Atrial Fibrillation Detected by Implantable Monitor in Embolic Stroke of Undetermined Source: A New Clinical Entity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Atrial Fibrillation Diagnosis
2.4. Statiscal Analysis
3. Results
3.1. Description of ESUS Population
3.2. Proportion of AF Detected on ICM in ESUS
3.3. Characteristics of ESUS Patients with CPAF Detected on ICM
3.4. Comparison of ESUS Patients with CPAF Diagnosed by ICM and Stroke Patients with KIDAF
4. Discussion
4.1. High Rate of CPAF in ESUS
4.2. Clinico-Radiological Patterns of Stroke Patients with CPAF or KIDAF Are Different
4.3. CPAF and KIDAF: Two Clinical Entities?
4.4. Therapeutic Challenges in Secondary Stroke Prevention with CPAF and Perspectives
4.5. Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, R.G.; Diener, H.-C.; Coutts, S.B.; Easton, J.D.; Granger, C.B.; O’Donnell, M.J.; Sacco, R.L.; Connolly, S.J.; Cryptogenic Stroke/ESUS International Working Group. Embolic strokes of undetermined source: The case for a new clinical construct. Lancet Neurol. 2014, 13, 429–438. [Google Scholar] [CrossRef]
- Ntaios, G. Embolic Stroke of Undetermined Source: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 75, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.G.; Sharma, M.; Mundl, H.; Kasner, S.E.; Bangdiwala, S.I.; Berkowitz, S.D.; Swaminathan, B.; Lavados, P.; Wang, Y.; Wang, Y.; et al. Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source. N. Engl. J. Med. 2018, 378, 2191–2201. [Google Scholar] [CrossRef]
- Diener, H.-C.; Sacco, R.L.; Easton, J.D.; Granger, C.B.; Bernstein, R.A.; Uchiyama, S.; Kreuzer, J.; Cronin, L.; Cotton, D.; Grauer, C.; et al. Dabigatran for Prevention of Stroke after Embolic Stroke of Undetermined Source. N. Engl. J. Med. 2019, 380, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Sposato, A.L.; Cipriano, E.L.; Saposnik, G.; Vargas, E.R.; Riccio, P.M.; Hachinski, V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 377–387. [Google Scholar] [CrossRef]
- Sanna, T.; Diener, H.-C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic Stroke and Underlying Atrial Fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.J.; Spring, M.; Dorian, P.; Panzov, V.; Thorpe, K.E.; Hall, J.; Vaid, H.; O’Donnell, M.; Laupacis, A.; Côté, R.; et al. Atrial Fibrillation in Patients with Cryptogenic Stroke. N. Engl. J. Med. 2014, 370, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Geisler, T.; Poli, S.; Meisner, C.; Schreieck, J.; Zuern, C.; Nägele, T.; Brachmann, J.; Jung, W.; Gahn, G.; Schmid, E.; et al. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): Rationale and study design. Int. J. Stroke 2017, 12, 985–990. [Google Scholar] [CrossRef]
- Kamel, H.; Longstreth, J.W.; Tirschwell, D.L.; Kronmal, R.A.; Broderick, J.P.; Palesch, Y.Y.; Meinzer, C.; Dillon, C.; Ewing, I.; Spilker, J.A.; et al. The AtRial Cardiopathy and Antithrombotic Drugs In prevention After cryptogenic stroke randomized trial: Rationale and methods. Int. J. Stroke 2019, 14, 207–214. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Gladstone, D.J.; Dorian, P.; Spring, M.; Panzov, V.; Mamdani, M.; Healey, J.S.; Thorpe, K.; Aviv, R.; Boyle, K.; Blakely, J.; et al. Atrial premature beats predict atrial fibrillation in cryptogenic stroke: Results from the EMBRACE trial. Stroke 2015, 46, 936–941. [Google Scholar] [CrossRef]
- Fauchier, L.; Clementy, N.; Pelade, C.; Collignon, C.; Nicolle, E.; Lip, G.Y. Patients With Ischemic Stroke and Incident Atrial Fibrillation. Stroke 2015, 46, 2432–2437. [Google Scholar] [CrossRef]
- Suissa, L.; Bertora, D.; Lachaud, S.; Mahagne, M.H. Score for the targeting of atrial fibrillation (STAF): A new approach to the detection of atrial fibrillation in the secondary prevention of ischemic stroke. Stroke 2009, 40, 2866–2868. [Google Scholar] [CrossRef]
- Uphaus, T.; Weber-Krüger, M.; Grond, M.; Toenges, G.; Jahn-Eimermacher, A.; Jauss, M.; Kirchhof, P.; Wachter, R.; Gröschel, K. Development and validation of a score to detect paroxysmal atrial fibrillation after stroke. Neurology 2018, 92, e115–e124. [Google Scholar] [CrossRef]
- Elkind, M.S.; Wachter, R.; Verma, A.; Kowey, P.R.; Halperin, J.L.; Gersh, B.J.; Ziegler, P.D.; Pouliot, E.; Franco, N.; Reiffel, J.A. Use of the HAVOC Score to Identify Patients at Highest Risk of Developing Atrial Fibrillation. Cardiology 2021, 146, 633–640. [Google Scholar] [CrossRef]
- Amarenco, P.; Bogousslavsky, J.; Caplan, L.; Donnan, G.; Wolf, M.; Hennerici, M. The ASCOD Phenotyping of Ischemic Stroke (Updated ASCO Phenotyping). Cerebrovasc. Dis. 2013, 36, 1–5. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Hart, R.G.; Catanese, L.; Perera, K.S.; Ntaios, G.; Connolly, S.J. Embolic Stroke of Undetermined Source: A Systematic Review and Clinical Update. Stroke 2017, 48, 867–872. [Google Scholar] [CrossRef]
- Ntaios, G.; Papavasileiou, V.; Milionis, H.; Makaritsis, K.; Manios, E.; Spengos, K.; Michel, P.; Vemmos, K. Embolic strokes of undetermined source in the Athens stroke registry: A descriptive analysis. Stroke 2015, 46, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Moon, I.T.; Cho, Y.; Kim, J.Y.; Kang, J.; Kim, B.J.; Han, M.-K.; Oh, I.-Y.; Bae, H.-J. Left Atrial Diameter and Atrial Ectopic Burden in Patients with Embolic Stroke of Undetermined Source: Risk Stratification of Atrial Fibrillation with Insertable Cardiac Monitor Analysis. J. Clin. Neurol. 2021, 17, 213–219. [Google Scholar] [CrossRef]
- Xu, J.; Sethi, P.; Biby, S.; Allred, J.; Seiler, A.; Sabir, R. Predictors of atrial fibrillation detection and features of recurrent strokes in patients after cryptogenic stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104934. [Google Scholar] [CrossRef]
- Israel, C.; Kitsiou, A.; Kalyani, M.; Deelawar, S.; Ejangue, L.E.; Rogalewski, A.; Hagemeister, C.; Minnerup, J.; Schäbitz, W.-R. Detection of atrial fibrillation in patients with embolic stroke of undetermined source by prolonged monitoring with implantable loop recorders. Thromb. Haemost. 2017, 117, 1962–1969. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, L.; Guo, Y.; Sun, H.; Zhang, X.; Bo, Y.; Zhou, X.; Tang, B. A Review of Biomarkers for Ischemic Stroke Evaluation in Patients with Non-valvular Atrial Fibrillation. Front. Cardiovasc. Med. 2021, 8, e682538. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Minematsu, K.; Yamaguchi, T. Japan Multicenter Stroke Investigators’ Collaboration (J-MUSIC). Atrial fibrillation as a predictive factor for severe stroke and early death in 15,831 patients with acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 2005, 76, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, L.; Sibon, I.; Raposo, N.; Albucher, J.-F.; Mazighi, M.; Rousseau, V.; Darcourt, J.; Thalamas, C.; Drif, A.; Sommet, A.; et al. ASCOD Phenotyping of Stroke With Anterior Large Vessel Occlusion Treated by Mechanical Thrombectomy. Stroke 2021, 52, e769–e772. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, R.A.; Kamel, H.; Granger, C.B.; Piccini, J.P.; Sethi, P.P.; Katz, J.M.; Vives, C.A.; Ziegler, P.D.; Franco, N.C.; Schwamm, L.H.; et al. Effect of Long-term Continuous Cardiac Monitoring vs Usual Care on Detection of Atrial Fibrillation in Patients With Stroke Attributed to Large- or Small-Vessel Disease: The STROKE-AF Randomized Clinical Trial. JAMA 2021, 325, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, F.; Norrving, B.; Petersson, J. Atrial Fibrillation in Transient Ischemic Attack Versus Ischemic Stroke: A Swedish Stroke Register (Riksstroke) Study. Stroke 2016, 47, 2456–2461. [Google Scholar] [CrossRef]
- Rivard, L.; Friberg, L.; Conen, D.; Healey, J.S.; Berge, T.; Boriani, G.; Brandes, A.; Calkins, H.; Camm, A.J.; Chen, L.Y.; et al. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022, 145, 392–409. [Google Scholar] [CrossRef]
- Diederichsen, S.Z.; Haugan, K.J.; Kronborg, C.; Graff, C.; Hoejberg, S.; Køber, L.; Krieger, D.; Holst, A.G.; Nielsen, J.B.; Brandes, A.; et al. Comprehensive Evaluation of Rhythm Monitoring Strategies in Screening for Atrial Fibrillation: Insights From Patients at Risk Monitored Long Term With an Implantable Loop Recorder. Circulation 2020, 141, 1510–1522. [Google Scholar] [CrossRef]
- Go, A.S.; Reynolds, K.; Yang, J.; Gupta, N.; Lenane, J.; Sung, S.H.; Harrison, T.N.; Liu, T.I.; Solomon, M.D. Association of Burden of Atrial Fibrillation With Risk of Ischemic Stroke in Adults With Paroxysmal Atrial Fibrillation: The KP-RHYTHM Study. JAMA Cardiol. 2018, 3, 601–608. [Google Scholar] [CrossRef]
- Sposato, L.A.; Chaturvedi, S.; Hsieh, C.-Y.; Morillo, C.A.; Kamel, H. Atrial Fibrillation Detected After Stroke and Transient Ischemic Attack: A Novel Clinical Concept Challenging Current Views. Stroke 2022, 53, e94–e103. [Google Scholar] [CrossRef]
- Cerasuolo, J.O.; Cipriano, L.E.; Sposato, L.A. The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: Advances and uncertainties. Curr. Opin. Neurol. 2017, 30, 28–37. [Google Scholar] [CrossRef]
- Fridman, S.; Jimenez-Ruiz, A.; Vargas-Gonzalez, J.C.; Sposato, L.A. Differences between Atrial Fibrillation Detected before and after Stroke and TIA: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2022, 51, 152–157. [Google Scholar] [CrossRef]
- Tirschwell, D.; Akoum, N. Detection of Subclinical Atrial Fibrillation After Stroke: Is There Enough Evidence to Treat? JAMA 2021, 325, 2157–2159. [Google Scholar] [CrossRef]
ESUS Patients with ICM (n = 163) | CPAF Detected on ICM (n = 38) | No CPAF Detected on ICM (n = 125) | p | |
---|---|---|---|---|
Demographic data | ||||
Men | 92/163 (56.44%) | 24/38 (63.16%) | 68/125 (54.40%) | 0.340 |
Age (years) | 69.00 IQR (61.00–76.00) | 72.50 IQR (68.25–78.00) | 67.00 IQR (57.00–76.00) | 0.002 |
Medical history | ||||
Hypertension | 93/163 (57.06%) | 25/38 (65.79%) | 68/125 (54.40%) | 0.214 |
Diabetes | 29/163 (17.79%) | 8/38 (21.05%) | 21/125 (16.80%) | 0.548 |
Dyslipidemia | 80/163 (49.08%) | 21/38 (55.26%) | 59/125 (47.20%) | 0.384 |
Current smoker | 36/163 (22.09%) | 6/38 (15.79%) | 30/125 (24.00%) | 0.285 |
Ischemic stroke/TIA | 48/163 (29.45%) | 11/38 (28.95%) | 37/125 (29.60%) | 0.938 |
Coronaropathy | 19/163 (11.66%) | 8/38 (21.05%) | 11/125 (8.80%) | 0.039 |
Peripheral arterial disease | 12/163 (7.36%) | 2/38 (5.26%) | 10/125 (8.00%) | 0.572 |
Treatments on admission | ||||
Antiaggregant | 60/163 (36.81%) | 18/38 (47.37%) | 42/125 (33.60%) | 0.123 |
Anticoagulant | 1/163 (0.61%) | 0/38 (0.00%) | 1/125 (0.81%) | 0.580 |
Statin | 38/163 (23.31%) | 15/38 (39.47%) | 23/125 (18.40%) | 0.007 |
Antihypertensive | 79/163 (48.47%) | 20/38 (52.63%) | 59/125 (47.20%) | 0.557 |
Beta blockers | 32/163 (19.63%) | 12/38 (31.58%) | 20/125 (16.00%) | 0.034 |
Baseline stroke characteristics | ||||
Clinical stroke severity (NIHSS) | 4.00 IQR (1.50–9.00) (12) | 3.00 IQR (1.00–8.25) (2) | 4.00 IQR (2.00–9.00) (10) | 0.300 |
Multi-territorial strokes | 14/163 (8.59%) | 2/38 (5.26%) | 12/125 (9.60%) | 0.403 |
Anterior circulation stroke | 115/163 (70.55%) | 25/38 (65.79%) | 90/125 (72.00%) | 0.462 |
Posterior circulation stroke | 51/163 (31.29%) | 13/38 (34.21%) | 38/125 (30.40%) | 0.657 |
Symptomatic arterial occlusion | 58/161 (36.02%) | 14/37 (37.84%) | 44/124 (35.48%) | 0.794 |
IV-thrombolysis (rt-PA) | 46/163 (28.22%) | 9/38 (23.68%) | 37/125 (29.60%) | 0.478 |
Mechanical thrombectomy | 28/163 (17.18%) | 5/38 (13.16%) | 23/125 (18.40%) | 0.453 |
Biological Evaluation | ||||
NT-proBNP (ng/L) | 206.00 IQR (87.48–467.38) (21) | 350.00 IQR (130.60–654.00) (3) | 177.00 IQR (75.80–412.00) (18) | 0.100 |
HS Troponin T(ng/L) | 12.00 IQR (7.00–19.00) (22) | 17.00 IQR (10.50–26.00) (3) | 11.00 IQR (7.00–17.75) (19) | 0.011 |
TSH (mUI/L) | 1.90 IQR (1.15–2.69) (19) | 2.16 IQR (1.30–2.96) (3) | 1.89 IQR (1.14–2.53) (16) | 0.383 |
Etiological stroke subtypes (ASCOD) | ||||
Atherothrombosis (grades 2/3) | 98/163 (60.12%) | 30/38 (78.95%) | 68/125 (54.40%) | 0.007 |
Small vessel disease (grades 2/3) | 32/163 (19.63%) | 7/38 (18.42%) | 25/125 (20.00%) | 0.830 |
ECG characteristics | ||||
QRS interval (msec) | 80.00 IQR (80.00–90.00) (16) | 80.00 IQR (80.00–97.50) (4) | 80.00 IQR (80.00–90.00) (12) | 0.679 |
Abnormal heart axis | 28/151 (18.54%) | 6/34 (17.64%) | 22/117 (18.80%) | 0.879 |
24-h Holter Characteristics | ||||
Atrial hyperexcitability | 44/157 (28.03%) | 18/36 (50.00%) | 26/121 (21.49%) | 0.001 |
Ventricular extrasystoles | 6/147 (4.08%) | 3/34 (8.82%) | 3/113 (2.465%) | 0.111 |
TTE Characteristics | ||||
LVEF < 60% | 24/158 (15.19%) | 4/38 (10.53%) | 20/120 (16.67%) | 0.358 |
Left ventricular hypertrophy | 41/152 (26.97%) | 11/36 (30.56%) | 30/116 (25.86%) | 0.579 |
Left atrial dilatation | 72/141 (51.06%) | 25/34 (73.53%) | 47/107 (43.93%) | 0.003 |
Valvulopathies | 22/163 (13.50%) | 9/38 (23.68%) | 13/125 (10.40%) | 0.036 |
CPAF modalities detection | ||||
Stroke to 24-h Holter ECG time (d) | 4.04 IQR (2.16–8.05) (12) | 4.16 IQR (2.25–7.34) (1) | 4.02 IQR (2.00–8.21) (11) | 0.651 |
Stroke to ICM implantation time (d) | 113.56 IQR (33.17–246.14) (2) | 87.23 IQR (25.29–152.97) | 127.31 IQR (36.79–272.56) (2) | 0.187 |
ICM follow-up (d) | 476.00 IQR (371.00–615.00) | 561.50 IQR (434.00–718.25) | 448.00 IQR (357.00–539.00) | 0.004 |
AF predictive scores | ||||
CHA2DS2-VASc [13] | 4.00 IQR (3.00–5.00) | 5.00 IQR (4.00–5.00) | 4.00 IQR (3.00–5.00) | 0.007 |
STAF [14] | 6.00 IQR (5.00–7.00) (22) | 7.00 IQR (5.00–7.00) (3) | 5.00 IQR (5.00–7.00) (19) | <0.001 |
HAVOC [16] | 2.00 IQR (1.00–4.00) | 4.00 IQR (2.00–4.00) | 2.00 IQR (1.00–4.00) | 0.009 |
AS5F [15] | 64.48 IQR (57.94–74.58) (12) | 66.76 IQR (61.25–75.27) (2) | 63.72 IQR (57.18–73.52) (10) | 0.047 |
All AF (n = 195) | CPAF Diagnosed on ICM (n = 38) | Known or Inpatient Detected AF (n = 157) | p | |
---|---|---|---|---|
Demographic data | ||||
Men | 120/195 (61.54%) | 24/38 (63.16%) | 96/157 (61.15%) | 0.819 |
Age (years) | 77.00 IQR (71.00–82.00) | 72.50 IQR (68.25–78.00) | 79.00 IQR (72.00–84.00) | 0.005 |
Medical History | ||||
Hypertension | 132/195 (67.69%) | 25/38 (65.79%) | 107/157 (68.15%) | 0.780 |
Diabetes | 42/195 (21.54%) | 8/38 (21.05%) | 34/157 (21.66%) | 0.935 |
Dyslipidemia | 83/195 (42.56%) | 21/38 (55.26%) | 62/157 (39.49%) | 0.078 |
Current smoker | 20/195 (10.26%) | 6/38 (15.79%) | 14/157 (8.92%) | 0.210 |
Ischemic stroke/TIA | 37/195 (18.97%) | 11/38 (28.95%) | 26/157 (16.56%) | 0.081 |
Coronaropathy | 34/195 (17.44%) | 8/38 (21.05%) | 26/157 (16.56%) | 0.513 |
Peripheral arterial disease | 10/195 (5.13%) | 2/38 (5.26%) | 8/157 (5.10%) | 0.966 |
Treatments on admission | ||||
Antiaggregant | 61/195 (31.28%) | 18/38 (47.37%) | 43/157 (27.39%) | 0.017 |
Anticoagulant | 51/195 (26.15%) | 0/38 (0.00%) | 51/157 (32.48%) | <0.001 |
Statin | 56/195 (28.72%) | 15/38 (39.47%) | 41/157 (26.11%) | 0.102 |
Antihypertensive | 120/195 (61.54%) | 20/38 (52.63%) | 100/157 (63.69%) | 0.208 |
Beta blockers | 64/195 (32.82%) | 12/38 (31.58%) | 52/157 (33.12%) | 0.856 |
Baseline stroke characteristics | ||||
Clinical stroke severity (NIHSS) | 11.00 IQR (4.00–19.75) (5) | 3.00 IQR (1.00–8.25) (2) | 14.50 IQR (6.00–21.00) (3) | <0.001 |
Multi-territorial strokes | 27/195 (13.85%) | 2/38 (5.26%) | 25/157 (15.92%) | 0.088 |
Anterior circulation stroke | 161/195 (82.56%) | 25/38 (65.79%) | 136/157 (86.62%) | 0.002 |
Posterior circulation stroke | 47/195 (24.10%) | 13/38 (34.21%) | 34/157 (21.66%) | 0.104 |
Symptomatic arterial occlusion | 113/188 (60.10%) | 14/37 (37.84%) | 99/151 (65.56%) | 0.002 |
IV-thrombolysis (rt-PA) | 60/195 (30.77%) | 9/38 (23.68%) | 51/157 (32.48%) | 0.292 |
Mechanical thrombectomy | 61/195 (31.28%) | 5/38 (13.16%) | 56/157 (35.67%) | 0.007 |
Biological evaluation | ||||
NT-proBNP (ng/L) | 875.00 IQR (393.55–2 421.75) (17) | 350.00 IQR (130.60–654.00) (3) | 1 254.00 IQR (605.30–3 212.00) (14) | <0.001 |
HS Troponin T (ng/L) | 21.00 IQR (12.00–34.75) (13) | 17.00 IQR (10.50–26.00) (3) | 23.00 IQR (13.00–36.00) (10) | 0.047 |
TSH (mUI/L) | 1.57 IQR (0.91–2.98) (27) | 2.16 IQR (1.30–2.96) (3) | 1.42 IQR (0.87–2.97) (24) | 0.129 |
ASCOD stroke subtypes | ||||
Atherothrombosis (grades 2–3) | 126/195 (64.62%) | 30/38 (78.95%) | 96/157 (61.15%) | 0.039 |
Small vessel disease (grades 2–3) | 37/195 (18.97%) | 7/38 (18.42%) | 30/157 (19.11%) | 0.923 |
TTE Characteristics | ||||
LVEF < 60% | 43/160 (26.88%) | 4/38 (10.53%) | 39/122 (31.97%) | 0.009 |
Left atrial dilatation | 104/151 (68.87%) | 26/37 (70.27%) | 78/114 (68.42%) | 0.833 |
Left ventricular hypertrophy | 61/143 (42.66%) | 11/36 (30.56%) | 50/107 (46.73%) | 0.090 |
Left ventricular dilatation | 10/142 (7.04%) | 2/36 (5.56%) | 8/106 (7.55%) | 0.687 |
Valvulopathies | 38/160 (23.75%) | 9/38 (23.68%) | 29/122 (23.77%) | 0.991 |
AF predictive scores | ||||
CHA2DS2-VASc [13] | 5.00 IQR (4.00–5.00) | 5.00 IQR (4.00–5.00) | 5.00 IQR (4.00–6.00) | 0.042 |
STAF [14] | 7.00 IQR (5.00–8.00) (47) | 7.00 IQR (5.00–7.00) (3) | 7.00 IQR (5.00–8.00) (44) | 0.655 |
HAVOC [16] | 4.00 IQR (2.00–4.00) (35) | 4.00 IQR (2.00–4.00) | 4.00 IQR (2.00–4.00) (35) | 0.291 |
AS5F [15] | 75.72 IQR (69.04–82.56) (5) | 66.76 IQR (61.25–75.27) (2) | 76.94 IQR (70.71–83.13) (3) | < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snyman, S.; Seder, E.; David-Muller, M.; Klein, V.; Doche, E.; Suissa, L.; Deharo, J.-C.; Robinet-Borgomano, E.; Maille, B. Atrial Fibrillation Detected by Implantable Monitor in Embolic Stroke of Undetermined Source: A New Clinical Entity. J. Clin. Med. 2022, 11, 5740. https://doi.org/10.3390/jcm11195740
Snyman S, Seder E, David-Muller M, Klein V, Doche E, Suissa L, Deharo J-C, Robinet-Borgomano E, Maille B. Atrial Fibrillation Detected by Implantable Monitor in Embolic Stroke of Undetermined Source: A New Clinical Entity. Journal of Clinical Medicine. 2022; 11(19):5740. https://doi.org/10.3390/jcm11195740
Chicago/Turabian StyleSnyman, Salomé, Elena Seder, Marc David-Muller, Victor Klein, Emilie Doche, Laurent Suissa, Jean-Claude Deharo, Emmanuelle Robinet-Borgomano, and Baptiste Maille. 2022. "Atrial Fibrillation Detected by Implantable Monitor in Embolic Stroke of Undetermined Source: A New Clinical Entity" Journal of Clinical Medicine 11, no. 19: 5740. https://doi.org/10.3390/jcm11195740
APA StyleSnyman, S., Seder, E., David-Muller, M., Klein, V., Doche, E., Suissa, L., Deharo, J. -C., Robinet-Borgomano, E., & Maille, B. (2022). Atrial Fibrillation Detected by Implantable Monitor in Embolic Stroke of Undetermined Source: A New Clinical Entity. Journal of Clinical Medicine, 11(19), 5740. https://doi.org/10.3390/jcm11195740