcatheter aortic valve implantation: Incidence, predictors and long-term outcomes. EuroInterv. J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2019, 15, 875–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazif, T.M.; Dizon, J.M.; Hahn, R.T.; Xu, K.; Babaliaros, V.; Douglas, P.S.; El-Chami, M.F.; Herrmann, H.C.; Mack, M.; Makkar, R.R.; et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: The PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC Cardiovasc. Interv. 2015, 8, 60–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharobeem, S.; Boulmier, D.; Leurent, G.; Bedossa, M.; Leclercq, C.; Mabo, P.; Martins, R.P.; Tomasi, J.; Verhoye, J.-P.; Donal, E.; et al. Prognostic impact of permanent pacemaker implantation following transcatheter aortic valve replacement. Heart Rhythm 2022, 19, 1124–1132. [Google Scholar] [CrossRef]
- Alasti, M.; Rashid, H.; Rangasamy, K.; Kotschet, E.; Adam, D.; Alison, J.; Gooley, R.; Zaman, S. Long-term pacemaker dependency and impact of pacing on mortality following transcatheter aortic valve replacement with the LOTUS valve. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2018, 92, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Dumonteil, N.; Meredith, I.T.; Blackman, D.J.; Tchétché, D.; Hildick-Smith, D.; Spence, M.S.; Walters, D.L.; Harnek, J.; Worthley, S.G.; Rioufol, G.; et al. Insights into the need for permanent pacemaker following implantation of the repositionable LOTUS valve for transcatheter aortic valve replacement in 250 patients: Results from the REPRISE II trial with extended cohort. EuroInterv. J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2017, 13, 796–803. [Google Scholar] [CrossRef]
- Meduri, C.U.; Kereiakes, D.J.; Rajagopal, V.; Makkar, R.R.; O’Hair, D.; Linke, A.; Waksman, R.; Babliaros, V.; Stoler, R.C.; Mishkel, G.J.; et al. Pacemaker Implantation and Dependency After Transcatheter Aortic Valve Replacement in the REPRISE III Trial. J. Am. Heart Assoc. 2019, 8, e012594. [Google Scholar] [CrossRef] [PubMed]
- Chamandi, C.; Barbanti, M.; Munoz-Garcia, A.; Latib, A.; Nombela-Franco, L.; Gutierrez-Ibanez, E.; Veiga-Fernandez, G.; Cheema, A.N.; Cruz-Gonzalez, I.; Serra, V.; et al. Long-Term Outcomes in Patients With New Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2018, 11, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Urena, M.; Hayek, S.; Cheema, A.N.; Serra, V.; Amat-Santos, I.J.; Nombela-Franco, L.; Ribeiro, H.B.; Allende, R.; Paradis, J.-M.; Dumont, E.; et al. Arrhythmia burden in elderly patients with severe aortic stenosis as determined by continuous electrocardiographic recording: Toward a better understanding of arrhythmic events after transcatheter aortic valve replacement. Circulation 2015, 131, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Asmarats, L.; Nault, I.; Ferreira-Neto, A.N.; Muntané-Carol, G.; Del Val, D.; Junquera, L.; Paradis, J.-M.; Delarochellière, R.; Mohammadi, S.; Kalavrouziotis, D.; et al. Prolonged Continuous Electrocardiographic Monitoring Prior to Transcatheter Aortic Valve Replacement: The PARE Study. JACC Cardiovasc. Interv. 2020, 13, 1763–1773. [Google Scholar] [CrossRef]
- Winter, J.L.; Healey, J.S.; Sheth, T.N.; Velianou, J.L.; Schwalm, J.-D.; Smith, A.; Reza, S.; Natarajan, M.K. Remote Ambulatory Cardiac Monitoring Before and After Transcatheter Aortic Valve Replacement. CJC Open 2020, 2, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Muntané-Carol, G.; Philippon, F.; Nault, I.; Faroux, L.; Alperi, A.; Mittal, S.; Rodés-Cabau, J. Ambulatory Electrocardiogram Monitoring in Patients Undergoing Transcatheter Aortic Valve Replacement: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 1344–1356. [Google Scholar] [CrossRef] [PubMed]
- Jilaihawi, H.; Zhao, Z.; Du, R.; Staniloae, C.; Saric, M.; Neuburger, P.J.; Querijero, M.; Vainrib, A.; Hisamoto, K.; Ibrahim, H.; et al. Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 1796–1807. [Google Scholar] [CrossRef]
- Sammour, Y.; Banerjee, K.; Kumar, A.; Lak, H.; Chawla, S.; Incognito, C.; Patel, J.; Kaur, M.; Abdelfattah, O.; Svensson, L.G.; et al. Systematic Approach to High Implantation of SAPIEN-3 Valve Achieves a Lower Rate of Conduction Abnormalities Including Pacemaker Implantation. Circ. Cardiovasc. Interv. 2021, 14, e009407. [Google Scholar] [CrossRef]
- Pascual, I.; Almendárez, M.; Avanzas, P.; Álvarez, R.; Arboine, L.A.; Del Valle, R.; Hernández-Vaquero, D.; Alfonso, F.; Morís, C. Cusp-overlapping TAVI technique with a self-expanding device optimizes implantation depth and reduces permanent pacemaker requirement. Rev. Espanola Cardiol. Engl. Ed. 2021, 75, 412–420. [Google Scholar] [CrossRef]
- Pascual, I.; Hernández-Vaquero, D.; Alperi, A.; Almendarez, M.; Avanzas, P.; Kalavrouziotis, D.; Lorca, R.; Mesnier, J.; Arboine, L.; Mohammadi, S.; et al. Permanent Pacemaker Reduction Using Cusp-Overlapping Projection in TAVR: A Propensity Score Analysis. JACC Cardiovasc. Interv. 2022, 15, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswamy, A.; Sammour, Y.; Mangieri, A.; Kadri, A.; Karrthik, A.; Banerjee, K.; Kaur, M.; Giannini, F.; Pagliaro, B.; Ancona, M.; et al. The Utility of Rapid Atrial Pacing Immediately Post-TAVR to Predict the Need for Pacemaker Implantation. JACC Cardiovasc. Interv. 2020, 13, 1046–1054. [Google Scholar] [CrossRef]
- Faurie, B.; Souteyrand, G.; Staat, P.; Godin, M.; Caussin, C.; Van Belle, E.; Mangin, L.; Meyer, P.; Dumonteil, N.; Abdellaoui, M.; et al. Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 2449–2459. [Google Scholar] [CrossRef] [PubMed]
- Lilly, S.M.; Deshmukh, A.J.; Epstein, A.E.; Ricciardi, M.J.; Shreenivas, S.; Velagapudi, P.; Wyman, J.F. 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2020, 76, 2391–2411. [Google Scholar] [CrossRef]
- Ream, K.; Sandhu, A.; Valle, J.; Weber, R.; Kaizer, A.; Wiktor, D.M.; Borne, R.T.; Tumolo, A.Z.; Kunkel, M.; Zipse, M.M.; et al. Ambulatory Rhythm Monitoring to Detect Late High-Grade Atrioventricular Block Following Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 73, 2538–2547. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Padmanabhan, D.; McLeod, C.J.; Zhang, P.; Xiao, P.; Sandhu, G.S.; Greason, K.L.; Gulati, R.; Nkomo, V.T.; Rihal, C.S.; et al. Utility of 30-Day Continuous Ambulatory Monitoring to Identify Patients With Delayed Occurrence of Atrioventricular Block After Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2019, 12, e007635. [Google Scholar] [CrossRef] [PubMed]
- Muntané-Carol, G.; Okoh, A.K.; Chen, C.; Nault, I.; Kassotis, J.; Mohammadi, S.; Coromilas, J.; Lee, L.Y.; Alperi, A.; Philippon, F.; et al. Ambulatory Electrocardiographic Monitoring Following Minimalist Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2021, 14, 2711–2722. [Google Scholar] [CrossRef] [PubMed]
- Reiter, C.; Lambert, T.; Kellermair, J.; Blessberger, H.; Fellner, A.; Nahler, A.; Grund, M.; Steinwender, C. Delayed Total Atrioventricular Block After Transcatheter Aortic Valve Replacement Assessed by Implantable Loop Recorders. JACC Cardiovasc. Interv. 2021, 14, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Tovia-Brodie, O.; Michowitz, Y.; Belhassen, B. Use of Electrophysiological Studies in Transcatheter Aortic Valve Implantation. Arrhythmia Electrophysiol. Rev. 2020, 9, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Faroux, L.; Guimaraes, L.; Wintzer-Wehekind, J.; Junquera, L.; Ferreira-Neto, A.N.; del Val, D.; Muntané-Carol, G.; Mohammadi, S.; Paradis, J.-M.; Rodés-Cabau, J. Coronary Artery Disease and Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 74, 362–372. [Google Scholar] [CrossRef]
- D’ascenzo, F.; Verardi, R.; Visconti, M.; Conrotto, F.; Scacciatella, P.; Dziewierz, A.; Stefanini, G.; Paradis, J.-M.; Omedè, P.; Kodali, S.; et al. Independent Impact of Extent of Coronary Artery Disease and Percutaneous Revascularisation on 30-day and One-Year Mortality after TAVI: A Meta-Analysis of Adjusted Observational Results. Available online: https://eurointervention.pcronline.com/article/independent-impact-of-extent-of-coronary-artery-disease-and-percutaneous-revascularisation-on-30-day-and-one-year-mortality-after-tavi-a-meta-analysis-of-adjusted-observational-results (accessed on 17 September 2022).
- Sankaramangalam, K.; Banerjee, K.; Kandregula, K.; Mohananey, D.; Parashar, A.; Jones, B.M.; Jobanputra, Y.; Mick, S.; Krishnaswamy, A.; Svensson, L.G.; et al. Impact of Coronary Artery Disease on 30-Day and 1-Year Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement: A Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e006092. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Y.; Götberg, M.; Cook, C.; Howard, J.P.; Malik, I.; Mikhail, G.; Frame, A.; Petraco, R.; Rajkumar, C.; Demir, O.; et al. Coronary Hemodynamics in Patients With Severe Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement: Implications for Clinical Indices of Coronary Stenosis Severity. JACC Cardiovasc. Interv. 2018, 11, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, M.; Scarsini, R.; Venturi, G.; Pesarini, G.; Pighi, M.; Gratta, A.; Gottin, L.; Barbierato, M.; Caprioglio, F.; Piccoli, A.; et al. Physiological Versus Angiographic Guidance for Myocardial Revascularization in Patients Undergoing Transcatheter Aortic Valve Implantation. J. Am. Heart Assoc. 2019, 8, e012618. [Google Scholar] [CrossRef]
- Vendrik, J.; Ahmad, Y.; Eftekhari, A.; Howard, J.P.; Wijntjens, G.W.M.; Stegehuis, V.E.; Cook, C.; Terkelsen, C.J.; Christiansen, E.H.; Koch, K.T.; et al. Long-Term Effects of Transcatheter Aortic Valve Implantation on Coronary Hemodynamics in Patients With Concomitant Coronary Artery Disease and Severe Aortic Stenosis. J. Am. Heart Assoc. 2020, 9, e015133. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, F.; Shishido, K.; Ochiai, T.; Moriyama, N.; Yamazaki, K.; Sugitani, A.; Tani, T.; Tobita, K.; Mizuno, S.; Tanaka, Y.; et al. Instantaneous Wave-Free Ratio for the Assessment of Intermediate Coronary Artery Stenosis in Patients With Severe Aortic Valve Stenosis: Comparison With Myocardial Perfusion Scintigraphy. JACC Cardiovasc. Interv. 2018, 11, 2032–2040. [Google Scholar] [CrossRef]
- Scarsini, R.; Cantone, R.; Venturi, G.; De Maria, G.L.; Variola, A.; Braggio, P.; Lunardi, M.; Pesarini, G.; Ferdeghini, M.; Piccoli, A.; et al. Correlation between intracoronary physiology and myocardial perfusion imaging in patients with severe aortic stenosis. Int. J. Cardiol. 2019, 292, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Minten, L.; Wissels, P.; McCutcheon, K.; Bennett, J.; Adriaenssens, T.; Desmet, W.; Sinnaeve, P.; Verbrugghe, P.; Jacobs, S.; Guler, I.; et al. The Effect of Coronary Lesion Complexity and Preprocedural Revascularization on 5-Year Outcomes After TAVR. JACC Cardiovasc. Interv. 2022, 15, 1611–1620. [Google Scholar] [CrossRef]
- Patterson, T.; Clayton, T.; Dodd, M.; Khawaja, Z.; Morice, M.C.; Wilson, K.; Kim, W.-K.; Meneveau, N.; Hambrecht, R.; Byrne, J.; et al. ACTIVATION (PercutAneous Coronary inTervention prIor to transcatheter aortic VAlve implantaTION): A Randomized Clinical Trial. JACC Cardiovasc. Interv. 2021, 14, 1965–1974. [Google Scholar] [CrossRef]
- Lateef, N.; Khan, M.S.; Deo, S.V.; Yamani, N.; Riaz, H.; Virk, H.U.H.; Khan, S.U.; Hedrick, D.P.; Kanaan, A.; Reed, G.W.; et al. Meta-Analysis Comparing Outcomes in Patients Undergoing Transcatheter Aortic Valve Implantation With Versus Without Percutaneous Coronary Intervention. Am. J. Cardiol. 2019, 124, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Lantelme, P.; Bisson, A.; Lacour, T.; Herbert, J.; Ivanes, F.; Bourguignon, T.; Angoulvant, D.; Harbaoui, B.; Bonnet, M.; Babuty, D.; et al. Timing of Coronary Revascularization and Transcatheter Aortic Valve Replacement: An Observational Nationwide Cohort Analysis. JACC Cardiovasc. Interv. 2021, 14, 484–486. [Google Scholar] [CrossRef] [PubMed]
- van Rosendael, P.J.; van der Kley, F.; Kamperidis, V.; Katsanos, S.; Al Amri, I.; Regeer, M.; Schalij, M.J.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Timing of staged percutaneous coronary intervention before transcatheter aortic valve implantation. Am. J. Cardiol. 2015, 115, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Venturi, G.; Pighi, M.; Pesarini, G.; Ferrero, V.; Lunardi, M.; Castaldi, G.; Setti, M.; Benini, A.; Scarsini, R.; Ribichini, F.L. Contrast-Induced Acute Kidney Injury in Patients Undergoing TAVI Compared With Coronary Interventions. J. Am. Heart Assoc. 2020, 9, e017194. [Google Scholar] [CrossRef] [PubMed]
- Yudi, M.B.; Sharma, S.K.; Tang, G.H.L.; Kini, A. Coronary Angiography and Percutaneous Coronary Intervention After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 71, 1360–1378. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.H.L.; Zaid, S.; Fuchs, A.; Yamabe, T.; Yazdchi, F.; Gupta, E.; Ahmad, H.; Kofoed, K.F.; Goldberg, J.B.; Undemir, C.; et al. Alignment of Transcatheter Aortic-Valve Neo-Commissures (ALIGN TAVR): Impact on Final Valve Orientation and Coronary Artery Overlap. JACC Cardiovasc. Interv. 2020, 13, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Chakravarty, T.; Yoon, S.-H.; Kaewkes, D.; Flint, N.; Patel, V.; Mahani, S.; Tiwana, R.; Sekhon, N.; Nakamura, M.; et al. Coronary Access After TAVR. JACC Cardiovasc. Interv. 2020, 13, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Costa, G.; Picci, A.; Criscione, E.; Reddavid, C.; Valvo, R.; Todaro, D.; Deste, W.; Condorelli, A.; Scalia, M.; et al. Coronary Cannulation After Transcatheter Aortic Valve Replacement: The RE-ACCESS Study. JACC Cardiovasc. Interv. 2020, 13, 2542–2555. [Google Scholar] [CrossRef] [PubMed]
NCT Number | Study Name | Planned Number of Patients | Target Population | Design and Timing | Intervention | Main Outcomes |
---|---|---|---|---|---|---|
NCT03810820 | Remote ECG Monitoring of TAVI Patients | 240 | Consecutive candidates to outpatient TAVR | Observational, prospective, pre and post-procedure | Mobile cardiac telemetry (m-CARDS) before and after TAVR | Feasibility/patients’ adherence. Timeliness of medical assessment. Any new conduction disturbances up to 30 days. |
NCT04139616 | PROMOTE | 2000 | All TAVR recipients without prior pacemaker | Observational, prospective, post-procedure | Application of a pre-specified algorithm for the management of conduction disturbances post-TAVR | Implementation of the algorithm. Incidence of PPI and sudden cardiac death up to 1 year |
NCT02659137 | HESITATE | 100 | All TAVR recipients without pre-existent conduction disturbances | Observational, prospective, per and post-procedure | EPS during the procedure | Measurement of the HV interval upon occurrence of a LBBB. Location of the LBBB |
NCT04454177 | SMART TAVR | 100 | All TAVR patients | Observational, prospective, post-procedure | Huawei smart watch | Composite of death and rehospitalization, rates of conduction disturbances and PPI at 30 days |
NCT04489095 | Conduction Disease After Transcatheter Aortic Valve Replacement | 200 | All TAVR recipients without prior pacemaker | Prospective, observational, per and post-procedure | EPS immediately before and after TAVR and the next day | Correlation between delta values of EPS findings and high-grade conduction disturbances at 1 year |
NCT02482844 | LBBB-TAVI | 200 | TAVR recipients with new-onset LBBB | Observational, prospective, post-procedure | EPS with PPI if HV interval >70 ms and implantable cardiac monitoring if <70 ms. | Incidence of HAVB at 1 year |
NCT04128384 | HOM TAVI | 200 | All TAVR recipients without prior pacemaker | Observational, prospective, per and post-procedure | Limited EPS including HV- and AH-intervals measurements pre- and post-TAVR | Incidence of HAVB and persistence of new-onset LBBB at 2 years |
NCT03303612 | COME TAVI | 200 | TAVR recipients with new-onset LBBB | Randomized, prospective, post-procedure | Group 1: EPS-based strategy Group 2: Clinical follow-up with implantable cardiac monitoring. | Incidence of the composite of cardiovascular hospitalization, syncope or death at 1 year. Incidence of HAVB at 1 year. Cost-effectiveness. |
NCT02768064 | PAMIT | 120 | All TAVR recipients without prior pacemaker | Randomized, prospective, per and post-procedure | Experimental: Flexible screwed temporary pacemaker Active Comparator: Stiff standard temporary pacemaker | Incidence of pericardial effusion, electrode dislocation, and other temporary pacing complications at 1 week |
NCT04482816 | PHYS-TAVI | 24 | TAVR recipients with HAVB pacing indication after TAVR and LVEF > 50% | Randomized, prospective, post-procedure | Experimental: Physiological (His system) pacing Active Comparator: Right ventricular pacing | Composite of survival, NYHA improvement and >25% increase in the 6MWT at 1 year. LVEF at 1 year. |
ESC Guidelines | AHA Guidelines | |
---|---|---|
Diagnosis | Coronary angiography is recommended before TAVR; coronary CTA may be considered in patients with low risk for CAD, or in patients in whom conventional ICA is technically not feasible or associated with increased risk. | Contrast-enhanced CTA (in patients with a low pretest probability for CAD) or an invasive coronary angiogram is recommended (Class 1) |
Treatment | PCI should be considered in patients undergoing TAVR and coronary artery diameter stenosis > 70% in proximal segments (Class IIa, Level C). | Revascularization by PCI before TAVR is reasonable in patients with significant left main or proximal CAD with or without angina (Class 2a). |
Patients with severe symptomatic aortic stenosis and diffuse CAD unsuitable for revascularization should receive optimal medical therapy and undergo SAVR or TAVR according to individual characteristics. | In patients with significant CAD (luminal reduction > 70% diameter, FFR < 0.8, iFR < 0.89) consisting of complex bifurcation left main and/or multivessel CAD with a SYNTAX score > 33, SAVR and CABG are reasonable and preferred over TAVR and PCI (Class 2a). | |
Percutaneous coronary intervention (PCI) and TAVR may be undertaken as combined or staged procedures according to the clinical situation, pattern of CAD, and extent of myocardium at risk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auffret, V.; Ridard, C.; Salerno, N.; Sorrentino, S. Unmet Needs in TAVR: Conduction Disturbances and Management of Coronary Artery Disease. J. Clin. Med. 2022, 11, 6256. https://doi.org/10.3390/jcm11216256
Auffret V, Ridard C, Salerno N, Sorrentino S. Unmet Needs in TAVR: Conduction Disturbances and Management of Coronary Artery Disease. Journal of Clinical Medicine. 2022; 11(21):6256. https://doi.org/10.3390/jcm11216256
Chicago/Turabian StyleAuffret, Vincent, Carine Ridard, Nadia Salerno, and Sabato Sorrentino. 2022. "Unmet Needs in TAVR: Conduction Disturbances and Management of Coronary Artery Disease" Journal of Clinical Medicine 11, no. 21: 6256. https://doi.org/10.3390/jcm11216256