Evaluation of Factors Associated with Adverse Drug Events in South Korea Using a Population-Based Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Subjects
2.3. Identification of Potential ADEs
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laatikainen, O.; Miettunen, J.; Sneck, S.; Lehtiniemi, H.; Tenhunen, O.; Turpeinen, M. The prevalence of medication-related adverse events in inpatients—A systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2017, 73, 1539–1549. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-G.; Lee, J.-Y.; Woo, S.-I.; Kim, K.-S.; Jung, J.-W.; Lim, T.H.; Yoon, H.J.; Kim, C.W.; Yoon, H.-R.; Park, H.-K. Adverse drug events leading to emergency department visits: A multicenter observational study in Korea. PLoS ONE 2022, 17, e0272743. [Google Scholar] [CrossRef]
- Gyllensten, H.; Hakkarainen, K.M.; Hägg, S.; Carlsten, A.; Petzold, M.; Rehnberg, C.; Jönsson, A.K. Economic impact of adverse drug events–a retrospective population-based cohort study of 4970 adults. PLoS ONE 2014, 9, e92061. [Google Scholar] [CrossRef]
- Bouvy, J.C.; De Bruin, M.L.; Koopmanschap, M.A. Epidemiology of adverse drug reactions in Europe: A review of recent observational studies. Drug Saf. 2015, 38, 437–453. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.W.; Cullen, D.J.; Laird, N.; Petersen, L.A.; Small, S.D.; Servi, D.; Laffel, G.; Sweitzer, B.J.; Shea, B.F.; Hallisey, R. Incidence of adverse drug events and potential adverse drug events: Implications for prevention. JAMA 1995, 274, 29–34. [Google Scholar] [CrossRef]
- Bates, D.W.; Spell, N.; Cullen, D.J.; Burdick, E.; Laird, N.; Petersen, L.A.; Small, S.D.; Sweitzer, B.J.; Leape, L.L. The costs of adverse drug events in hospitalized patients. JAMA 1997, 277, 307–311. [Google Scholar] [CrossRef]
- Classen, D.C.; Pestotnik, S.L.; Evans, R.S.; Lloyd, J.F.; Burke, J.P. Adverse drug events in hospitalized patients: Excess length of stay, extra costs, and attributable mortality. JAMA 1997, 277, 301–306. [Google Scholar] [CrossRef]
- Leendertse, A.J.; Visser, D.; Egberts, A.C.; van den Bemt, P.M. The relationship between study characteristics and the prevalence of medication-related hospitalizations. Drug Saf. 2010, 33, 233–244. [Google Scholar] [CrossRef]
- Formica, D.; Sultana, J.; Cutroneo, P.; Lucchesi, S.; Angelica, R.; Crisafulli, S.; Ingrasciotta, Y.; Salvo, F.; Spina, E.; Trifirò, G. The economic burden of preventable adverse drug reactions: A systematic review of observational studies. Expert Opin. Drug Saf. 2018, 17, 681–695. [Google Scholar] [CrossRef]
- Passarelli, M.C.G.; Jacob-Filho, W.; Figueras, A. Adverse drug reactions in an elderly hospitalised population. Drugs Aging 2005, 22, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.N.; Wong, I.C.; Cranswick, N.; Tomlin, S.; Rascher, W.; Neubert, A. Risk factors associated with adverse drug reactions in hospitalised children: International multicentre study. Eur. J. Clin. Pharmacol. 2012, 68, 801–810. [Google Scholar] [CrossRef]
- Zhou, L.; Rupa, A.P. Categorization and association analysis of risk factors for adverse drug events. Eur. J. Clin. Pharmacol. 2018, 74, 389–404. [Google Scholar] [CrossRef]
- Onder, G.; Pedone, C.; Landi, F.; Cesari, M.; Della Vedova, C.; Bernabei, R.; Gambassi, G. Adverse drug reactions as cause of hospital admissions: Results from the Italian Group of Pharmacoepidemiology in the Elderly (GIFA). J. Am. Geriatr. Soc. 2002, 50, 1962–1968. [Google Scholar] [CrossRef]
- Sánchez Muñoz-Torrero, J.F.; Barquilla, P.; Velasco, R.; Fernández Capitan, M.d.C.; Pacheco, N.; Vicente, L.; Chicón, J.L.; Trejo, S.; Zamorano, J.; Lorenzo Hernandez, A. Adverse drug reactions in internal medicine units and associated risk factors. Eur. J. Clin. Pharmacol. 2010, 66, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Minkowitz, H.S.; Gruschkus, S.K.; Shah, M.; Raju, A. Adverse drug events among patients receiving postsurgical opioids in a large health system: Risk factors and outcomes. Am. J. Health Syst. Pharm. 2014, 71, 1556–1565. [Google Scholar] [CrossRef]
- Field, T.S.; Gurwitz, J.H.; Harrold, L.R.; Rothschild, J.; DeBellis, K.R.; Seger, A.C.; Auger, J.C.; Garber, L.A.; Cadoret, C.; Fish, L.S. Risk factors for adverse drug events among older adults in the ambulatory setting. J. Am. Geriatr. Soc. 2004, 52, 1349–1354. [Google Scholar] [CrossRef]
- Yi, J.H.; Cho, Y.-J.; Kim, W.-J.; Lee, M.G.; Lee, J.H. Genetic variations of ABCC2 gene associated with adverse drug reactions to valproic acid in Korean epileptic patients. Genom. Inform. 2013, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Jee, Y.-K.; Lee, J.-H.; Lee, B.-H.; Kim, Y.-S.; Park, J.-S.; Kim, S.-H. ABCC2 haplotype is associated with antituberculosis drug-induced maculopapular eruption. Allergy Asthma Immunol. Res. 2012, 4, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.Y.; Lee, E.; Jung, H.-W.; Jang, I.-Y. Geriatrics fact sheet in Korea 2021. Ann. Geriatr. Med. Res. 2021, 25, 65. [Google Scholar] [CrossRef]
- Park, J.; Yi, E.; Yi, J. The Provision and Utilization of Traditional Korean Medicine in South Korea: Implications on Integration of Traditional Medicine in a Developed Country. Proc. Healthc. 2021, 9, 1379. [Google Scholar] [CrossRef]
- Kim, L.; Kim, J.-A.; Kim, S. A guide for the utilization of health insurance review and assessment service national patient samples. Epidemiol. Health 2014, 36, e2014008. [Google Scholar] [CrossRef] [Green Version]
- Kim, L.; Sakong, J.; Kim, Y.; Kim, S.; Kim, S.; Tchoe, B.; Jeong, H.; Lee, T. Developing the inpatient sample for the National Health Insurance claims data. Health Policy Manag. 2013, 23, 152–161. [Google Scholar] [CrossRef]
- Song, Y.J. The South Korean health care system. JMAJ 2009, 52, 206–209. [Google Scholar]
- Kim, J.-A.; Yoon, S.; Kim, L.-Y.; Kim, D.-S. Towards actualizing the value potential of Korea Health Insurance Review and Assessment (HIRA) data as a resource for health research: Strengths, limitations, applications, and strategies for optimal use of HIRA data. J. Korean Med. Sci. 2017, 32, 718–728. [Google Scholar] [CrossRef]
- Nebeker, J.R.; Barach, P.; Samore, M.H. Clarifying adverse drug events: A clinician’s guide to terminology, documentation, and reporting. Ann. Intern. Med. 2004, 140, 795–801. [Google Scholar] [CrossRef]
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- Hohl, C.M.; Karpov, A.; Reddekopp, L.; Stausberg, J. ICD-10 codes used to identify adverse drug events in administrative data: A systematic review. J. Am. Med. Inform. Assoc. 2014, 21, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Bourgeois, F.T.; Shannon, M.W.; Valim, C.; Mandl, K.D. Adverse drug events in the outpatient setting: An 11-year national analysis. Pharmacoepidemiol. Drug Saf. 2010, 19, 901–910. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Holman, C.D.A.J.; Price, S.D.; Sanfilippo, F.M.; Preen, D.B.; Bulsara, M.K. Comorbidity and repeat admission to hospital for adverse drug reactions in older adults: Retrospective cohort study. BMJ 2009, 338, a2752. [Google Scholar] [CrossRef]
- Stausberg, J.; Hasford, J. Identification of adverse drug events: The use of ICD-10 coded diagnoses in routine hospital data. Dtsch. Arztebl. Int. 2010, 107, 23. [Google Scholar]
- Friedman, B.W.; Cisewski, D.H.; Holden, L.; Bijur, P.E.; Gallagher, E.J. Age but not sex is associated with efficacy and adverse events following administration of intravenous migraine medication: An analysis of a clinical trial database. Headache J. Head Face Pain 2015, 55, 1342–1355. [Google Scholar] [CrossRef]
- Lee, J.S.; Yang, J.; Stockl, K.M.; Lew, H.; Solow, B.K. Evaluation of eligibility criteria used to identify patients for medication therapy management services: A retrospective cohort study in a Medicare Advantage Part D population. J. Manag. Care Spec. Pharm. 2016, 22, 22–30. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, Y.; Liang, L.; Lian, Z.; Liu, J.; Luo, X.; Chen, W.; Li, X.; Liang, C.; Zhang, S. The incidence, classification, and management of acute adverse reactions to the low-osmolar iodinated contrast media Isovue and Ultravist in contrast-enhanced computed tomography scanning. Medicine 2016, 95, e3170. [Google Scholar] [CrossRef]
- Zopf, Y.; Rabe, C.; Neubert, A.; Gassmann, K.; Rascher, W.; Hahn, E.; Brune, K.; Dormann, H. Women encounter ADRs more often than do men. Eur. J. Clin. Pharmacol. 2008, 64, 999–1004. [Google Scholar] [CrossRef]
- Tanaka, E. Gender-related differences in pharmacokinetics and their clinical significance. J. Clin. Pharm. Ther. 1999, 24, 339–346. [Google Scholar] [CrossRef]
- Kashuba, A.D.; Nafziger, A.N. Physiological changes during the menstrual cycle and their effects on the pharmacokinetics and pharmacodynamics of drugs. Clin. Pharmacokinet. 1998, 34, 203–218. [Google Scholar] [CrossRef]
- Schwartz, J.B. The influence of sex on pharmacokinetics. Clin. Pharmacokinet. 2003, 42, 107–121. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Shiozawa, T.; Tadokoro, J.-i.; Fujiki, T.; Fujino, K.; Kakihata, K.; Masatani, S.; Morita, S.; Gemma, A.; Boku, N. Risk factors for severe adverse effects and treatment-related deaths in Japanese patients treated with irinotecan-based chemotherapy: A postmarketing survey. Jpn. J. Clin. Oncol. 2013, 43, 483–491. [Google Scholar] [CrossRef]
- Pedrós, C.; Quintana, B.; Rebolledo, M.; Porta, N.; Vallano, A.; Arnau, J.M. Prevalence, risk factors and main features of adverse drug reactions leading to hospital admission. Eur. J. Clin. Pharmacol. 2014, 70, 361–367. [Google Scholar] [CrossRef]
- Morimoto, T.; Gandhi, T.K.; Fiskio, J.M.; Seger, A.C.; So, J.W.; Cook, E.F.; Fukui, T.; Bates, D.W. An evaluation of risk factors for adverse drug events associated with angiotensin-converting enzyme inhibitors. J. Eval. Clin. Pract. 2004, 10, 499–509. [Google Scholar] [CrossRef]
- Corsonello, A.; Pedone, C.; Incalzi, R.A. Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr. Med. Chem. 2010, 17, 571–584. [Google Scholar] [CrossRef]
- Carbonin, P.; Bernabei, R.; Sgadari, A. Is age an independent risk factor of adverse drug reactions in hospitalized medical patients? J. Am. Geriatr. Soc. 1991, 39, 1093–1099. [Google Scholar] [CrossRef]
- Van den Bemt, P.; Egberts, A.; Lenderink, A.; Verzijl, J.; Simons, K.; Van der Pol, W.; Leufkens, H. Risk factors for the development of adverse drug events in hospitalized patients. Pharm. World Sci. 2000, 22, 62–66. [Google Scholar] [CrossRef]
- Kim, H.-A.; Shin, J.-Y.; Kim, M.-H.; Park, B.-J. Prevalence and predictors of polypharmacy among Korean elderly. PLoS ONE 2014, 9, e98043. [Google Scholar] [CrossRef]
- Suh, H.S.; Kang, H.-Y.; Kim, J.; Shin, E. Effect of health insurance type on health care utilization in patients with hypertension: A national health insurance database study in Korea. BMC Health Serv. Res. 2014, 14, 570. [Google Scholar] [CrossRef] [Green Version]
- Clague, F.; Mercer, S.W.; McLean, G.; Reynish, E.; Guthrie, B. Comorbidity and polypharmacy in people with dementia: Insights from a large, population-based cross-sectional analysis of primary care data. Age Ageing 2017, 46, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.F.; Alves, C.; Craveiro, N.; Marques, F.B. Multiple drug exposure as a risk factor for the seriousness of adverse drug reactions. J. Nurs. Manag. 2011, 19, 395–399. [Google Scholar] [CrossRef]
- Steinman, M.A.; Seth Landefeld, C.; Rosenthal, G.E.; Berthenthal, D.; Sen, S.; Kaboli, P.J. Polypharmacy and prescribing quality in older people. J. Am. Geriatr. Soc. 2006, 54, 1516–1523. [Google Scholar] [CrossRef]
- Wahlang, J.B.; Laishram, P.D.; Brahma, D.K.; Sarkar, C.; Lahon, J.; Nongkynrih, B.S. Adverse drug reactions due to cancer chemotherapy in a tertiary care teaching hospital. Ther. Adv. Drug Saf. 2017, 8, 61–66. [Google Scholar] [CrossRef]
- Van Leeuwen, R.; Brundel, D.; Neef, C.; van Gelder, T.; Mathijssen, R.; Burger, D.; Jansman, F. Prevalence of potential drug–drug interactions in cancer patients treated with oral anticancer drugs. Br. J. Cancer 2013, 108, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Franz, C.C.; Egger, S.; Born, C.; Rätz Bravo, A.E.; Krähenbühl, S. Potential drug-drug interactions and adverse drug reactions in patients with liver cirrhosis. Eur. J. Clin. Pharmacol. 2012, 68, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, T.; Gandhi, T.K.; Seger, A.C.; Hsieh, T.C.; Bates, D.W. Adverse drug events and medication errors: Detection and classification methods. Qual. Saf. Health Care 2004, 13, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Kuklik, N.; Stausberg, J.; Jockel, K.H. Adverse drug events in German hospital routine data: A validation of International Classification of Diseases, 10th revision (ICD-10) diagnostic codes. PLoS ONE 2017, 12, e0187510. [Google Scholar] [CrossRef] [Green Version]
- Miguel, A.; Azevedo, L.F.; Lopes, F.; Freitas, A.; Pereira, A.C. Methodologies for the detection of adverse drug reactions: Comparison of hospital databases, chart review and spontaneous reporting. Pharmacoepidemiol. Drug Saf. 2013, 22, 98–102. [Google Scholar] [CrossRef]
- Hohl, C.M.; Kuramoto, L.; Yu, E.; Rogula, B.; Stausberg, J.; Sobolev, B. Evaluating adverse drug event reporting in administrative data from emergency departments: A validation study. BMC Health Serv. Res. 2013, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ock, M.; Kim, H.J.; Jeon, B.; Kim, Y.-J.; Ryu, H.M.; Lee, M.-S. Identifying adverse events using international classification of diseases, tenth revision Y codes in Korea: A cross-sectional study. J. Prev. Med. Public Health 2018, 51, 15. [Google Scholar] [CrossRef]
Patients with Potential ADE (n = 15,713) | Patients without Potential ADE (n = 1,289,319) | p-Value a | |||
---|---|---|---|---|---|
Age, mean (SD) | 44.70 | (22.76) | 40.23 | (21.69) | <0.01 |
Sex, No. (%) | |||||
Male | 7016 | (44.65) | 615,037 | (47.70) | <0.01 |
Female | 8697 | (55.35) | 674,282 | (52.30) | |
Insurance type, No. (%) | |||||
NHI program | 14,865 | (94.60) | 1,252,005 | (97.11) | <0.01 |
MA program | 848 | (5.40) | 37,314 | (2.89) | |
Charlson Comorbidity Index score, mean (SD) | 0.81 | (1.45) | 0.39 | (1.22) | <0.01 |
Comorbidities, No. (%) | |||||
Myocardial infarction | 138 | (0.88) | 5415 | (0.42) | <0.01 |
Congestive heart failure | 487 | (3.10) | 18,846 | (1.46) | <0.01 |
Peripheral vascular disease | 1132 | (7.20) | 51,523 | (4.00) | <0.01 |
Cerebrovascular disease | 935 | (5.95) | 41,498 | (3.22) | <0.01 |
Dementia | 485 | (3.09) | 19,668 | (1.53) | <0.01 |
Chronic pulmonary disease | 3390 | (21.57) | 179,227 | (13.90) | <0.01 |
Connective tissue/rheumatic disease | 486 | (3.09) | 16,548 | (1.28) | <0.01 |
Peptic ulcer disease | 2316 | (14.74) | 95,949 | (7.44) | <0.01 |
Liver disease, mild | 2306 | (14.68) | 91,797 | (7.12) | <0.01 |
Liver disease, moderate to severe | 54 | (0.34) | 1337 | (0.10) | <0.01 |
Diabetes without complications | 2114 | (13.45) | 96,600 | (7.49) | <0.01 |
Diabetes with complications | 767 | (4.88) | 32,647 | (2.53) | <0.01 |
Hemiplegia or paraplegia | 106 | (0.67) | 3931 | (0.30) | <0.01 |
Renal disease | 228 | (1.45) | 7860 | (0.61) | <0.01 |
Cancer | 959 | (6.10) | 31,478 | (2.44) | <0.01 |
Metastatic carcinoma | 183 | (1.16) | 2727 | (0.21) | <0.01 |
HIV/AIDS | 4 | (0.03) | 53 | (0.00) | <0.01 |
Number of medications, mean (SD) | 17.82 | (14.98) | 10.33 | (11.08) | <0.01 |
Characteristics | Unadjusted Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) a | p-Value |
---|---|---|---|---|
Sex | ||||
Male (reference) | - | <0.01 | - | 0.48 |
Female | 1.13 (1.10–1.17) | 1.01 (0.98–1.04) | ||
Age group, years | ||||
<20 (reference) | - | <0.01 | - | <0.01 |
20–44 | 1.07 (1.02–1.12) | 1.25 (1.19–1.32) | ||
45–64 | 1.36 (1.30–1.43) | 1.21 (1.16–1.27) | ||
≥65 | 1.87 (1.78–1.97) | 1.15 (1.08–1.21) | ||
Insurance type | ||||
NHI program (reference) | - | <0.01 | - | <0.01 |
MA program | 1.92 (1.79–2.05) | 1.37 (1.27–1.47) | ||
Charlson Comorbidity Index score | ||||
0 (reference) | - | <0.01 | - | <0.01 |
1 | 1.80 (1.73–1.87) | 1.09 (1.05–1.14) | ||
2 | 2.25 (2.13–2.39) | 1.22 (1.14–1.30) | ||
3 | 3.09 (2.85–3.34) | 1.56 (1.43–1.70) | ||
4 | 3.62 (3.21–4.08) | 1.73 (1.53–1.96) | ||
≥5 | 6.13 (5.53–6.80) | 2.87 (2.56–3.20) | ||
Comorbidities b | ||||
Myocardial infarction | 2.10 (1.78–2.49) | <0.01 | 0.98 (0.83–1.17) | 0.84 |
Congestive heart failure | 2.16 (1.97–2.37) | <0.01 | 1.02 (0.93–1.12) | 0.71 |
Peripheral vascular disease | 1.87 (1.76–1.98) | <0.01 | 1.01 (0.94–1.07) | 0.85 |
Cerebrovascular disease | 1.90 (1.78–2.03) | <0.01 | 0.90 (0.83–0.97) | <0.01 |
Dementia | 2.06 (1.88–2.26) | <0.01 | 1.04 (0.94–1.15) | 0.41 |
Chronic pulmonary disease | 1.70 (1.64–1.77) | <0.01 | 0.80 (0.76–0.84) | <0.01 |
Connective tissue/rheumatic disease | 2.46 (2.24–2.69) | <0.01 | 1.22 (1.11–1.34) | <0.01 |
Peptic ulcer disease | 2.15 (2.06–2.25) | <0.01 | 1.08 (1.02–1.13) | <0.01 |
Liver disease, mild | 2.24 (2.15–2.35) | <0.01 | 1.30 (1.24–1.37) | <0.01 |
Liver disease, moderate to severe | 3.32 (2.53–4.36) | <0.01 | 1.56 (1.18–2.06) | <0.01 |
Diabetes without complications | 1.92 (1.83–2.01) | <0.01 | 1.12 (1.06–1.17) | <0.01 |
Diabetes with complications | 1.98 (1.84–2.13) | <0.01 | 1.07 (0.99–1.15) | 0.10 |
Hemiplegia or paraplegia | 2.23 (1.83–2.70) | <0.01 | 0.86 (0.71–1.06) | 0.16 |
Renal disease | 2.40 (2.10–2.74) | <0.01 | 0.91 (0.79–1.04) | 0.17 |
Cancer | 2.60 (2.43–2.78) | <0.01 | 1.15 (1.05–1.25) | <0.01 |
Metastatic carcinoma | 5.56 (4.78–6.46) | <0.01 | 1.43 (1.17–1.76) | <0.01 |
HIV/AIDS | 6.20 (2.24–17.12) | <0.01 | 1.48 (0.53–4.14) | 0.45 |
Number of medications | ||||
<6 (reference) | - | <0.01 | - | <0.01 |
6–10 | 1.92 (1.82–2.02) | 1.89 (1.79–1.99) | ||
11–20 | 2.80 (2.67–2.93) | 2.69 (2.56–2.82) | ||
≥21 | 4.72 (4.51–4.94) | 4.05 (3.84–4.27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, E.; Kim, S.; Suh, H.S. Evaluation of Factors Associated with Adverse Drug Events in South Korea Using a Population-Based Database. J. Clin. Med. 2022, 11, 6248. https://doi.org/10.3390/jcm11216248
Choi E, Kim S, Suh HS. Evaluation of Factors Associated with Adverse Drug Events in South Korea Using a Population-Based Database. Journal of Clinical Medicine. 2022; 11(21):6248. https://doi.org/10.3390/jcm11216248
Chicago/Turabian StyleChoi, Eunkyeong, Siin Kim, and Hae Sun Suh. 2022. "Evaluation of Factors Associated with Adverse Drug Events in South Korea Using a Population-Based Database" Journal of Clinical Medicine 11, no. 21: 6248. https://doi.org/10.3390/jcm11216248
APA StyleChoi, E., Kim, S., & Suh, H. S. (2022). Evaluation of Factors Associated with Adverse Drug Events in South Korea Using a Population-Based Database. Journal of Clinical Medicine, 11(21), 6248. https://doi.org/10.3390/jcm11216248