Cognitive Phenotype and Psychopathology in Noonan Syndrome Spectrum Disorders through Various Ras/MAPK Pathway Associated Gene Variants
Abstract
:1. Introduction
1.1. Cognitive and Behavioral Functioning per Pathogenic Variant
1.2. Study Aim and Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tidyman, W.E.; Rauen, K.A. Expansion of the RASopathies. Curr. Genet. Med. Rep. 2016, 4, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, M.; Gelb, B.D. Noonan syndrome and related disorders: Genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 2005, 6, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.E. Noonan Syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Mirzaa, G.M., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1124/ (accessed on 1 March 2022).
- Grant, A.R.; Cushman, B.J.; Cavé, H.; Dillon, M.W.; Gelb, B.D.; Gripp, K.W.; Lee, J.A.; Mason-Suares, H.; Rauen, K.A.; Tartaglia, M.; et al. Assessing the gene–disease association of 19 genes with the RASopathies using the ClinGen Gene Curation Framework. Hum. Mutat. 2018, 39, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Tajan, M.; Paccoud, R.; Branka, S.; Edouard, T.; Yart, A. The RASopathy family: Consequences of germline activation of the RAS/MAPK pathway. Endocr. Rev. 2018, 39, 676–700. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.J.; van der Smagt, J.J.; Rosenfeld, J.A.; Pagnamenta, A.T.; Alswaid, A.; Baker, E.H.; Blair, E.; Borck, G.; Brinkmann, J.; Craigen, W.; et al. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet. Med. 2018, 20, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, J.; Lissewski, C.; Pinna, V.; Vial, Y.; Pantaleoni, F.; Lepri, F.; Daniele, P.; Burnyte, B.; Cuturilo, G.; Fauth, C.; et al. The clinical significance of A2ML1 variants in noonan syndrome has to be reconsidered. Eur. J. Hum. Genet. 2021, 29, 524–527. [Google Scholar] [CrossRef]
- Pierpont, E.I. Neuropsychological functioning in individuals with Noonan syndrome: A systematic literature review with educational and treatment recommendations. J. Pediatr. Neuropsychol. 2016, 2, 14–33. [Google Scholar] [CrossRef]
- Kim, Y.E.; Baek, S.T. Neurodevelopmental aspects of RASopathies. Mol. Cells 2019, 42, 441–447. [Google Scholar] [CrossRef]
- Wingbermühle, E.; Egger, J.I.M.; Verhoeven, W.M.A.; van der Burgt, I.; Kessels, R.P.C. Affective functioning and social cognition in Noonan Syndrome. Psychol. Med. 2012, 42, 419–426. [Google Scholar] [CrossRef]
- Wingbermühle, E.; Roelofs, R.L.; van der Burgt, I.; Souren, P.M.; Verhoeven, W.M.A.; Kessels, R.P.C.; Egger, J.I.M. Cognitive functioning of adults with Noonan syndrome: A case–control study. Genes Brain Behav. 2012, 11, 785–793. [Google Scholar] [CrossRef]
- Adviento, B.; Corbin, I.L.; Widjaja, F.; Desachy, G.; Enrique, N.; Rosser, T.; Risi, S.; Marco, E.J.; Hendren, R.L.; Bearden, C.E.; et al. Autism traits in the RASopathies. J. Med. Genet. 2014, 51, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, P.; Piccini, G.; Caciolo, C.; Perrino, F.; Gambardella, M.L.; Mallardi, M.; Cesarini, L.; Leoni, C.; Leone, D.; Fossati, C.; et al. Behavioral profile in RASopathies. Am. J. Med. Genet. A 2014, 164, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, P.; Cumbo, F.; Serra, G.; Trasolini, M.; Frattini, C.; Scibelli, F.; Licchelli, S.; Cirillo, F.; Caciolo, C.; Casini, M.P.; et al. Manic and depressive symptoms in children diagnosed with Noonan Syndrome. Brain Sci. 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Davico, C.; Borgogno, M.; Campagna, F.; D’Alessandro, R.; Ricci, F.; Amianto, F.; Mussa, A.; Carli, D.; Ferrero, G.B.; Vitiello, B. Psychopathology and adaptive functioning in children, adolescents, and young adults with Noonan Syndrome. J. Dev. Behav. Pediatr. 2022, 43, e87–e93. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Brooks, A.; Burns, A.; Burkitt-Wright, E.; Kerr, B.; Huson, S.; Emsley, R.; Green, J. Autism Spectrum Disorder and other neurobehavioural comorbidities in rare disorders of the Ras/MAPK pathway. Dev. Med. Child Neurol. 2017, 59, 544–549. [Google Scholar] [CrossRef]
- Geoffray, M.-M.; Falissard, B.; Green, J.; Kerr, B.; Evans, D.G.; Huson, S.; Burkitt-Wright, E.; Garg, S. Autism Spectrum Disorder symptom profile across the RASopathies. Front. Psychiatry 2021, 11, 585700. [Google Scholar] [CrossRef] [PubMed]
- McNeill, A.M.; Hudock, R.L.; Foy, A.M.H.; Shanley, R.; Semrud-Clikeman, M.; Pierpont, M.E.; Berry, S.A.; Sommer, K.; Moertel, C.L.; Pierpont, E.I. Emotional functioning among children with Neurofibromatosis Type 1 or Noonan syndrome. Am. J. Med. Genet. A 2019, 179, 2433–2446. [Google Scholar] [CrossRef] [PubMed]
- Perrino, F.; Licchelli, S.; Serra, G.; Piccini, G.; Caciolo, C.; Pasqualetti, P.; Cirillo, F.; Leoni, C.; Digilio, M.C.; Zampino, G.; et al. Psychopathological features in Noonan syndrome. Eur. J. Paediatr. Neurol. 2018, 22, 170–177. [Google Scholar] [CrossRef]
- Bizaoui, V.; Gage, J.; Brar, R.; Rauen, K.A.; Weiss, L.A. RASopathies are associated with a distinct personality profile. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 434–446. [Google Scholar] [CrossRef]
- Licchelli, S.; Alfieri, P.; Caciolo, C.; Perrino, F.; Mallardi, M.; Veltri, S.; Casini, M.P.; Digilio, M.C.; Selicorni, A.; Zampino, G.; et al. Child Behavior Checklist emotional dysregulation profiles in RASopathies. Neuropsychiatry 2018, 8, 1797–1805. [Google Scholar]
- Noonan, J.A. Noonan syndrome. In Handbook of Neurodevelopmental and Genetic Disorders in Adults; Goldstein, S., Reynolds, C.R., Eds.; Guilford Press: New York, NY, USA, 2005; pp. 308–319. [Google Scholar]
- Roelofs, R.L.; Wingbermühle, E.; van der Heijden, P.T.; Jonkers, R.; de Haan, M.; Kessels, R.P.C.; Egger, J.I.M. Personality and psychopathology in adults with Noonan syndrome. J. Clin. Psychol. Med. Settings 2020, 27, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Smpokou, P.; Tworog-Dube, E.; Kucherlapati, R.S.; Roberts, A.E. Medical complications, clinical findings, and educational outcomes in adults with Noonan syndrome. Am. J. Med. Genet. A 2012, 158A, 3106–3111. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, E.I.; Pierpont, M.E.; Mendelsohn, N.J.; Roberts, A.E.; Tworog-Dube, E.; Seidenberg, M.S. Genotype differences in cognitive functioning in Noonan syndrome. Genes Brain Behav. 2009, 8, 275–282. [Google Scholar] [CrossRef]
- Armour, C.M.; Allanson, J.E. Further delineation of Cardio-Facio-Cutaneous syndrome: Clinical features of 38 individuals with proven mutations. J. Med. Genet. 2008, 45, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.; Rosenberg, J.; Blaser, S.; Rauen, K.A. Neurological complications of Cardio-Facio-Cutaneous syndrome. Dev. Med. Child Neurol. 2007, 49, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Karsdorp, P.A.; Everaerd, W.; Kindt, M.; Mulder, B.J.M. Psychological and cognitive functioning in children and adolescents with congenital heart disease: A meta-analysis. J. Pediatr. Psychol. 2007, 32, 527–541. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, J.-M.; Jin, H.Y.; Kim, G.-H.; Choi, J.-H.; Yoo, H.-W. Spectrum of mutations in Noonan syndrome and their correlation with phenotypes. J. Pediatr. 2011, 159, 1029–1035. [Google Scholar] [CrossRef]
- Lepri, F.; De Luca, A.; Stella, L.; Rossi, C.; Baldassarre, G.; Pantaleoni, F.; Cordeddu, V.; Williams, B.J.; Dentici, M.L.; Caputo, V.; et al. SOS1 mutations in Noonan syndrome: Molecular spectrum, structural insights on pathogenic effects, and genotype–phenotype correlations. Hum. Mutat. 2011, 32, 760–772. [Google Scholar] [CrossRef]
- Roberts, A.E.; Araki, T.; Swanson, K.D.; Montgomery, K.T.; Schiripo, T.A.; Joshi, V.A.; Li, L.; Yassin, Y.; Tamburino, A.M.; Neel, B.G.; et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 2007, 39, 70–74. [Google Scholar] [CrossRef]
- Cesarini, L.; Alfieri, P.; Pantaleoni, F.; Vasta, I.; Cerutti, M.; Petrangeli, V.; Mariotti, P.; Leoni, C.; Ricci, D.; Vicari, S.; et al. Cognitive profile of disorders associated with dysregulation of the RAS/MAPK signaling cascade. Am. J. Med. Genet. A 2009, 149A, 140–146. [Google Scholar] [CrossRef]
- Tartaglia, M.; Pennacchio, L.A.; Zhao, C.; Yadav, K.K.; Fodale, V.; Sarkozy, A.; Pandit, B.; Oishi, K.; Martinelli, S.; Schackwitz, W.; et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. 2007, 39, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, E.I.; Pierpont, M.E.; Mendelsohn, N.J.; Roberts, A.E.; Tworog-Dube, E.; Rauen, K.A.; Seidenberg, M.S. Effects of germline mutations in the Ras/MAPK signaling pathway on adaptive behavior: Cardiofaciocutaneous syndrome and Noonan syndrome. Am. J. Med. Genet. A 2010, 152A, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, E.I.; Tworog-Dube, E.; Roberts, A.E. Attention skills and executive functioning in children with noonan syndrome and their unaffected siblings. Dev. Med. Child Neurol. 2015, 57, 385–392. [Google Scholar] [CrossRef]
- Cordeddu, V.; Yin, J.C.; Gunnarsson, C.; Virtanen, C.; Drunat, S.; Lepri, F.; De Luca, A.; Rossi, C.; Ciolfi, A.; Pugh, T.J.; et al. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome. Hum. Mutat. 2015, 36, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, G.L.; Aguena, M.; Gos, M.; Hung, C.; Pilch, J.; Fahiminiya, S.; Abramowicz, A.; Cristian, I.; Buscarilli, M.; Naslavsky, M.S.; et al. Rare Variants in SOS2 and LZTR1 are associated with Noonan syndrome. J. Med. Genet. 2015, 52, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Pagnamenta, A.T.; Kaisaki, P.J.; Bennett, F.; Burkitt-Wright, E.; Martin, H.C.; Ferla, M.P.; Taylor, J.M.; Gompertz, L.; Lahiri, N.; Tatton-Brown, K.; et al. Delineation of dominant and recessive forms of LZTR1-associated NoonansSyndrome. Clin. Genet. 2019, 95, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Umeki, I.; Niihori, T.; Abe, T.; Kanno, S.; Okamoto, N.; Mizuno, S.; Kurosawa, K.; Nagasaki, K.; Yoshida, M.; Ohashi, H.; et al. Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1–PPP1CB complexes. Hum. Genet. 2019, 138, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Pandit, B.; Sarkozy, A.; Pennacchio, L.A.; Carta, C.; Oishi, K.; Martinelli, S.; Pogna, E.A.; Schackwitz, W.; Ustaszewska, A.; Landstrom, A.; et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat. Genet. 2007, 39, 1007–1012. [Google Scholar] [CrossRef]
- Kobayashi, T.; Aoki, Y.; Niihori, T.; Cavé, H.; Verloes, A.; Okamoto, N.; Kawame, H.; Fujiwara, I.; Takada, F.; Ohata, T.; et al. Molecular and clinical analysis of RAF1 in Noonan Syndrome and related disorders: Dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum. Mutat. 2010, 31, 284–294. [Google Scholar] [CrossRef]
- Aoki, Y.; Niihori, T.; Banjo, T.; Okamoto, N.; Mizuno, S.; Kurosawa, K.; Ogata, T.; Takada, F.; Yano, M.; Ando, T.; et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am. J. Hum. Genet. 2013, 93, 173–180. [Google Scholar] [CrossRef]
- Kouz, K.; Lissewski, C.; Spranger, S.; Mitter, D.; Riess, A.; Lopez-Gonzalez, V.; Lüttgen, S.; Aydin, H.; von Deimling, F.; Evers, C.; et al. Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet. Med. 2016, 18, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Yaoita, M.; Niihori, T.; Mizuno, S.; Okamoto, N.; Hayashi, S.; Watanabe, A.; Yokozawa, M.; Suzumura, H.; Nakahara, A.; Nakano, Y.; et al. Spectrum of Mutations and Genotype–phenotype analysis in Noonan syndrome patients with RIT1 Mutations. Hum. Genet. 2016, 135, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Milosavljević, D.; Overwater, E.; Tamminga, S.; de Boer, K.; Elting, M.W.; van Hoorn, M.E.; Rinne, T.; Houweling, A.C. Two cases of RIT1 associated Noonan syndrome: Further delineation of the clinical phenotype and review of the literature. Am. J. Med. Genet. A 2016, 170, 1874–1880. [Google Scholar] [CrossRef] [PubMed]
- Addissie, Y.A.; Kotecha, U.; Hart, R.A.; Martinez, A.F.; Kruszka, P.; Muenke, M. Craniosynostosis and Noonan Syndrome with KRAS mutations: Expanding the phenotype with a case report and review of the literature. Am. J. Med. Genet. A 2015, 167, 2657–2663. [Google Scholar] [CrossRef]
- Schubbert, S.; Zenker, M.; Rowe, S.L.; Böll, S.; Klein, C.; Bollag, G.; van der Burgt, I.; Musante, L.; Kalscheuer, V.; Wehner, L.-E.; et al. Germline KRAS mutations cause Noonan syndrome. Nat. Genet. 2006, 38, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Zenker, M.; Lehmann, K.; Schulz, A.L.; Barth, H.; Hansmann, D.; Koenig, R.; Korinthenberg, R.; Kreiss-Nachtsheim, M.; Meinecke, P.; Morlot, S.; et al. Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations. J. Med. Genet. 2007, 44, 131–135. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, Y.; Seo, G.H.; Kim, G.-H.; Choi, I.H.; Keum, C.; Ko, J.M.; Cheon, C.K.; Jeon, J.; Choi, J.-H.; et al. Clinical and molecular spectra of BRAF-associated RASopathy. J. Hum. Genet. 2021, 66, 389–399. [Google Scholar] [CrossRef]
- Pierpont, E.I.; Semrud-Clikeman, M.; Pierpont, M.E. Variability in clinical and neuropsychological features of individuals with MAP2K1 mutations. Am. J. Med. Genet. A 2017, 173, 452–459. [Google Scholar] [CrossRef]
- Gripp, K.W.; Zand, D.J.; Demmer, L.; Anderson, C.E.; Dobyns, W.B.; Zackai, E.H.; Denenberg, E.; Jenny, K.; Stabley, D.L.; Sol-Church, K. Expanding the SHOC2 Mutation associated phenotype of noonan syndrome with loose anagen hair: Structural brain anomalies and myelofibrosis. Am. J. Med. Genet. A 2013, 161, 2420–2430. [Google Scholar] [CrossRef]
- Gripp, K.W.; Aldinger, K.A.; Bennett, J.T.; Baker, L.; Tusi, J.; Powell-Hamilton, N.; Stabley, D.; Sol-Church, K.; Timms, A.E.; Dobyns, W.B.A. Novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan Syndrome with Loose Anagen Hair. Am. J. Med. Genet. A 2016, 170, 2237–2247. [Google Scholar] [CrossRef]
- Cirstea, I.C.; Kutsche, K.; Dvorsky, R.; Gremer, L.; Carta, C.; Horn, D.; Roberts, A.E.; Lepri, F.; Merbitz-Zahradnik, T.; König, R.; et al. Restricted spectrum of NRAS mutations causes Noonan syndrome. Nat. Genet. 2010, 42, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, S.; Stellacci, E.; Pannone, L.; D’Agostino, D.; Consoli, F.; Lissewski, C.; Silvano, M.; Cencelli, G.; Lepri, F.; Maitz, S.; et al. Molecular diversity and associated phenotypic spectrum of germline CBL mutations. Hum. Mutat. 2015, 36, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Flex, E.; Jaiswal, M.; Pantaleoni, F.; Martinelli, S.; Strullu, M.; Fansa, E.K.; Caye, A.; De Luca, A.; Lepri, F.; Dvorsky, R.; et al. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum. Mol. Genet. 2014, 23, 4315–4327. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Yin, J.; Yu, H.-W.; Yuan, T.; Fernandez, M.; Yung, C.K.; Trinh, Q.M.; Peltekova, V.D.; Reid, J.G.; Tworog-Dube, E.; et al. Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc. Natl. Acad. Sci. USA 2014, 111, 11473–11478. [Google Scholar] [CrossRef]
- Motta, M.; Sagi-Dain, L.; Krumbach, O.H.F.; Hahn, A.; Peleg, A.; German, A.; Lissewski, C.; Coppola, S.; Pantaleoni, F.; Kocherscheid, L.; et al. Activating MRAS mutations cause Noonan syndrome associated with hypertrophic cardiomyopathy. Hum. Mol. Genet. 2020, 29, 1772–1783. [Google Scholar] [CrossRef]
- Dentici, M.L.; Sarkozy, A.; Pantaleoni, F.; Carta, C.; Lepri, F.; Ferese, R.; Cordeddu, V.; Martinelli, S.; Briuglia, S.; Digilio, M.C.; et al. Spectrum of MEK1 and MEK2 gene mutations in cardio-facio-cutaneous syndrome and genotype–phenotype correlations. Eur. J. Hum. Genet. 2009, 17, 733–740. [Google Scholar] [CrossRef]
- Clark, A.M.; Reynolds, S.H.; Anderson, M.; Wiest, J.S. Mutational Activation of the MAP3K8 protooncogene in lung cancer. Genes. Chromosomes Cancer. 2004, 41, 99–108. [Google Scholar] [CrossRef]
- Kraft, M.; Cirstea, I.C.; Voss, A.K.; Thomas, T.; Goehring, I.; Sheikh, B.N.; Gordon, L.; Scott, H.; Smyth, G.K.; Ahmadian, M.R.; et al. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome–like phenotype and hyperactivated MAPK signaling in humans and mice. J. Clin. Investig. 2011, 121, 3479–3491. [Google Scholar] [CrossRef]
- Gripp, K.W.; Rauen, K.A. Costello Syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Mirzaa, G.M., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1507/ (accessed on 1 March 2022).
- Axelrad, M.E.; Schwartz, D.D.; Katzenstein, J.M.; Hopkins, E.; Gripp, K.W. Neurocognitive, adaptive, and behavioral functioning of individuals with Costello syndrome: A review. Am. J. Med. Genet. C Semin. Med. Genet. 2011, 157, 115–122. [Google Scholar] [CrossRef]
- Roelofs, R.L.; Wingbermühle, E.; Freriks, K.; Verhaak, C.M.; Kessels, R.P.C.; Egger, J.I.M. Alexithymia, emotion perception, and social assertiveness in adult women with Noonan and Turner syndromes. Am. J. Med. Genet. A 2015, 167, 768–776. [Google Scholar] [CrossRef]
- Roelofs, R.L.; Janssen, N.; Wingbermühle, E.; Kessels, R.P.C.; Egger, J.I.M. Intellectual development in Noonan syndrome: A longitudinal study. Brain Behav. 2016, 6, e00479. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, R.L.; Wingbermühle, E.; Kessels, R.P.C.; Egger, J.I.M. Social cognitive training for adults with Noonan syndrome: A feasibility study. Neuropsychiatr. Dis. Treat. 2019, 15, 611–626. [Google Scholar] [CrossRef] [PubMed]
- Wingbermuehle, E.; Egger, J.; Van de Burgt, I.; Verhoeven, W. Neuropsychological and behavioral aspects of Noonan syndrome. Horm. Res. Paediatr. 2009, 72, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Duits, A.; Kessels, R. Schatten van het premorbide functioneren [Estimating premorbid functioning]. In Neuropsychologische Diagnostiek: De Klinische Praktijk; Hendriks, M., Kessels, R., Gorissen, M., Schmand, B., Duits, A., Eds.; Boom: Amsterdam, The Netherlands, 2014; pp. 173–186. [Google Scholar]
- UNESCO Institute for Statistics. International Standard Classification of Education: ISCED 2011; UNESCO Institute for Statistics: Montreal, QC, Canada, 2012. [Google Scholar]
- Lezak, M.D.; Howieson, D.B.; Bigler, E.D.; Tranel, D. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Tate, R.L. A Compendium of Tests, Scales and Questionnaires: The Practitioner’s Guide to Measuring Outcomes after Acquired Brain Impairment, 1st ed.; Psychology Press: Abingdon, UK, 2010. [Google Scholar]
- Bouma, A.; Mulder, J.; Lindeboom, J.; Schmand, B. Handboek Neuropsychologische Diagnostiek, 2nd ed.; Pearson Benelux, B.V.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Couch, S.; Bray, A.; Ismay, C.; Chasnovski, E.; Baumer, B.; Çetinkaya-Rundel, M. Infer: An R package for Tidyverse-friendly statistical inference. J. Open Source Softw. 2021, 6, 3661. [Google Scholar] [CrossRef]
- Passone, C.d.G.B.; Franco, R.R.; Ito, S.S.; Trindade, E.; Polak, M.; Damiani, D.; Bernardo, W.M. Growth hormone treatment in Prader-Willi syndrome patients: Systematic review and meta-analysis. BMJ Paediatr. Open 2020, 4, e000630. [Google Scholar] [CrossRef]
NSSD | Gene | Distinctive Features |
---|---|---|
Noonan syndrome (NS) | PTPN11, SOS1, RAF1, KRAS, NRAS, CBL, BRAF, SOS2, RIT1, RRAS2, RASA2, LZTR1, MAP2K1, MAP2K2, MRAS | JMML (1–2%) |
Noonan syndrome with multiple lentigines (NSML) | PTPN11, RAF1, BRAF, MAP2K1, NRAS | HCM (60–70%), multiple lentigines, sensorineural hearing deficits (20%) |
Noonan syndrome with loose anagen hair (NSLH) | SHOC2, PPP1CB | Short stature (>90%), growth hormone deficiency (50%), loose anagen hair |
Cardiofaciocutaneous syndrome (CFCS) | BRAF, MAP2K1, MAP2K2, KRAS, NRAS | Pronounced craniofacial and skin anomalies, mild to severe intellectual disability (>95%), more severe nervous system anomalies (e.g., seizures 50%), more musculoskeletal abnormalities, severe vision impairments, severe feeding difficulties |
Costello syndrome (CS) | HRAS, NRAS | HCM (60–70%), multifocal atrial tachycardia, short stature (>95%), more oncologic manifestations, mild to moderate intellectual disability (>90%), more nervous system anomalies (e.g., Chiari I malformation), more musculoskeletal abnormalities, severe feeding difficulties |
Variant | n | Mean Age (SD) | Age Range (Years) | % Men | Education Level * (Median) | Neurological Features ** | Psychotropics |
---|---|---|---|---|---|---|---|
PTPN11 | 61 | 25.2 (12.5) | 6−54 | 48% | 4 | 8% | 17% |
PTPN11/NSML | 3 | 16.7 (7.6) | 10−28 | 67% | 3 | 0% | 33% |
SOS1 | 14 | 25.7 (10.7) | 8−48 | 36% | 5 | 21% | 43% |
KRAS | 7 | 22.7 (16.0) | 12−61 | 57% | 3 | 29% | 29% |
LZTR1 | 5 | 26.2 (17.2) | 11−58 | 40% | 4 | 0% | 0% |
RAF1 | 4 | 15.0 (3.4) | 11−20 | 25% | 3 | 25% | 0% |
SHOC2 | 2 | 24.5 (6.5) | 18−31 | 50% | 3.5 | 0% | 0% |
CBL | 2 | 29.5 (16.5) | 13−46 | 50% | 4 | 100% | 0% |
SOS2 | 2 | 26.5 (8.5) | 18−35 | 50% | 4.5 | 0% | 50% |
Variant | Domain/Variable | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FSIQ | Speed | Att | Verb Memory | Vis Memory | Executive Functioning | Soc Cognition | |||||||||
Enc | Recall | Recog | Enc | Recall | Flex | WM | Inh | Plan | Emot | Ment | |||||
PTPN11 | n | 60 | 60 | 31 | 58 | 58 | 52 | 51 | 50 | 59 | 56 | 57 | 60 | 52 | 58 |
Higher (%) | 5 | 15 | 3 | 22 | 12 | n.a. | 10 | 14 | 10 | 4 | 13 | 14 | 2 | 0 | |
Expected (%) | 45 | 68 | 87 | 59 | 76 | 90 | 78 | 82 | 75 | 96 | 74 | 65 | 60 | 66 | |
Lower (%) | 50 | 17 | 10 | 19 | 12 | 10 | 12 | 4 | 16 | 0 | 14 | 22 | 39 | 35 | |
PTPN11/NSML | n | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 3 |
Higher (%) | 0 | 0 | 0 | 0 | 0 | n.a. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Expected (%) | 67 | 67 | 67 | 67 | 67 | 67 | 100 | 50 | 33 | 67 | 50 | 67 | 50 | 33 | |
Lower (%) | 33 | 33 | 33 | 33 | 33 | 33 | 0 | 50 | 67 | 33 | 50 | 33 | 50 | 67 | |
SOS1 | n | 14 | 13 | 7 | 13 | 14 | 13 | 13 | 14 | 13 | 13 | 12 | 13 | 13 | 14 |
Higher (%) | 22 | 8 | 14 | 0 | 7 | n.a. | 0 | 0 | 31 | 0 | 25 | 8 | 8 | 0 | |
Expected (%) | 64 | 46 | 43 | 77 | 72 | 100 | 77 | 79 | 69 | 85 | 75 | 69 | 69 | 71 | |
Lower (%) | 14 | 46 | 43 | 23 | 21 | 0 | 23 | 21 | 0 | 15 | 0 | 23 | 23 | 29 | |
KRAS | n | 7 | 7 | 6 | 5 | 6 | 5 | 3 | 4 | 6 | 7 | 5 | 6 | 6 | 6 |
Higher (%) | 0 | 14 | 17 | 0 | 0 | n.a. | 0 | 0 | 0 | 14 | 20 | 0 | 0 | 0 | |
Expected (%) | 57 | 57 | 83 | 80 | 100 | 100 | 67 | 100 | 67 | 57 | 60 | 50 | 83 | 67 | |
Lower (%) | 43 | 29 | 0 | 20 | 0 | 0 | 33 | 0 | 33 | 14 | 20 | 50 | 17 | 33 | |
LZTR1 | n | 5 | 5 | 4 | 5 | 5 | 5 | 4 | 4 | 4 | 2 | 3 | 4 | 4 | 4 |
Higher (%) | 20 | 60 | 25 | 0 | 0 | n.a. | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 25 | |
Expected (%) | 40 | 40 | 75 | 40 | 80 | 80 | 50 | 75 | 100 | 100 | 100 | 75 | 50 | 50 | |
Lower (%) | 40 | 0 | 0 | 60 | 20 | 20 | 50 | 50 | 0 | 0 | 0 | 0 | 5 | 25 | |
RAF1 | n | 4 | 4 | 3 | 4 | 4 | 4 | 3 | 4 | 4 | 2 | 3 | 4 | 4 | 4 |
Higher (%) | 0 | 0 | 0 | 0 | 25 | n.a. | 0 | 0 | 0 | 0 | 0 | 25 | 50 | 25 | |
Expected (%) | 25 | 25 | 67 | 100 | 50 | 100 | 67 | 100 | 100 | 100 | 100 | 100 | 50 | 50 | |
Lower (%) | 75 | 75 | 33 | 0 | 25 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | |
SHOC2 | n | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 |
Higher (%) | 0 | 0 | 0 | 0 | 50 | n.a. | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
Expected (%) | 0 | 50 | 100 | 100 | 50 | 100 | 0 | 0 | 50 | 100 | 100 | 50 | 50 | 100 | |
Lower (%) | 100 | 50 | 0 | 0 | 0 | 0 | 100 | 0 | 50 | 0 | 0 | 50 | 50 | 0 | |
CBL | n | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 |
Higher (%) | 0 | 0 | 0 | 50 | 0 | n.a. | 100 | 100 | 0 | 0 | 50 | 50 | 0 | 0 | |
Expected (%) | 50 | 100 | 100 | 50 | 100 | 100 | 0 | 0 | 0 | 100 | 50 | 50 | 50 | 50 | |
Lower (%) | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 50 | 50 | |
SOS2 | n | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Higher (%) | 0 | 0 | 50 | 0 | 50 | n.a. | 100 | 50 | 0 | 50 | 50 | 50 | 0 | 0 | |
Expected (%) | 50 | 100 | 50 | 50 | 50 | 100 | 0 | 0 | 100 | 50 | 50 | 50 | 100 | 100 | |
Lower (%) | 50 | 0 | 0 | 50 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
Variant | Alexithymia | Internalizing | Externalizing | Thought Disorder | |
---|---|---|---|---|---|
PTPN11 | n | 53 | 59 | 54 | 48 |
Absent (%) | 26 | 34 | 67 | 94 | |
Present (%) | 74 | 66 | 33 | 6 | |
PTPN11/NSML | n | 2 | 3 | 3 | 2 |
Absent (%) | 0 | 33 | 67 | 50 | |
Present (%) | 100 | 67 | 33 | 50 | |
SOS1 | n | 12 | 14 | 14 | 14 |
Absent (%) | 8 | 36 | 86 | 93 | |
Present (%) | 92 | 64 | 14 | 7 | |
KRAS | n | 4 | 4 | 4 | 4 |
Absent (%) | 50 | 75 | 100 | 100 | |
Present (%) | 50 | 25 | 0 | 0 | |
LZTR1 | n | 3 | 4 | 4 | 4 |
Absent (%) | 33 | 50 | 100 | 100 | |
Present (%) | 67 | 50 | 0 | 0 | |
RAF1 | n | 3 | 4 | 4 | 4 |
Absent (%) | 33 | 50 | 100 | 100 | |
Present (%) | 67 | 50 | 0 | 0 | |
SHOC2 | n | 2 | 2 | 2 | 2 |
Absent (%) | 0 | 100 | 100 | 100 | |
Present (%) | 100 | 0 | 0 | 0 | |
CBL | n | 2 | 2 | 2 | 2 |
Absent (%) | 0 | 50 | 100 | 100 | |
Present (%) | 100 | 50 | 0 | 0 | |
SOS2 | n | 2 | 2 | 2 | 2 |
Absent (%) | 0 | 50 | 100 | 100 | |
Present (%) | 100 | 50 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wingbermühle, E.; Roelofs, R.L.; Oomens, W.; Kramer, J.; Draaisma, J.M.T.; Leenders, E.; Kleefstra, T.; Kessels, R.P.C.; Egger, J.I.M. Cognitive Phenotype and Psychopathology in Noonan Syndrome Spectrum Disorders through Various Ras/MAPK Pathway Associated Gene Variants. J. Clin. Med. 2022, 11, 4735. https://doi.org/10.3390/jcm11164735
Wingbermühle E, Roelofs RL, Oomens W, Kramer J, Draaisma JMT, Leenders E, Kleefstra T, Kessels RPC, Egger JIM. Cognitive Phenotype and Psychopathology in Noonan Syndrome Spectrum Disorders through Various Ras/MAPK Pathway Associated Gene Variants. Journal of Clinical Medicine. 2022; 11(16):4735. https://doi.org/10.3390/jcm11164735
Chicago/Turabian StyleWingbermühle, Ellen, Renée L. Roelofs, Wouter Oomens, Jennifer Kramer, Jos M. T. Draaisma, Erika Leenders, Tjitske Kleefstra, Roy P. C. Kessels, and Jos I. M. Egger. 2022. "Cognitive Phenotype and Psychopathology in Noonan Syndrome Spectrum Disorders through Various Ras/MAPK Pathway Associated Gene Variants" Journal of Clinical Medicine 11, no. 16: 4735. https://doi.org/10.3390/jcm11164735
APA StyleWingbermühle, E., Roelofs, R. L., Oomens, W., Kramer, J., Draaisma, J. M. T., Leenders, E., Kleefstra, T., Kessels, R. P. C., & Egger, J. I. M. (2022). Cognitive Phenotype and Psychopathology in Noonan Syndrome Spectrum Disorders through Various Ras/MAPK Pathway Associated Gene Variants. Journal of Clinical Medicine, 11(16), 4735. https://doi.org/10.3390/jcm11164735