Escalation and De-Escalation of Antiplatelet Therapy after Acute Coronary Syndrome or PCI: Available Evidence and Implications for Practice
Abstract
:1. Introduction
2. Oral P2Y12 Receptor Inhibitors: Pharmacokinetics and Pharmacodynamics
3. Platelet Function and Genetic Tests to Guide Antiplatelet Therapy
3.1. Escalation and De-Escalation of DAPT after ACS or PCI
3.2. Available Evidence for a Guided Approach Using Platelet Function Tests
3.3. Available Evidence for a Guided Approach Using Genetic Tests
3.4. Available Evidence for the Use of Unguided Approaches
3.5. Pooled Evidence for the Use of Guided or Unguided Escalation/De-Escalation Strategies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valgimigli, M.; Bueno, H.; Byrne, R.A.; Collet, J.P.; Costa, F.; Jeppsson, A.; Jüni, P.; Kastrati, A.; Kolh, P.; Mauri, L.; et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2018, 39, 213–254. [Google Scholar]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Gargiulo, G.; Esposito, G.; Avvedimento, M.; Nagler, M.; Minuz, P.; Campo, G.; Gragnano, F.; Manavifar, N.; Piccolo, R.; Tebaldi, M.; et al. Cangrelor, Tirofiban, and Chewed or Standard Prasugrel Regimens in Patients with ST-Segment-Elevation Myocardial Infarction: Primary Results of the FABOLUS-FASTER Trial. Circulation 2020, 142, 441–454. [Google Scholar] [CrossRef]
- Valgimigli, M.; Gragnano, F.; Branca, M.; Franzone, A.; Baber, U.; Jang, Y.; Kimura, T.; Hahn, J.Y.; Zhao, Q.; Windecker, S.; et al. P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: Individual patient level meta-analysis of randomised controlled trials. BMJ 2021, 373. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.; Valgimigli, M.; Capodanno, D.; Bittl, J.A. State of the art: Duration of dual antiplatelet therapy after percutaneous coronary intervention and coronary stent implantation—Past, present and future perspectives. EuroIntervention 2017, 13, 717–733. [Google Scholar] [CrossRef]
- Gargiulo, G.; Windecker, S.; Vranckx, P.; Gibson, C.M.; Mehran, R.; Valgimigli, M. A Critical Appraisal of Aspirin in Secondary Prevention: Is Less More? Circulation 2016, 134, 1881–1906. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angiolillo, D.J.; Galli, M.; Collet, J.P.; Kastrati, A.; O’Donoghue, M.L. Antiplatelet therapy after percutaneous coronary intervention. EuroIntervention 2022, 17, E1371–E1396. [Google Scholar] [CrossRef] [PubMed]
- Corpataux, N.; Spirito, A.; Gragnano, F.; Vaisnora, L.; Galea, R.; Svab, S.; Gargiulo, G.; Zanchin, T.; Zanchin, C.; Siontis, G.C.M.; et al. Validation of high bleeding risk criteria and definition as proposed by the academic research consortium for high bleeding risk. Eur. Heart J. 2020, 41, 3743–3749. [Google Scholar] [CrossRef]
- Gragnano, F.; Spirito, A.; Corpataux, N.; Vaisnora, L.; Galea, R.; Gargiulo, G.; Siontis, G.C.M.; Praz, F.; Lanz, J.; Billinger, M.; et al. Impact of clinical presentation on bleeding risk after percutaneous coronary intervention and implications for the ARC-HBR definition. EuroIntervention 2021, 17, E898–E909. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Taglialatela, V.; Gragnano, F.; Moscarella, E.; Fimiani, F.; Conte, M.; Barletta, V.; Monda, E.; Limongelli, G.; Severino, S.; et al. Low-Dose Ticagrelor in Patients with High Ischemic Risk and Previous Myocardial Infarction: A Multicenter Prospective Real-World Observational Study. J. Cardiovasc. Pharmacol. 2020, 76, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Gragnano, F.; Calabrò, P.; Moscarella, E.; Santelli, F.; Fimiani, F.; Patti, G.; Cavallari, I.; Antonucci, E.; Cirillo, P.; et al. Prevalence and clinical implications of eligibility criteria for prolonged dual antithrombotic therapy in patients with PEGASUS and COMPASS phenotypes: Insights from the START-ANTIPLATELET registry. Int. J. Cardiol. 2021, 345, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Angiolillo, D.J.; Rollini, F.; Storey, R.F.; Bhatt, D.L.; James, S.; Schneider, D.J.; Sibbing, D.; So, D.Y.F.; Trenk, D.; Alexopoulos, D.; et al. International Expert Consensus on Switching Platelet P2Y12 Receptor-Inhibiting Therapies. Circulation 2017, 136, 1955–1975. [Google Scholar] [CrossRef]
- Galli, M.; Franchi, F.; Rollini, F.; Angiolillo, D.J. Role of platelet function and genetic testing in patients undergoing percutaneous coronary intervention. Trends Cardiovasc. Med. 2021. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.Y.; Franchi, F.; Rollini, F.; Rivas Rios, J.R.; Kureti, M.; Cavallari, L.H.; Angiolillo, D.J. Role of genetic testing in patients undergoing percutaneous coronary intervention. Expert Rev. Clin. Pharmacol. 2018, 11, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Franchi, F.; Rollini, F.; Cavallari, L.H.; Capodanno, D.; Crea, F.; Angiolillo, D.J. Genetic testing in patients undergoing percutaneous coronary intervention: Rationale, evidence and practical recommendations. Expert Rev. Clin. Pharmacol. 2021, 14, 963–978. [Google Scholar] [CrossRef]
- Sibbing, D.; Aradi, D.; Alexopoulos, D.; Ten Berg, J.; Bhatt, D.L.; Bonello, L.; Collet, J.P.; Cuisset, T.; Franchi, F.; Gross, L.; et al. Updated Expert Consensus Statement on Platelet Function and Genetic Testing for Guiding P2Y 12 Receptor Inhibitor Treatment in Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2019, 12, 1521–1537. [Google Scholar] [CrossRef]
- Rodriguez, F.; Harrington, R.A. Management of Antithrombotic Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2021, 384, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Perl, L.; Lerman-Shivek, H.; Rechavia, E.; Vaduganathan, M.; Leshem-Lev, D.; Zemer-Wassercug, N.; Dadush, O.; Codner, P.; Bental, T.; Battler, A.; et al. Response to prasugrel and levels of circulating reticulated platelets in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2014, 63, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Pakala, R.; Waksman, R. Currently available methods for platelet function analysis: Advantages and disadvantages. Cardiovasc. Revasc. Med. 2011, 12, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.H.; Bliden, K.P.; Antonino, M.J.; Park, K.S.; Tantry, U.S.; Gurbel, P.A. Usefulness of the VerifyNow P2Y12 assay to evaluate the antiplatelet effects of ticagrelor and clopidogrel therapies. Am. Heart J. 2012, 164, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Trimmings, A.; Hutchinson, N.; Gill, R.; Agarwal, S.; Davidson, S.; Arcari, M. Consensus recommendations for using the Multiplate® for platelet function monitoring before cardiac surgery. Int. J. Lab. Hematol. 2015, 37, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Franchi, F.; Rollini, F.; Rivas, J.; Rivas, A.; Agarwal, M.; Briceno, M.; Wali, M.; Nawaz, A.; Silva, G.; Shaikh, Z.; et al. Prasugrel Versus Ticagrelor in Patients With CYP2C19 Loss-of-Function Genotypes: Results of a Randomized Pharmacodynamic Study in a Feasibility Investigation of Rapid Genetic Testing. JACC Basic Transl. Sci. 2020, 5, 419–428. [Google Scholar] [CrossRef]
- Roberts, J.D.; Wells, G.A.; le May, M.R.; Labinaz, M.; Glover, C.; Froeschl, M.; Dick, A.; Marquis, J.F.; O’Brien, E.; Goncalves, S.; et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): A prospective, randomised, proof-of-concept trial. Lancet 2012, 379, 1705–1711. [Google Scholar] [CrossRef]
- Chae, H.; Kim, M.; Koh, Y.S.; Hwang, B.H.; Kang, M.K.; Kim, Y.; Park, H.I.; Chang, K. Feasibility of a microarray-based point-of-care CYP2C19 genotyping test for predicting clopidogrel on-treatment platelet reactivity. Biomed. Res. Int. 2013, 2013, 154073. [Google Scholar] [CrossRef] [Green Version]
- Marziliano, N.; Notarangelo, M.F.; Cereda, M.; Caporale, V.; Coppini, L.; Demola, M.A.; Guidorossi, A.; Crocamo, A.; Pigazzani, F.; Boffetti, F.; et al. Rapid and portable, lab-on-chip, point-of-care genotyping for evaluating clopidogrel metabolism. Clin. Chim. Acta 2015, 451, 240–246. [Google Scholar] [CrossRef]
- Notarangelo, F.M.; Maglietta, G.; Bevilacqua, P.; Cereda, M.; Merlini, P.A.; Villani, G.Q.; Moruzzi, P.; Patrizi, G.; Malagoli Tagliazucchi, G.; Crocamo, A.; et al. Pharmacogenomic Approach to Selecting Antiplatelet Therapy in Patients with Acute Coronary Syndromes: The PHARMCLO Trial. J. Am. Coll. Cardiol. 2018, 71, 1869–1877. [Google Scholar] [CrossRef]
- Angiolillo, D.J.; Capodanno, D.; Danchin, N.; Simon, T.; Bergmeijer, T.O.; Ten Berg, J.M.; Sibbing, D.; Price, M.J. Derivation, Validation, and Prognostic Utility of a Prediction Rule for Nonresponse to Clopidogrel: The ABCD-GENE Score. JACC Cardiovasc. Interv. 2020, 13, 606–617. [Google Scholar] [CrossRef]
- Rollini, F.; Franchi, F.; Angiolillo, D.J. Switching P2Y12-receptor inhibitors in patients with coronary artery disease. Nat. Rev. Cardiol. 2016, 13, 11–27. [Google Scholar] [CrossRef]
- Stone, G.W.; Witzenbichler, B.; Weisz, G.; Rinaldi, M.J.; Neumann, F.J.; Metzger, D.C.; Henry, T.D.; Cox, D.A.; Duffy, P.L.; Mazzaferri, E.; et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): A prospective multicentre registry study. Lancet 2013, 382, 614–623. [Google Scholar] [CrossRef]
- Price, M.J.; Berger, P.B.; Teirstein, P.S.; Tanguay, J.F.; Angiolillo, D.J.; Spriggs, D.; Puri, S.; Robbins, M.; Garratt, K.N.; Bertrand, O.F.; et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: The GRAVITAS randomized trial. JAMA 2011, 305, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Trenk, D.; Stone, G.W.; Gawaz, M.; Kastrati, A.; Angiolillo, D.J.; Müller, U.; Richardt, G.; Jakubowski, J.A.; Neumann, F.J. A randomized trial of prasugrel versus clopidogrel in patients with high platelet reactivity on clopidogrel after elective percutaneous coronary intervention with implantation of drug-eluting stents: Results of the TRIGGER-PCI (Testing Platelet Reactivity in Patients Undergoing Elective Stent Placement on Clopidogrel to Guide Alternative Therapy with Prasugrel) study. J. Am. Coll. Cardiol. 2012, 59, 2159–2164. [Google Scholar] [PubMed]
- Cayla, G.; Cuisset, T.; Silvain, J.; Leclercq, F.; Manzo-Silberman, S.; Saint-Etienne, C.; Delarche, N.; Bellemain-Appaix, A.; Range, G.; El Mahmoud, R.; et al. Platelet function monitoring to adjust antiplatelet therapy in elderly patients stented for an acute coronary syndrome (ANTARCTIC): An open-label, blinded-endpoint, randomised controlled superiority trial. Lancet 2016, 388, 2015–2022. [Google Scholar] [CrossRef]
- Sibbing, D.; Aradi, D.; Jacobshagen, C.; Gross, L.; Trenk, D.; Geisler, T.; Orban, M.; Hadamitzky, M.; Merkely, B.; Kiss, R.G.; et al. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): A randomised, open-label, multicentre trial. Lancet 2017, 390, 1747–1757. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Y.; Wu, T.T.; Yang, Y.; Hou, X.G.; Gao, Y.; Chen, Y.; Yang, Y.N.; Li, X.M.; Ma, X.; Ma, Y.T.; et al. Personalized antiplatelet therapy guided by a novel detection of platelet aggregation function in stable coronary artery disease patients undergoing percutaneous coronary intervention: A randomized controlled clinical trial. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 6, 211–221. [Google Scholar] [CrossRef]
- Claassens, D.M.F.; Vos, G.J.A.; Bergmeijer, T.O.; Hermanides, R.S.; van’t Hof, A.W.J.; van der Harst, P.; Barbato, E.; Morisco, C.; Tjon Joe Gin, R.M.; Asselbergs, F.W.; et al. A Genotype-Guided Strategy for Oral P2Y 12 Inhibitors in Primary PCI. N. Engl. J. Med. 2019, 381, 1621–1631. [Google Scholar] [CrossRef]
- Pereira, N.L.; Farkouh, M.E.; So, D.; Lennon, R.; Geller, N.; Mathew, V.; Bell, M.; Bae, J.H.; Jeong, M.H.; Chavez, I.; et al. Effect of Genotype-Guided Oral P2Y12 Inhibitor Selection vs Conventional Clopidogrel Therapy on Ischemic Outcomes after Percutaneous Coronary Intervention: The TAILOR-PCI Randomized Clinical Trial. JAMA 2020, 324, 761–771. [Google Scholar] [CrossRef]
- Tuteja, S.; Glick, H.; Matthai, W.; Nachamkin, I.; Nathan, A.; Monono, K.; Carcuffe, C.; Maslowski, K.; Chang, G.; Kobayashi, T.; et al. Prospective CYP2C19 Genotyping to Guide Antiplatelet Therapy Following Percutaneous Coronary Intervention: A Pragmatic Randomized Clinical Trial. Circ. Genom. Precis Med. 2020, 13, e002640. [Google Scholar] [CrossRef]
- Cuisset, T.; Deharo, P.; Quilici, J.; Johnson, T.W.; Deffarges, S.; Bassez, C.; Bonnet, G.; Fourcade, L.; Mouret, J.P.; Lambert, M.; et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: The TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur. Heart J. 2017, 38, 3070–3078. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kang, J.; Hwang, D.; Han, J.K.; Yang, H.M.; Kang, H.J.; Koo, B.K.; Rhew, J.Y.; Chun, K.J.; Lim, Y.H.; et al. Prasugrel-based de-escalation of dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (HOST-REDUCE-POLYTECH-ACS): An open-label, multicentre, non-inferiority randomised trial. Lancet 2020, 396, 1079–1089. [Google Scholar] [CrossRef]
- Kim, C.J.; Park, M.W.; Kim, M.C.; Choo, E.H.; Hwang, B.H.; Lee, K.Y.; Choi, Y.S.; Kim, H.Y.; Yoo, K.D.; Jeon, D.S.; et al. Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): An investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet 2021, 398, 1305–1316. [Google Scholar] [CrossRef]
- Galli, M.; Benenati, S.; Capodanno, D.; Franchi, F.; Rollini, F.; D’Amario, D.; Porto, I.; Angiolillo, D.J. Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: A systematic review and meta-analysis. Lancet 2021, 397, 1470–1483. [Google Scholar] [CrossRef]
- Galli, M.; Benenati, S.; Franchi, F.; Rollini, F.; Capodanno, D.; Biondi-Zoccai, G.; Vescovo, G.M.; Cavallari, L.H.; Bikdeli, B.; Ten Berg, J.; et al. Comparative effects of guided vs. potent P2Y12 inhibitor therapy in acute coronary syndrome: A network meta-analysis of 61,898 patients from 15 randomized trials. Eur. Heart J. 2022, 43, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Kuno, T.; Fujisaki, T.; Shoji, S.; Sahashi, Y.; Tsugawa, Y.; Iwagami, M.; Takagi, H.; Briasoulis, A.; Deharo, P.; Cuisset, T.; et al. Comparison of Unguided De-Escalation versus Guided Selection of Dual Antiplatelet Therapy after Acute Coronary Syndrome: A Systematic Review and Network Meta-Analysis. Circ. Cardiovasc. Interv. 2022, 15, e011990. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.; Grisafi, L.; Spinoni, E.G.; Rognoni, A.; Mennuni, M. Safety and Efficacy of Selective, Clopidogrel-Based Strategies in Acute Coronary Syndrome: A Study-Level Meta-analysis. Thromb. Haemost. 2022, 122, 1732–1743. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Ortega-Paz, L.; Franchi, F.; Rollini, F.; Angiolillo, D.J. Precision medicine in interventional cardiology: Implications for antiplatelet therapy in patients undergoing percutaneous coronary intervention. Pharmacogenomics 2022, 23, 723–737. [Google Scholar] [CrossRef] [PubMed]
Parameters Assessed | Methods | Advantages | Disadvantages | |
---|---|---|---|---|
Tests based on platelet aggregation | Light transmission aggregometry (LTA) | |||
Phases of platelet activation: shape modification, aggregation, and degranulation. | It measures the increase in light transmission through a plasma-rich suspension (platelet rich plasma [PRP]) after the addition of exogenous agonist factors (ADP, collagen, arachidonic acid and epinephrine). | Gold standard: flexibility, independence with respect to agonist concentration, ability to study different platelet pathways. | Time-consuming, it requires high expertise. It is also affected by variability in PRP preparation; type of agonists used; haemolysis; low platelet levels | |
Impedance whole blood aggregometry (WBA); Multiplate | ||||
Platelet aggregation and monitoring the efficacy of antiplatelet therapy. | It measures the impedance change resulting from platelet aggregation in response to various exogenous agonist factors (ADP, arachidonic acid, TRAP6). | Whole blood test; easy availability of test. | It is influenced by hematocrit values and platelet count, concomitant use of anticoagulants, and time from sample collection to platelet test. | |
VerifyNow | ||||
Platelet aggregation in responding to antiplatelet drugs: GpIIb/IIIa antagonists; ASA; thienopyridines. | Turbidimetric optical method that evaluates the increase in light transmission through the blood sample for the platelet aggregation induced by fibrinogen and platelet agonists (ADP, arachidonic acid). | Highly standardized, requiring no blood manipulation. | It is influenced by fibrinogen levels, hematocrit values, platelet counts, triglyceride levels, and the time between sample collection and test performance. | |
Tests evaluating platelet adhesion under shear stress conditions | Platelet function analyzer (PFA-100) | |||
Adhesion and aggregation during platelet plug formation. | A blood sample is drawn through a system consisting of a membrane coated with platelet agonists until the gap in the membrane is occluded by the platelet plug. | Whole blood test; simple; rapid; small blood volumes needed as sample. | It is influenced by hematocrit values, platelet count, dependent on VWF levels. | |
Tests based on platelet function in combination with viscoelastic tests | Thromboelastography (TEG o ROTEM) | |||
Haemostatic function, from thrombus formation to lysis. | A blood sample is put into a cylindrical cup and swung until a clot is formed. | Whole blood testing; performing “point-of-care” to monitor antiplatelet therapy. | It exclusively measures clot properties. | |
Tests based on thromboxane metabolites | Radium/enzyme-related immunoassay | |||
Platelet activation status. | Thromboxane metabolism assay on serum or urine. | Dependent on platelet COX-1 enzyme. | Numerous artefacts. |
SPARTAN RX (Spartan Bioscience Inc., Ottawa, Canada) | ADVANTAGES | DISADVANTAGES | |
---|---|---|---|
METHOD | TIME, min | ||
Four steps (performed in less than 8 min): - acquisition of a buccal swab; - insertion of the swab into the cartridge; - insertion of the reaction solution into the device; - analysis of CYP2C19 genotype by the device. | 60 | 1. Absence of assay-dependent variability. 2. Independent of current therapy. 3. Time-invariant response. 4. Independent of results from non-patient-related factors. | 1. Do not recognize all CYP2C19 enzyme polymorphisms, although rare. 2. Lack of availability in many centers. |
VERIGENE (Nanosphere Inc., Northbrook, Illinois, US) | |||
METHOD | TIME, min | ||
It makes use of a microarray that identifies 12 allelic variants of CYP2C19 (*1–*10, *13 and *17) through a few steps: - venous sampling; - use of a disposable cartridge containing the array slide; - use of the hybridization reagents; - insertion into the Verigene Processor SP (Nanosphere). | 180 | ||
ST Q3 SYSTEM (STMicroelectronics, Geneva, Switzerland) | |||
METHOD | TIME, min | ||
It makes use of a “lab-on-chip” that provides genotyping by RT-PCR: - peripheral blood sampling; - DNA isolation through the Maxwell16TM platform; - loading of purified DNA into the ST lab-on-chip; - insertion of the chip into the ST Q3 instrument; - sample analysis and visualization of results. | 70 |
Test | Strategy | Study | Year | Patients Enrolled | Clinical Presentation | Follow-Up | Experimental Arm vs. Control | Primary Endpoint | Primary Endpoint Reached? |
---|---|---|---|---|---|---|---|---|---|
PLATELET FUNCTION TEST | ESCALATION | PATH-PCI | 2019 | 2285 | ACS: 0% CCS: 100% | 6 mo. | Ticagrelor in patients nonresponders to clopidogrel vs. standard therapy. | Cardiovascular death, MI, stent thrombosis, urgent revascularization, bleeding BARC 3–5 | Yes |
TRIGGER-PCI | 2012 | 423 | ACS: 0% CCS: 100% | 6 mo. | Prasugrel vs. clopidogrel in clopidogrel nonresponders. | Cardiovascular death or MI | No | ||
DE- ESCALATION | ANTARCTIC | 2016 | 877 | ACS: 100% CCS: 0% | 12 mo. | Therapy guided by platelet function testing vs. standard DAPT. | Cardiovascular death, MI, stent thrombosis, urgent revascularization stroke, bleeding BARC 2–5 | No | |
TROPICAL-ACS | 2017 | 2610 | ACS: 100% CCS: 0% | 12 mo. | Therapy guided by platelet function testing vs. standard DAPT. | Cardiovascular death, MI, stroke, bleeding BARC 2–5 | Yes | ||
GENETIC TESTING | ESCALATION | ADAPT | 2020 | 504 | ACS: 50% CCS: 50% | 16 mo. | Prasugrel or ticagrelor in patients nonresponders to clopidogrel vs. standard therapy. | Cardiovascular death, MI, urgent revascularization, stent thrombosis | No |
PHARMCLO | 2018 | 888 | ACS: 97% CCS: 3% | 12 mo. | Prasugrel or ticagrelor in patients nonresponders to clopidogrel vs. standard therapy. | Cardiovascular death, MI, stroke, bleeding BARC 3–5 | Yes | ||
TAILOR-PCI | 2020 | 5302 | ACS: 69% CCS: 31% | 12 mo. | Prasugrel or ticagrelor in patients nonresponders to clopidogrel vs. standard therapy. | Cardiovascular death, MI, stroke, stent thrombosis, recurrent severe ischemia | No | ||
DE- ESCALATION | POPular Genetics | 2019 | 2488 | ACS: 100% CCS: 0% | 12 mo. | Genotype-driven de-escalation vs. standard DAPT. | Death from all causes, MI, stent thrombosis, stroke, major bleeding according to PLATO criteria | Yes | |
UNGUIDED APPROACH | DE- ESCALATION | HOST-REDUCE POLYTHEC-ACS | 2020 | 3429 | ACS: 100% CCS: 0% | 12 mo. | DAPT with prasugrel 5 mg vs. DAPT with prasugrel 10 mg | Death from all causes, MI, stent thrombosis, repeat revascularizations, stroke, bleeding BARC 2–5 | Yes |
TALOS-MI | 2021 | 2697 | ACS: 100% CCS: 0% | 12 mo. | DAPT with clopidogrel vs. DAPT with ticagrelor | Cardiovascular death, MI, stroke, bleeding BARC 2–5 | Yes | ||
TOPIC | 2017 | 646 | ACS: 100% CCS: 0% | 12 mo. | DAPT with clopidogrel vs. standard DAPT | Cardiovascular death, urgent revascularization, stroke, bleeding BARC 2–5 | Yes |
2018 ESC/EACTS Guidelines on myocardial revascularization [8] | ||
De-escalation of P2Y12 inhibitor treatment (e.g., with a switch from prasugrel or ticagrelor to clopidogrel) guided by platelet function testing may be considered as an alternative DAPT strategy, especially for ACS patients deemed unsuitable for 12-month potent platelet inhibition. | IIb | B |
2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation [3] | ||
De-escalation of P2Y12 receptor inhibitor treatment (e.g., with a switch from prasugrel or ticagrelor to clopidogrel) may be considered as an alternative DAPT strategy, especially for ACS patients deemed unsuitable for potent platelet inhibition. De-escalation may be completed unguided based on clinical judgment or guided by platelet function testing or CYP2C19 genotyping, depending on the patient’s risk profile and availability of respective assays. | IIb | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnano, F.; Capolongo, A.; Terracciano, F.; Gargiulo, G.; De Sio, V.; Cesaro, A.; Moscarella, E.; Patti, G.; Porto, I.; Esposito, G.; et al. Escalation and De-Escalation of Antiplatelet Therapy after Acute Coronary Syndrome or PCI: Available Evidence and Implications for Practice. J. Clin. Med. 2022, 11, 6246. https://doi.org/10.3390/jcm11216246
Gragnano F, Capolongo A, Terracciano F, Gargiulo G, De Sio V, Cesaro A, Moscarella E, Patti G, Porto I, Esposito G, et al. Escalation and De-Escalation of Antiplatelet Therapy after Acute Coronary Syndrome or PCI: Available Evidence and Implications for Practice. Journal of Clinical Medicine. 2022; 11(21):6246. https://doi.org/10.3390/jcm11216246
Chicago/Turabian StyleGragnano, Felice, Antonio Capolongo, Fabrizia Terracciano, Giuseppe Gargiulo, Vincenzo De Sio, Arturo Cesaro, Elisabetta Moscarella, Giuseppe Patti, Italo Porto, Giovanni Esposito, and et al. 2022. "Escalation and De-Escalation of Antiplatelet Therapy after Acute Coronary Syndrome or PCI: Available Evidence and Implications for Practice" Journal of Clinical Medicine 11, no. 21: 6246. https://doi.org/10.3390/jcm11216246