Impact of Increasing Lower Body Negative Pressure and Its Abrupt Release on Left Ventricular Hemodynamics in Anesthetized Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Protocol
2.3. Data Processing and Statistical Analyses
3. Results
3.1. Phase I: Application of Increasing Lower Body Negative Pressure and Impact of Beta-Adrenergic Stimulation
3.2. Phase II: Release of Lower Body Negative Pressure
4. Discussion
4.1. Translational Outlook
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawley, J.S.; Babu, G.; Janssen, S.L.; Petersen, L.G.; Hearon, C.M., Jr.; Dias, K.A.; Sarma, S.; Williams, M.A.; Whitworth, L.A.; Levine, B.D. Daily Generation of a Footward Fluid Shift Attenuates Ocular Changes associated with Heat-Down Tilt Bedrest. J. Appl. Physiol. 2020, 129, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Eiken, O.; Bjurstedt, H. Cardiac responses to lower body negative pressure and dynamic leg exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 451–455. [Google Scholar] [CrossRef]
- Convertino, V.A. Endurance exercise training: Conditions of enhanced hemodynamic responses and tolerance to LBNP. Med. Sci. Sports Exerc. 1993, 25, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Grasser, E.; Roessler, A.; Schneditz, D.; Hinghofer-Szalkay, H. The cardiovascular response to lower body negative pressure in humans depends on seal location. Physiol. Res. 2009, 58, 311–318. [Google Scholar] [CrossRef]
- Blaber, A.P.; Hinghofer-Szalkay, H.; Goswami, N. Blood Volume Redistribution during Hypovolemia. Aviat. Space Environ. Med. 2013, 84, 59–64. [Google Scholar] [CrossRef]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Convertino, V.A. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol. Rev. 2019, 99, 807–851. [Google Scholar] [CrossRef]
- Ahmad, M.; Blomqvist, C.G.; Mullins, C.B.; Willerson, J.T. Left ventricular function during lower body negative pressure. Aviat. Space, Environ. Med. 1977, 48, 512–515. [Google Scholar]
- Johnson, B.D.; Van Helmond, N.; Curry, T.B.; Van Buskirk, C.M.; Convertino, V.A.; Joyner, M.J. Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses. J. Appl. Physiol. 2014, 117, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, L.G.; Lawley, J.S.; Lilja-Cyron, A.; Petersen, J.C.; Howden, E.J.; Sarma, S.; Cornwell, W.K., 3rd; Zhang, R.; Whitworth, L.A.; Williams, M.A.; et al. Lower body negative pressure to safely reduce intracranial pressure. J. Physiol. 2019, 597, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, C.; Wang, X.; Gao, Y.; Zhang, J.; Liu, Y.; Guo, Y.; Wang, C.; Feng, Y.; Lei, Y.; Zhang, X.; et al. Lower body negative pressure protects brain perfusion in aviation gravitational stress induced by push–pull manoeuvre. J. Physiol. 2020, 598, 3173–3186. [Google Scholar] [CrossRef]
- Abawi, D.; Rinaldi, T.; Faragli, A.; Pieske, B.; Morris, D.A.; Kelle, S.; Tschöpe, C.; Zito, C.; Alogna, A. The non-invasive assessment of myocardial work by pressure-strain analysis: Clinical applications. Hear. Fail. Rev. 2021, 27, 1261–1279. [Google Scholar] [CrossRef]
- Schwarzl, M.; Alogna, A.; Zirngast, B.; Steendijk, P.; Verderber, J.; Zweiker, D.; Huber, S.; Maechler, H.; Pieske, B.M.; Post, H. Mild hypothermia induces incomplete left ventricular relaxation despite spontaneous bradycardia in pigs. Acta Physiol. 2014, 213, 653–663. [Google Scholar] [CrossRef]
- Alogna, A.; Manninger, M.; Schwarzl, M.; Zirngast, B.; Steendijk, P.; Verderber, J.; Zweiker, D.; Maechler, H.; Pieske, B.M.; Post, H. Inotropic Effects of Experimental Hyperthermia and Hypothermia on Left Ventricular Function in Pigs—Comparison with Dobutamine*. Crit. Care Med. 2016, 44, e158–e167. [Google Scholar] [CrossRef]
- Berboth, L.; Zirngast, B.; Manninger, M.; Steendijk, P.; Tschöpe, C.; Scherr, D.; Hinghofer-Szalkay, H.G.; Goswami, N.; Petersen, L.G.; Mächler, H.; et al. Graded lower body negative pressure induces intraventricular negative pressures and incremental diastolic suction: A pressure-volume study in a porcine model. J. Appl. Physiol. 2022, 133, 20–26. [Google Scholar] [CrossRef]
- Baan, J.; Van Der Velde, E.T.; De Bruin, H.G.; Smeenk, G.J.; Koops, J.; Van Dijk, A.D.; Temmerman, D.; Senden, J.; Buis, B. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984, 70, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Steendijk, P.; Staal, E.; Jukema, J.W.; Baan, J. Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am. J. Physiol. Circ. Physiol. 2001, 281, H755–H763. [Google Scholar] [CrossRef]
- Raff, G.L.; Glantz, S.A. Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ. Res. 1981, 48, 813–824. [Google Scholar] [CrossRef] [Green Version]
- Faragli, A.; Tanacli, R.; Kolp, C.; Abawi, D.; Lapinskas, T.; Stehning, C.; Schnackenburg, B.; Muzio, F.P.L.; Fassina, L.; Pieske, B.; et al. Cardiovascular magnetic resonance-derived left ventricular mechanics—strain, cardiac power and end-systolic elastance under various inotropic states in swine. J. Cardiovasc. Magn. Reson. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Harris, K.; Laws, J.M.; Elias, A.; Green, D.A.; Goswami, N.; Jordan, J.; Kamine, T.H.; Mazzolai, L.; Petersen, L.G.; Winnard, A.J.; et al. Search for Venous Endothelial Biomarkers Heralding Venous Thromboembolism in Space: A Qualitative Systematic Review of Terrestrial Studies. Front. Physiol. 2022, 13, 885183. [Google Scholar] [CrossRef]
- Dziuda, Ł.; Krej, M.; Śmietanowski, M.; Sobotnicki, A.; Sobiech, M.; Kwaśny, P.; Brzozowska, A.; Baran, P.; Kowalczuk, K.; Skibniewski, F.W. Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure. Sci. Rep. 2018, 8, 7793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhoff, D.; Mirsky, I.; Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: A guide for clinical, translational, and basic researchers. Am. J. Physiol. Circ. Physiol. 2005, 289, H501–H512. [Google Scholar] [CrossRef]
- Hinghofer-Szalkay, H.G.; Goswami, N.; Rössler, A.; Grasser, E.; Schneditz, D. Reactive hyperemia in the human liver. Am. J. Physiol. Liver Physiol. 2008, 295, G332–G337. [Google Scholar] [CrossRef] [Green Version]
- Hinghofer-Szalkay, H.; Lackner, H.K.; Rössler, A.; Narath, B.; Jantscher, A.; Goswami, N. Hormonal and plasma volume changes after presyncope. Eur. J. Clin. Investig. 2011, 41, 1180–1185. [Google Scholar] [CrossRef]
- Monge-García, M.I.; Santos, A. Understanding ventriculo-arterial coupling. Ann. Transl. Med. 2020, 8, 795. [Google Scholar] [CrossRef]
- Alian, A.; Galante, N.J.; Stachenfeld, N.S.; Silverman, D.G.; Shelley, K. Impact of lower body negative pressure induced hypovolemia on peripheral venous pressure waveform parameters in healthy volunteers. Physiol. Meas. 2014, 35, 1509–1520. [Google Scholar] [CrossRef]
- Parganlija, D.; Gehlert, S.; Herrera, F.; Rittweger, J.; Bloch, W.; Zange, J. Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors. Front. Physiol. 2020, 11, 781. [Google Scholar] [CrossRef]
- Convertino, V.A.; Rickards, C.; Ryan, K.L. Autonomic mechanisms associated with heart rate and vasoconstrictor reserves. Clin. Auton. Res. 2011, 22, 123–130. [Google Scholar] [CrossRef]
- Blomqvist, C.G.; Stone, H.L. Cardiovascular adjustments to gravitational stress. In Handbook of Physiology: The Cardiovascular System. Peripheral Circulation and Organ Blood Flow; Shepherd, J.T., Abboud, F.M., Geiger, S.R., Eds.; Oxford University Press: Bethesda, MD, USA, 1983. [Google Scholar]
- Johnson, J.M.; Rowell, L.B.; Niederberger, M.; Eisman, M.M. Human Splanchnic and Forearm Vasoconstrictor Responses to Reductions of Right Atrial and Aortic Pressures. Circ. Res. 1974, 34, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, N.; Shelley, K.H.; Silverman, D.G.; Stachenfeld, N.; Chon, K.H. Autonomic control mechanism of maximal lower body negative pressure application. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012, San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, pp. 3120–3123. [Google Scholar] [CrossRef]
- Fagoni, N.; Bruseghini, P.; Adami, A.; Capelli, C.; Lador, F.; Moia, C.; Tam, E.; Bringard, A.; Ferretti, G. Effect of Lower Body Negative Pressure on Phase I Cardiovascular Responses at Exercise Onset. Endoscopy 2020, 41, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Grasser, E.K.; Goswami, N.; Hinghofer-Szalkay, H. Presyncopal cardiac contractility and autonomic activity in young healthy males. Physiol. Res. 2008, 58, 817–826. [Google Scholar] [CrossRef]
- Petersen, L.G.; Carlsen, J.F.; Nielsen, M.B.; Damgaard, M.; Secher, N.H. The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans. J. Appl. Physiol. 2014, 116, 730–735. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa-Laborde, C.; Howard, J.T.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A. Comparison of compensatory reserve during lower-body negative pressure and hemorrhage in nonhuman primates. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R1154–R1159. [Google Scholar] [CrossRef] [Green Version]
- Scully, C.G.; Daluwatte, C.; Marques, N.R.; Khan, M.; Salter, M.; Wolf, J.; Nelson, C.; Salsbury, J.; Enkhbaatar, P.; Kinsky, M.; et al. Effect of hemorrhage rate on early hemodynamic responses in conscious sheep. Physiol. Rep. 2016, 4, e12739. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Montani, J.-P. Orthostatic Intolerance in Older Persons: Etiology and Countermeasures. Front. Physiol. 2017, 8, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, K.M.; Weber, T.; Greaves, D.; Green, D.A.; Goswami, N.; Petersen, L.G. Going against the flow: Are venous thromboembolism and impaired cerebral drainage critical risks for spaceflight? J. Appl. Physiol. 2022, 132, 270–273. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zirngast, B.; Berboth, L.; Manninger, M.; Hinghofer-Szalkay, H.; Scherr, D.; Petersen, L.G.; Goswami, N.; Alogna, A.; Maechler, H. Impact of Increasing Lower Body Negative Pressure and Its Abrupt Release on Left Ventricular Hemodynamics in Anesthetized Pigs. J. Clin. Med. 2022, 11, 5858. https://doi.org/10.3390/jcm11195858
Zirngast B, Berboth L, Manninger M, Hinghofer-Szalkay H, Scherr D, Petersen LG, Goswami N, Alogna A, Maechler H. Impact of Increasing Lower Body Negative Pressure and Its Abrupt Release on Left Ventricular Hemodynamics in Anesthetized Pigs. Journal of Clinical Medicine. 2022; 11(19):5858. https://doi.org/10.3390/jcm11195858
Chicago/Turabian StyleZirngast, Birgit, Leonhard Berboth, Martin Manninger, Helmut Hinghofer-Szalkay, Daniel Scherr, Lonnie G. Petersen, Nandu Goswami, Alessio Alogna, and Heinrich Maechler. 2022. "Impact of Increasing Lower Body Negative Pressure and Its Abrupt Release on Left Ventricular Hemodynamics in Anesthetized Pigs" Journal of Clinical Medicine 11, no. 19: 5858. https://doi.org/10.3390/jcm11195858