Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression
Abstract
1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Németh, J.; Tapasztó, B.; Aclimandos, W.A.; Kestelyn, P.; Jonas, J.B.; De Faber, J.T.H.N.; Januleviciene, I.; Grzybowski, A.; Nagy, Z.Z.; Pärssinen, O.; et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur. J. Ophthalmol. 2021, 31, 853–883. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheung, S.W.; Cho, P.; Vincent, S.J. Comparison between estimated and measured myopia progression in Hong Kong children without myopia control intervention. Ophthalmic Physiol. Opt. 2021, 41, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Lopes-Ferreira, D.; Yeoh, B.; Issacs, S.; Amorim-De-Sousa, A.; Villa-Collar, C.; González-Méijome, J. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology. Clin. Exp. Optom. 2020, 103, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Wildsoet, C.F.; Chia, A.; Cho, P.; Guggenheim, J.A.; Polling, J.R.; Read, S.; Sankaridurg, P.; Saw, S.M.; Trier, K.; Walline, J.J.; et al. IMI–Interventions myopia institute: Interventions for controlling myopia onset and progression report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M106–M131. [Google Scholar] [CrossRef]
- González-Méijome, J.M.; Peixoto-De-Matos, S.C.; Faria-Ribeiro, M.; Lopes-Ferreira, D.P.; Jorge, J.; Legerton, J.; Queiros, A. Strategies to regulate myopia progression with contact lenses: A review. Eye Contact Lens 2016, 42, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Lopes-Ferreira, D.; González-Méijome, J.M. Astigmatic Peripheral Defocus with Different Contact Lenses: Review and Meta-Analysis. Curr. Eye Res. 2016, 41, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Zadnik, K.; Mutti, D.O.; Mitchell, G.L.; Jones, L.A.; Burr, D.; Moeschberger, M.L. Normal eye growth in emmetropic schoolchildren. Optom. Vis. Sci. 2004, 81, 819–828. [Google Scholar] [CrossRef]
- Chamberlain, P.; Lazon de la Jara, P.; Arumugam, B.; Bullimore, M.A. Axial length targets for myopia control. Ophthalmic Physiol. Opt. 2021, 41, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.; Sankaridurg, P.; Ho, A.; Naduvilath, T.; Smith, E.L., III; Holden, B.A. Myopia Progression Rates in Urban Children Wearing Single-Vision Spectacles. Optom. Vis. Sci. 2011, 89, 27–32. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Jones, L.A.; Moeschberger, M.L.; Zadnik, K.; Payor, R.E. A retrospective study of myopia progression in adult contact lens wearers. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2110–2113. [Google Scholar]
- Morgan, I.G.; Rose, K.A. Myopia: Is the nature-nurture debate finally over? Clin. Exp. Optom. 2019, 102, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Calossi, A.; Cho, P.; Gifford, K.; Jones, L.; Li, M.; Lipener, C.; Logan, N.S.; Malet, F.; Matos, S.; et al. Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens Anterior Eye 2016, 39, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Kollbaum, P.S.; Berntsen, D.A.; Atchison, D.A.; Benavente, A.; Bradley, A.; Buckhurst, H.; Collins, M.; Fujikado, T.; Hiraoka, T.; et al. IMI–Clinical myopia control trials and instrumentation report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M132–M160. [Google Scholar] [CrossRef]
- Morgan, P.B.; McCullough, S.J.; Saunders, K.J. Estimation of ocular axial length from conventional optometric measures. Contact Lens Anterior Eye 2019, 43, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, F.E.; Logan, N.S. Optical ‘dampening’ of the refractive error to axial length ratio: Implications for outcome measures in myopia control studies. Ophthalmic Physiol. Opt. 2018, 38, 290–297. [Google Scholar] [CrossRef]
- Queirós, A.; González-Méijome, J.; Jorge, J. Influence of fogging lenses and cycloplegia on open-field automatic refraction. Ophthalmic Physiol. Opt. 2008, 28, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Thibos, L.N.; Wheeler, W.; Horner, D. Power vectors: An application of Fourier analysis to the description and statistical analysis of refractive error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, P.; Peixoto-De-Matos, S.C.; Logan, N.S.; Ngo, C.; Jones, D.; Young, G. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom. Vis. Sci. 2019, 96, 556–567. [Google Scholar] [CrossRef]
- McCullough, S.J.; O’Donoghue, L.; Saunders, K.J. Six Year Refractive Change among White Children and Young Adults: Evidence for Significant Increase in Myopia among White UK Children. PLoS ONE 2016, 11, e0146332. [Google Scholar] [CrossRef] [PubMed]
- Galvis, V.; Tello, A.; Rey, J.J.; Serrano Gomez, S.; Prada, A.M. Estimation of ocular axial length with optometric parameters is not accurate. Contact Lens Anterior Eye 2021, 45, 101448. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Mitchell, G.L.; Mutti, D.O.; Hayes, J.R.; Moeschberger, M.L.; Zadnik, K. Comparison of ocular component growth curves among refractive error groups in children. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2317–2327. [Google Scholar] [CrossRef] [PubMed]
- Kunert, K.S.; Peter, M.; Blum, M.; Haigis, W.; Sekundo, W.; Schütze, J.; Büehren, T. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J. Cataract Refract. Surg. 2016, 42, 76–83. [Google Scholar] [CrossRef] [PubMed]
n | M (D) | K (mm) | AL_Real (mm) | AL_Predicted (mm) | AL_Real—AL_Predicted (mm) | Correlation Real vs. Predicted | |
---|---|---|---|---|---|---|---|
Male | 870 | −0.70 ± 1.56 | 7.80 ± 0.28 | 23.74 ± 0.99 | 23.95 ± 0.81 | −0.20 ± 0.46 (¥) | r = 0.873 (§) |
Female | 913 | −0.86 ± 1.76 | 7.75 ± 0.28 | 23.62 ± 1.01 | 23.91 ± 0.82 | −0.29 ± 0.50 (¥) | r = 0.863 (§) |
Sphere ≤ −1.00 | 562 | −2.78 ± 1.38 | 7.68 ± 0.26 | 24.41 ± 0.90 | 24.56 ± 0.84 | −0.15 ± 0.46 (¥) | r = 0.839 (§) |
Sphere > −1.00 | 1221 | 0.14 ± 0.70 | 7.81 ± 0.28 | 23.34 ± 0.86 | 23.63 ± 0.62 | −0.29 ± 0.49 (¥) | r = 0.811 (§) |
Myopia | 738 | −2.34 ± 1.45 | 7.70 ± 0.28 | 24.25 ± 0.94 | 24.42 ± 0.86 | −0.16 ± 0.78 (¥) | r = 0.854 (§) |
Emmetrope | 770 | +0.08 ± 0.26 | 7.81 ± 0.27 | 23.37 ± 0.80 | 23.66 ± 0.57 | −0.29 ± 0.47 (¥) | r = 0.792 (§) |
Hyperope | 275 | +0.98 ± 0.65 | 7.83 ± 0.27 | 22.97 ± 0.83 | 23.34 ± 0.57 | −0.37 ± 0.52 (*) | r = 0.750 (§) |
With-the-Rule | 856 | −0.73 ± 1.76 | 7.77 ± 0.28 | 23.64 ± 1.03 | 23.92 ± 0.85 | −0.28 ± 0.47 (¥) | r = 0.883 (§) |
Oblique | 266 | −0.70 ± 1.60 | 7.79 ± 0.29 | 23.65 ± 0.92 | 23.94 ± 0.79 | −0.28 ± 0.46 (¥) | r = 0.845 (§) |
Against-the-Rule | 375 | −0.81 ± 1.65 | 7.76 ± 0.31 | 23.67 ± 1.01 | 23.91 ± 0.82 | −0.24 ± 0.48 (*) | r = 0.864 (§) |
6–9 years | 262 | −0.44 ± 1.56 | 7.75 ± 0.25 | 23.24 ± 0.94 | 23.74 ± 0.73 | −0.50 ± 0.53 (¥) | r = 0.818 (§) |
10–12 years | 437 | −1.50 ± 1.67 | 7.70 ± 0.28 | 23.87 ± 1.00 | 24.07 ± 0.86 | −0.21 ± 0.47 (¥) | r = 0.874 (§) |
13–17 years | 433 | −0.64 ± 1.49 | 7.79 ± 0.27 | 23.69 ± 0.96 | 23.92 ± 0.76 | −0.23 ± 0.45 (¥) | r = 0.860 (§) |
≥18 years | 651 | −0.53 ± 1.68 | 7.80 ± 0.30 | 23.72 ± 1.00 | 23.91 ± 0.84 | −0.19 ± 0.46 (¥) | r = 0.882 (§) |
M (D) | K (mm) | AL_Real(mm) | AL_Morgan(mm) | AL_Queiros (mm) | Pairwise | |
---|---|---|---|---|---|---|
Baseline | −0.59 ± 1.66 | 7.73 ± 0.26 | 23.44 ± 0.91 | 23.78 ± 0.82 | 23.50 ± 0.88 | 1–0; 1–2 |
After 1 year | −0.75 ± 1.72 | 7.72 ± 0.26 | 23.50 ± 0.93 | 23.83 ± 0.86 | 23.56 ± 0.91 | 1–0; 1–2 |
difference | −0.15 ± 0.42 | −0.01 ± 0.06 | +0.067 ± 0.125 | +0.043 ± 0.163 | +0.066 ± 0.178 | p = 0.241 * |
p | <0.001 ¥ | 0.149 ¥ | <0.001 ¥ | 0.005 ¥ | <0.001 ¥ | |
Correlation | r = 0.970, <0.001 § | r = 0.970, <0.001 § | r = 0.991, <0.001 § | r = 0.982, <0.001 § | r = 0.981, <0.001 § |
Area under the Curve | p | Sensitivity | 1—Specificity | |
---|---|---|---|---|
Morgan et al. [10] | 0.623 [0.501 to 0.744] | 0.042 | 0.464 | 0.218 |
This study | 0.690 [0.580 to 0.801] | 0.002 | 0.679 | 0.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queirós, A.; Amorim-de-Sousa, A.; Fernandes, P.; Ribeiro-Queirós, M.S.; Villa-Collar, C.; González-Méijome, J.M. Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression. J. Clin. Med. 2022, 11, 6200. https://doi.org/10.3390/jcm11206200
Queirós A, Amorim-de-Sousa A, Fernandes P, Ribeiro-Queirós MS, Villa-Collar C, González-Méijome JM. Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression. Journal of Clinical Medicine. 2022; 11(20):6200. https://doi.org/10.3390/jcm11206200
Chicago/Turabian StyleQueirós, António, Ana Amorim-de-Sousa, Paulo Fernandes, Maria Sameiro Ribeiro-Queirós, César Villa-Collar, and José M. González-Méijome. 2022. "Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression" Journal of Clinical Medicine 11, no. 20: 6200. https://doi.org/10.3390/jcm11206200
APA StyleQueirós, A., Amorim-de-Sousa, A., Fernandes, P., Ribeiro-Queirós, M. S., Villa-Collar, C., & González-Méijome, J. M. (2022). Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression. Journal of Clinical Medicine, 11(20), 6200. https://doi.org/10.3390/jcm11206200