Microsurgical Management of Male Infertility: Compelling Evidence That Collaboration with Qualified Male Reproductive Urologists Enhances Assisted Reproductive Technology (ART) Outcomes
Abstract
:1. Introduction
2. Why Evaluate the Male?
2.1. Optimizing Birth Outcomes Involves More Than Just Performing ICSI
2.2. Male Fertility Is Increasingly Associated with Overall Health
2.3. Reproductive Urologists Have the Surgical Skills Necessary to Treat Many Causes of Male Infertility and Subfertility
3. Surgical Management of Male Infertility
3.1. Treatment of Anejaculation and Ejaculatory Duct Obstruction
3.1.1. Electroejaculation
3.1.2. Transurethral Resection of Ejaculatory Ducts (TURED)
3.2. Sperm Retrieval Techniques
3.2.1. Sperm Retrieval Techniques for Obstructive Azoospermia (OA)
3.2.2. Sperm Retrieval Techniques for Nonobstructive Azoospermia (NOA)
3.2.3. Sperm Retrieval as a Method for Reducing DNA Fragmentation and Enhancing ART Outcomes
3.3. Varicocelectomy
3.3.1. Surgical Technique
3.3.2. Upgrading Fertility
3.3.3. Enhancing IVF Outcomes
3.3.4. Enhancing Testosterone
3.4. Microsurgical Reconstruction
The Role of Vasectomy Reversal (VR) in the IVF Era
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril. 2017, 108, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Thonneau, P.; Marchand, S.; Tallec, A.; Ferial, M.L.; Ducot, B.; Lansac, J.; Lopes, P.; Tabaste, J.M.; Spira, A. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum. Reprod. 1991, 6, 811–816. [Google Scholar] [CrossRef]
- Samplaski, M.K.; Smith, J.F.; Lo, K.C.; Hotaling, J.M.; Lau, S.; Grober, E.D.; Trussell, J.C.; Walsh, T.J.; Kolettis, P.N.; Chow, V.D.W.; et al. Reproductive endocrinologists are the gatekeepers for male infertility care in North America: Results of a North American survey on the referral patterns and characteristics of men presenting to male infertility specialists for infertility investigations. Fertil. Steril. 2019, 112, 657–662. [Google Scholar] [CrossRef]
- Pham, M.N.; Ambulkar, S.S.; Fantus, R.J.; Joshi, T.; Hudnall, M.T.; Lai, J.D.; Wren, J.M.; Bennett, N.E.; Jungheim, E.S.; Brannigan, R.E.; et al. Reproductive urologic consultation in subfertile men: Predictors of establishing care and patient perceptions after abnormal semen testing. Fertil. Steril. 2022, 117, 489–496. [Google Scholar] [CrossRef]
- O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Palermo, G.D. Development of ICSI. Reproduction 2018, 156, F51–F58. [Google Scholar] [CrossRef]
- Jain, T.; Gupta, R.S. Trends in the use of intracytoplasmic sperm injection in the United States. N. Engl. J. Med. 2007, 357, 251–257. [Google Scholar] [CrossRef]
- Esteves, S.C.; Roque, M.; Bedoschi, G.; Haahr, T.; Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat. Rev. Urol. 2018, 15, 535–562. [Google Scholar] [CrossRef]
- Pandey, S.; Shetty, A.; Hamilton, M.; Bhattacharya, S.; Maheshwari, A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 485–503. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, J.; Ding, C.; Dai, J.; Liu, Y.; Xia, Y.; Liu, J.; Hu, Z. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: A meta-analysis. Fertil. Steril. 2012, 97, 1331–1337.e4. [Google Scholar] [CrossRef]
- Hansen, M.; Kurinczuk, J.J.; Milne, E.; de Klerk, N.; Bower, C. Assisted reproductive technology and birth defects: A systematic review and meta-analysis. Hum. Reprod. Update 2013, 19, 330–353. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, X.; Zheng, X.; Xie, L. Reduced risk of prostate cancer in childless men as compared to fathers: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 19210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.J.; Moore, V.M.; Willson, K.J.; Van Essen, P.; Priest, K.; Scott, H.; Haan, E.A.; Chan, A. Reproductive technologies and the risk of birth defects. N. Engl. J. Med. 2012, 366, 1803–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonduelle, M.; Wennerholm, U.B.; Loft, A.; Tarlatzis, B.C.; Peters, C.; Henriet, S.; Mau, C.; Victorin-Cederquist, A.; Van Steirteghem, A.; Balaska, A.; et al. A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum. Reprod. 2005, 20, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Boulet, S.L.; Mehta, A.; Kissin, D.M.; Warner, L.; Kawwass, J.F.; Jamieson, D.J. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 2015, 313, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Kissin, D.M.; Zhang, Y.; Boulet, S.L.; Fountain, C.; Bearman, P.; Schieve, L.; Yeargin-Allsopp, M.; Jamieson, D.J. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum. Reprod. 2015, 30, 454–465. [Google Scholar] [CrossRef] [Green Version]
- The Practice Committees of the American Society for Reproductive Medicine and Society for Assisted Reproductive Technology. Intracytoplasmic sperm injection (ICSI) for non-male factor indications: A committee opinion. Fertil. Steril. 2020, 114, 239–245. [Google Scholar] [CrossRef]
- Schlegel, P.N.; Sigman, M.; Collura, B.; De Jonge, C.J.; Eisenberg, M.L.; Lamb, D.J.; Mulhall, J.P.; Niederberger, C.; Sandlow, J.I.; Sokol, R.Z.; et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil. Steril. 2021, 115, 54–61. [Google Scholar] [CrossRef]
- Fainberg, J.; Hayden, R.P.; Schlegel, P.N. Fertility management of Klinefelter syndrome. Expert. Rev. Endocrinol. Metab. 2019, 14, 369–380. [Google Scholar] [CrossRef]
- Kanakis, G.A.; Nieschlag, E. Klinefelter syndrome: More than hypogonadism. Metabolism 2018, 86, 135–144. [Google Scholar] [CrossRef]
- Salonia, A.; Matloob, R.; Gallina, A.; Abdollah, F.; Saccà, A.; Briganti, A.; Suardi, N.; Colombo, R.; Rocchini, L.; Guazzoni, G.; et al. Are infertile men less healthy than fertile men? Results of a prospective case-control survey. Eur. Urol. 2009, 56, 1025–1031. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Li, S.; Behr, B.; Pera, R.R.; Cullen, M.R. Relationship between semen production and medical comorbidity. Fertil. Steril. 2015, 103, 66–71. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Capogrosso, P.; Boeri, L.; Serino, A.; Colicchia, M.; Ippolito, S.; Scano, R.; Papaleo, E.; Damiano, R.; Montorsi, F.; et al. Infertility as a proxy of general male health: Results of a cross-sectional survey. Fertil. Steril. 2015, 104, 48–55. [Google Scholar] [CrossRef]
- Hanson, B.M.; Eisenberg, M.L.; Hotaling, J.M. Male infertility: A biomarker of individual and familial cancer risk. Fertil. Steril. 2018, 109, 6–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, T.J.; Croughan, M.S.; Schembri, M.; Chan, J.M.; Turek, P.J. Increased risk of testicular germ cell cancer among infertile men. Arch. Intern. Med. 2009, 169, 351–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, M.L.; Li, S.; Brooks, J.D.; Cullen, M.R.; Baker, L.C. Increased risk of cancer in infertile men: Analysis of U.S. claims data. J. Urol. 2015, 193, 1596–1601. [Google Scholar] [CrossRef]
- Raman, J.D.; Nobert, C.F.; Goldstein, M. Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J. Urol. 2005, 174, 1819–1822; discussion 1822. [Google Scholar] [CrossRef]
- Walsh, T.J.; Schembri, M.; Turek, P.J.; Chan, J.M.; Carroll, P.R.; Smith, J.F.; Eisenberg, M.L.; Van Den Eeden, S.K.; Croughan, M.S. Increased risk of high-grade prostate cancer among infertile men. Cancer 2010, 116, 2140–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, H.A.; Anderson, R.E.; Aston, K.I.; Carrell, D.T.; Smith, K.R.; Hotaling, J.M. Subfertility increases risk of testicular cancer: Evidence from population-based semen samples. Fertil. Steril. 2016, 105, 322–328.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhayel, Y.; Giwercman, A.; Ulmert, D.; Rylander, L.; Bjartell, A.; Manjer, J.; Berglund, G.; Giwercman, Y.L. Male infertility and prostate cancer risk: A nested case-control study. Cancer Causes Control 2010, 21, 1635–1643. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, M.L.; Li, S.; Cullen, M.R.; Baker, L.C. Increased risk of incident chronic medical conditions in infertile men: Analysis of United States claims data. Fertil. Steril. 2016, 105, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, W.D.; Li, S.; Baker, L.C.; Eisenberg, M.L. Increased risk of autoimmune disorders in infertile men: Analysis of US claims data. Andrology 2018, 6, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, M.L.; Li, S.; Behr, B.; Cullen, M.R.; Galusha, D.; Lamb, D.J.; Lipshultz, L.I. Semen quality, infertility and mortality in the USA. Hum. Reprod. 2014, 29, 1567–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glazer, C.H.; Eisenberg, M.L.; Tøttenborg, S.S.; Giwercman, A.; Flachs, E.M.; Bräuner, E.V.; Vassard, D.; Pinborg, A.; Schmidt, L.; Bonde, J.P. Male factor infertility and risk of death: A nationwide record-linkage study. Hum. Reprod. 2019, 34, 2266–2273. [Google Scholar] [CrossRef] [PubMed]
- Sønksen, J.; Ohl, D.A. Penile vibratory stimulation and electroejaculation in the treatment of ejaculatory dysfunction. Int. J. Androl. 2002, 25, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Practice Committee of the American Society for Reproductive Medicine. Electroejaculation (EEJ). Fertil. Steril. 2004, 82 (Suppl. S1), S204. [Google Scholar] [CrossRef]
- Ohl, D.A. Electroejaculation. Urol. Clin. N. Am. 1993, 20, 181–188. [Google Scholar] [CrossRef]
- Sønksen, J.; Ohl, D.A.; Wedemeyer, G. Sphincteric events during penile vibratory ejaculation and electroejaculation in men with spinal cord injuries. J. Urol. 2001, 165, 426–429. [Google Scholar] [CrossRef]
- Fode, M.; Krogh-Jespersen, S.; Brackett, N.L.; Ohl, D.A.; Lynne, C.M.; Sønksen, J. Male sexual dysfunction and infertility associated with neurological disorders. Asian J. Androl. 2012, 14, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Chung, P.H.; Yeko, T.R.; Mayer, J.C.; Sanford, E.J.; Maroulis, G.B. Assisted fertility using electroejaculation in men with spinal cord injury—A review of literature. Fertil. Steril. 1995, 64, 1–9. [Google Scholar] [CrossRef]
- Ibrahim, E.; Aballa, T.C.; Brackett, N.L.; Lynne, C.M. Electroejaculation in men with spinal cord injury: A step-by-step video demonstration. Fertil. Steril. 2021, 115, 1344–1346. [Google Scholar] [CrossRef]
- Buch, J.P.; Zorn, B.H. Evaluation and treatment of infertility in spinal cord injured men through rectal probe electroejaculation. J. Urol. 1993, 149, 1350–1354. [Google Scholar] [CrossRef]
- Avellino, G.J.; Lipshultz, L.I.; Sigman, M.; Hwang, K. Transurethral resection of the ejaculatory ducts: Etiology of obstruction and surgical treatment options. Fertil. Steril. 2019, 111, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, P.N.; Sigman, M.; Collura, B.; De Jonge, C.J.; Eisenberg, M.L.; Lamb, D.J.; Mulhall, J.P.; Niederberger, C.; Sandlow, J.I.; Sokol, R.Z.; et al. Diagnosis and Treatment of Infertility in Men: AUA/ASRM Guideline PART II. J. Urol. 2021, 205, 44–51. [Google Scholar] [CrossRef]
- Modgil, V.; Rai, S.; Ralph, D.J.; Muneer, A. An update on the diagnosis and management of ejaculatory duct obstruction. Nat. Rev. Urol. 2016, 13, 13–20. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine in collaboration with the Society for Male Reproduction and Urology. The management of obstructive azoospermia: A committee opinion. Fertil. Steril. 2019, 111, 873–880. [Google Scholar] [CrossRef]
- Purohit, R.S.; Wu, D.S.; Shinohara, K.; Turek, P.J. A prospective comparison of 3 diagnostic methods to evaluate ejaculatory duct obstruction. J. Urol. 2004, 171, 232–235; discussion 235–236. [Google Scholar] [CrossRef]
- Smith, J.F.; Walsh, T.J.; Turek, P.J. Ejaculatory duct obstruction. Urol. Clin. N. Am. 2008, 35, 221–227. [Google Scholar] [CrossRef]
- Turek, P.J.; Magana, J.O.; Lipshultz, L.I. Semen parameters before and after transurethral surgery for ejaculatory duct obstruction. J. Urol. 1996, 155, 1291–1293. [Google Scholar] [CrossRef]
- Kadioglu, A.; Cayan, S.; Tefekli, A.; Orhan, I.; Engin, G.; Turek, P.J. Does response to treatment of ejaculatory duct obstruction in infertile men vary with pathology? Fertil. Steril. 2001, 76, 138–142. [Google Scholar] [CrossRef]
- Esteves, S.C.; Lee, W.; Benjamin, D.J.; Seol, B.; Verza, S., Jr.; Agarwal, A. Reproductive potential of men with obstructive azoospermia undergoing percutaneous sperm retrieval and intracytoplasmic sperm injection according to the cause of obstruction. J. Urol. 2013, 189, 232–237. [Google Scholar] [CrossRef]
- Wosnitzer, M.S.; Goldstein, M. Obstructive azoospermia. Urol. Clin. N. Am. 2014, 41, 83–95. [Google Scholar] [CrossRef]
- Bendikson, K.A.; Neri, Q.V.; Takeuchi, T.; Toschi, M.; Schlegel, P.N.; Rosenwaks, Z.; Palermo, G.D. The outcome of intracytoplasmic sperm injection using occasional spermatozoa in the ejaculate of men with spermatogenic failure. J. Urol. 2008, 180, 1060–1064. [Google Scholar] [CrossRef]
- Flannigan, R.; Bach, P.V.; Schlegel, P.N. Microdissection testicular sperm extraction. Transl. Androl. Urol. 2017, 6, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, P.N. Testicular sperm extraction: Microdissection improves sperm yield with minimal tissue excision. Hum. Reprod. 1999, 14, 131–135. [Google Scholar] [CrossRef]
- Deruyver, Y.; Vanderschueren, D.; Van der Aa, F. Outcome of microdissection TESE compared with conventional TESE in non-obstructive azoospermia: A systematic review. Andrology 2014, 2, 20–24. [Google Scholar] [CrossRef]
- Achermann, A.P.P.; Pereira, T.A.; Esteves, S.C. Microdissection testicular sperm extraction (micro-TESE) in men with infertility due to nonobstructive azoospermia: Summary of current literature. Int. Urol. Nephrol. 2021, 53, 2193–2210. [Google Scholar] [CrossRef]
- Kavoussi, P.K.; West, B.T.; Chen, S.H.; Hunn, C.; Gilkey, M.S.; Machen, G.L.; Kavoussi, K.M.; Esqueda, A.; Wininger, J.D.; Kavoussi, S.K. A comprehensive assessment of predictors of fertility outcomes in men with non-obstructive azoospermia undergoing microdissection testicular sperm extraction. Reprod. Biol. Endocrinol. 2020, 18, 90. [Google Scholar] [CrossRef]
- Colpi, G.M.; Caroppo, E. Performing Microdissection Testicular Sperm Extraction: Surgical Pearls from a High-Volume Infertility Center. J. Clin. Med. 2021, 10, 4296. [Google Scholar] [CrossRef]
- Ishikawa, T.; Nose, R.; Yamaguchi, K.; Chiba, K.; Fujisawa, M. Learning curves of microdissection testicular sperm extraction for nonobstructive azoospermia. Fertil. Steril. 2010, 94, 1008–1011. [Google Scholar] [CrossRef]
- Dabaja, A.A.; Schlegel, P.N. Microdissection testicular sperm extraction: An update. Asian J. Androl. 2013, 15, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Minhas, S.; Giwercman, A.; Bettocchi, C.; Dinkelman-Smit, M.; Dohle, G.; Fusco, F.; Kadioglou, A.; Kliesch, S.; Kopa, Z.; et al. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 733–757. [Google Scholar] [CrossRef]
- Esteves, S.C.; Roque, M.; Bradley, C.K.; Garrido, N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: Systematic review and meta-analysis. Fertil. Steril. 2017, 108, 456–467.e1. [Google Scholar] [CrossRef] [Green Version]
- Greco, E.; Scarselli, F.; Iacobelli, M.; Rienzi, L.; Ubaldi, F.; Ferrero, S.; Franco, G.; Anniballo, N.; Mendoza, C.; Tesarik, J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum. Reprod. 2005, 20, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Esteves, S.C.; Sánchez-Martín, F.; Sánchez-Martín, P.; Schneider, D.T.; Gosálvez, J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil. Steril. 2015, 104, 1398–1405. [Google Scholar] [CrossRef]
- Mehta, A.; Bolyakov, A.; Schlegel, P.N.; Paduch, D.A. Higher pregnancy rates using testicular sperm in men with severe oligospermia. Fertil. Steril. 2015, 104, 1382–1387. [Google Scholar] [CrossRef]
- Bradley, C.K.; McArthur, S.J.; Gee, A.J.; Weiss, K.A.; Schmidt, U.; Toogood, L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: A retrospective analysis. Andrology 2016, 4, 903–910. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, C.L.; Parrella, A.; Keating, D.; Cheung, S.; Rosenwaks, Z.; Palermo, G.D. A treatment algorithm for couples with unexplained infertility based on sperm chromatin assessment. J. Assist. Reprod. Genet. 2018, 35, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Tharakan, T.; Bettocchi, C.; Carvalho, J.; Corona, G.; Jones, T.H.; Kadioglu, A.; Salamanca, J.I.M.; Serefoglu, E.C.; Verze, P.; Salonia, A.; et al. European Association of Urology Guidelines Panel on Male Sexual and Reproductive Health: A Clinical Consultation Guide on the Indications for Performing Sperm DNA Fragmentation Testing in Men with Infertility and Testicular Sperm Extraction in Nonazoospermic Men. Eur. Urol. Focus 2022, 8, 339–350. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: A systematic review and meta-analysis. Fertil. Steril. 2014, 102, 998–1005.e8. [Google Scholar] [CrossRef]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosálvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia 2021, 53, e13874. [Google Scholar] [CrossRef]
- Schulte, R.T.; Ohl, D.A.; Sigman, M.; Smith, G.D. Sperm DNA damage in male infertility: Etiologies, assays, and outcomes. J. Assist. Reprod. Genet. 2010, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Sakkas, D.; Alvarez, J.G. Sperm DNA fragmentation: Mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 2010, 93, 1027–1036. [Google Scholar] [CrossRef]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Panner Selvam, M.K.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C.; et al. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Men’s Health 2020, 38, 412–471. [Google Scholar] [CrossRef]
- Omu, A.E.; Al-Azemi, M.K.; Kehinde, E.O.; Anim, J.T.; Oriowo, M.A.; Mathew, T.C. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med. Princ. Pract. 2008, 17, 108–116. [Google Scholar] [CrossRef]
- Greco, E.; Iacobelli, M.; Rienzi, L.; Ubaldi, F.; Ferrero, S.; Tesarik, J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J. Androl. 2005, 26, 349–353. [Google Scholar] [CrossRef]
- Greco, E.; Romano, S.; Iacobelli, M.; Ferrero, S.; Baroni, E.; Minasi, M.G.; Ubaldi, F.; Rienzi, L.; Tesarik, J. ICSI in cases of sperm DNA damage: Beneficial effect of oral antioxidant treatment. Hum. Reprod. 2005, 20, 2590–2594. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Soto, J.C.; Domingo, J.C.; Cordobilla, B.; Nicolás, M.; Fernández, L.; Albero, P.; Gadea, J.; Landeras, J. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst. Biol. Reprod. Med. 2016, 62, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Tunc, O.; Thompson, J.; Tremellen, K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod. BioMed. Online 2009, 18, 761–768. [Google Scholar] [CrossRef]
- Abad, C.; Amengual, M.J.; Gosálvez, J.; Coward, K.; Hannaoui, N.; Benet, J.; García-Peiró, A.; Prats, J. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia 2013, 45, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gual-Frau, J.; Abad, C.; Amengual, M.J.; Hannaoui, N.; Checa, M.A.; Ribas-Maynou, J.; Lozano, I.; Nikolaou, A.; Benet, J.; García-Peiró, A.; et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum. Fertil. 2015, 18, 225–229. [Google Scholar] [CrossRef]
- Steiner, A.Z.; Hansen, K.R.; Barnhart, K.T.; Cedars, M.I.; Legro, R.S.; Diamond, M.P.; Krawetz, S.A.; Usadi, R.; Baker, V.L.; Coward, R.M.; et al. The effect of antioxidants on male factor infertility: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil. Steril. 2020, 113, 552–560.e3. [Google Scholar] [CrossRef]
- Stenqvist, A.; Oleszczuk, K.; Leijonhufvud, I.; Giwercman, A. Impact of antioxidant treatment on DNA fragmentation index: A double-blind placebo-controlled randomized trial. Andrology 2018, 6, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Gosálvez, J.; González-Martínez, M.; López-Fernández, C.; Fernández, J.L.; Sánchez-Martín, P. Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate. Fertil. Steril. 2011, 96, 1083–1086. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Du Plessis, S.; Sharma, R.; Esteves, S.C.; Cirenza, C.; Eliwa, J.; Al-Najjar, W.; Kumaresan, D.; Haroun, N.; et al. Abstinence Time and Its Impact on Basic and Advanced Semen Parameters. Urology 2016, 94, 102–110. [Google Scholar] [CrossRef]
- Sharma, R.; Harlev, A.; Agarwal, A.; Esteves, S.C. Cigarette Smoking and Semen Quality: A New Meta-analysis Examining the Effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen. Eur. Urol. 2016, 70, 635–645. [Google Scholar] [CrossRef]
- Aboulmaouahib, S.; Madkour, A.; Kaarouch, I.; Sefrioui, O.; Saadani, B.; Copin, H.; Benkhalifa, M.; Louanjli, N.; Cadi, R. Impact of alcohol and cigarette smoking consumption in male fertility potential: Looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 2018, 50, e12926. [Google Scholar] [CrossRef]
- Ranganathan, P.; Rao, K.A.; Thalaivarasai Balasundaram, S. Deterioration of semen quality and sperm-DNA integrity as influenced by cigarette smoking in fertile and infertile human male smokers-A prospective study. J. Cell. Biochem. 2019, 120, 11784–11793. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, R.M.; Nasrallah, Y.S.; Hassan, M.M.; Farrag, A.F.; Majzoub, A.; Agarwal, A. The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia 2018, 50, e12910. [Google Scholar] [CrossRef]
- Rubes, J.; Selevan, S.G.; Evenson, D.P.; Zudova, D.; Vozdova, M.; Zudova, Z.; Robbins, W.A.; Perreault, S.D. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum. Reprod. 2005, 20, 2776–2783. [Google Scholar] [CrossRef] [Green Version]
- Selevan, S.G.; Borkovec, L.; Slott, V.L.; Zudová, Z.; Rubes, J.; Evenson, D.P.; Perreault, S.D. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ. Health Perspect. 2000, 108, 887–894. [Google Scholar] [CrossRef]
- Calogero, A.E.; La Vignera, S.; Condorelli, R.A.; Perdichizzi, A.; Valenti, D.; Asero, P.; Carbone, U.; Boggia, B.; De Rosa, N.; Lombardi, G.; et al. Environmental car exhaust pollution damages human sperm chromatin and DNA. J. Endocrinol. Investig. 2011, 34, e139–e143. [Google Scholar] [CrossRef]
- Sánchez-Peña, L.C.; Reyes, B.E.; López-Carrillo, L.; Recio, R.; Morán-Martínez, J.; Cebrián, M.E.; Quintanilla-Vega, B. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol. Appl. Pharmacol. 2004, 196, 108–113. [Google Scholar] [CrossRef]
- Miranda-Contreras, L.; Gómez-Pérez, R.; Rojas, G.; Cruz, I.; Berrueta, L.; Salmen, S.; Colmenares, M.; Barreto, S.; Balza, A.; Zavala, L.; et al. Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers. J. Occup. Health 2013, 55, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Ståhl, O.; Eberhard, J.; Jepson, K.; Spano, M.; Cwikiel, M.; Cavallin-Ståhl, E.; Giwercman, A. Sperm DNA integrity in testicular cancer patients. Hum. Reprod. 2006, 21, 3199–3205. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.; van Casteren, N.J.; Wildhagen, M.F.; Romijn, J.C.; Dohle, G.R. Sperm DNA integrity in cancer patients before and after cytotoxic treatment. Hum. Reprod. 2010, 25, 1877–1883. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.D.; Hao, J.L.; Guo, K.M.; Lu, C.W.; Liu, X.D. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation. Genet. Mol. Res. 2016, 15, 1–7. [Google Scholar] [CrossRef]
- Esteves, S.C.; Santi, D.; Simoni, M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020, 8, 53–81. [Google Scholar] [CrossRef]
- Moskovtsev, S.I.; Alladin, N.; Lo, K.C.; Jarvi, K.; Mullen, J.B.; Librach, C.L. A comparison of ejaculated and testicular spermatozoa aneuploidy rates in patients with high sperm DNA damage. Syst. Biol. Reprod. Med. 2012, 58, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Muratori, M.; Tamburrino, L.; Marchiani, S.; Cambi, M.; Olivito, B.; Azzari, C.; Forti, G.; Baldi, E. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol. Med. 2015, 21, 109–122. [Google Scholar] [CrossRef]
- Minhas, S.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gül, M.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur. Urol. 2021, 80, 603–620. [Google Scholar] [CrossRef]
- Colpi, G.M.; Francavilla, S.; Haidl, G.; Link, K.; Behre, H.M.; Goulis, D.G.; Krausz, C.; Giwercman, A. European Academy of Andrology guideline Management of oligo-astheno-teratozoospermia. Andrology 2018, 6, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.F.S.; Østergren, P.; Dupree, J.M.; Ohl, D.A.; Sønksen, J.; Fode, M. Varicocele and male infertility. Nat. Rev. Urol. 2017, 14, 523–533. [Google Scholar] [CrossRef]
- Samplaski, M.K.; Lo, K.C.; Grober, E.D.; Zini, A.; Jarvi, K.A. Varicocelectomy to “upgrade” semen quality to allow couples to use less invasive forms of assisted reproductive technology. Fertil. Steril. 2017, 108, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Prabakaran, S.; Allamaneni, S.S. Relationship between oxidative stress, varicocele and infertility: A meta-analysis. Reprod. BioMed Online 2006, 12, 630–633. [Google Scholar] [CrossRef]
- Krzyściak, W.; Kózka, M. Generation of reactive oxygen species by a sufficient, insufficient and varicose vein wall. Acta Biochim. Pol. 2011, 58, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Hamada, A.; Esteves, S.C. Insight into oxidative stress in varicocele-associated male infertility: Part 1. Nat. Rev. Urol. 2012, 9, 678–690. [Google Scholar] [CrossRef]
- Cho, C.L.; Esteves, S.C.; Agarwal, A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J. Androl. 2016, 18, 186–193. [Google Scholar] [CrossRef]
- Pastuszak, A.W.; Wang, R. Varicocele and testicular function. Asian J. Androl. 2015, 17, 659–667. [Google Scholar] [CrossRef]
- El-Kamshoushi, A.M.; Zohdy, N.I.; Abou Khedr, N.A.; Nabhan, S.A.; Mostafa, T. Ultrastructure of the seminiferous tubules in oligoasthenoteratozoospermic men associated with varicocele. Andrologia 2013, 45, 319–325. [Google Scholar] [CrossRef]
- Li, H.; Dubocq, F.; Jiang, Y.; Tiguert, R.; Gheiler, E.L.; Dhabuwala, C.B. Effect of surgically induced varicocele on testicular blood flow and Sertoli cell function. Urology 1999, 53, 1258–1262. [Google Scholar] [CrossRef]
- Sirvent, J.J.; Bernat, R.; Navarro, M.A.; Rodriguez Tolra, J.; Guspi, R.; Bosch, R. Leydig cell in idiopathic varicocele. Eur. Urol. 1990, 17, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Tanrikut, C.; McQuaid, J.W.; Goldstein, M. The impact of varicocele and varicocele repair on serum testosterone. Curr. Opin. Obstet. Gynecol. 2011, 23, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, W.; Rosoff, J.S.; Pale, J.R.; Powell, J.L.; Goldstein, M. Varicocelectomy is associated with increases in serum testosterone independent of clinical grade. Urology 2013, 81, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Meguid, T.A.; Farsi, H.M.; Al-Sayyad, A.; Tayib, A.; Mosli, H.A.; Halawani, A.H. Effects of varicocele on serum testosterone and changes of testosterone after varicocelectomy: A prospective controlled study. Urology 2014, 84, 1081–1087. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Giannakis, D.; Pardalidis, N.; Tsoukanelis, K.; Kanakas, N.; Saito, M.; Watanabe, T.; Miyagawa, I.; Tsounapi, P.; Sofikitis, N. Effects of primary testicular damage on sperm DNA oxidative status and embryonic and foetal development. Andrologia 2009, 41, 282–296. [Google Scholar] [CrossRef]
- Amdani, S.N.; Jones, C.; Coward, K. Phospholipase C zeta (PLCζ): Oocyte activation and clinical links to male factor infertility. Adv. Biol. Regul. 2013, 53, 292–308. [Google Scholar] [CrossRef]
- Amdani, S.N.; Yeste, M.; Jones, C.; Coward, K. Phospholipase C zeta (PLCζ) and male infertility: Clinical update and topical developments. Adv. Biol. Regul. 2016, 61, 58–67. [Google Scholar] [CrossRef]
- Janghorban-Laricheh, E.; Ghazavi-Khorasgani, N.; Tavalaee, M.; Zohrabi, D.; Abbasi, H.; Nasr-Esfahani, M.H. An association between sperm PLCζ levels and varicocele? J. Assist. Reprod. Genet. 2016, 33, 1649–1655. [Google Scholar] [CrossRef]
- Yelumalai, S.; Yeste, M.; Jones, C.; Amdani, S.N.; Kashir, J.; Mounce, G.; Da Silva, S.J.; Barratt, C.L.; McVeigh, E.; Coward, K. Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil. Steril. 2015, 104, 561–568.e4. [Google Scholar] [CrossRef]
- Kashir, J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: Not just ICSI failure? J. Assist. Reprod. Genet. 2020, 37, 1273–1293. [Google Scholar] [CrossRef]
- Hinduja, I.; Baliga, N.B.; Zaveri, K. Correlation of human sperm centrosomal proteins with fertility. J. Hum. Reprod. Sci. 2010, 3, 95–101. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, R.Q.; Lin, Y.J.; Zhang, R.G.; Zhang, W.L. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: A meta-analysis. Reprod. BioMed. Online 2012, 25, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Lira Neto, F.T.; Roque, M.; Esteves, S.C. Effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele: A systematic review and meta-analysis. Fertil. Steril. 2021, 116, 696–712. [Google Scholar] [CrossRef]
- Wang, J.; Xia, S.J.; Liu, Z.H.; Tao, L.; Ge, J.F.; Xu, C.M.; Qiu, J.X. Inguinal and subinguinal micro-varicocelectomy, the optimal surgical management of varicocele: A meta-analysis. Asian J. Androl. 2015, 17, 74–80. [Google Scholar] [CrossRef]
- Mehta, A.; Goldstein, M. Microsurgical varicocelectomy: A review. Asian J. Androl. 2013, 15, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, P.N. Is assisted reproduction the optimal treatment for varicocele-associated male infertility? A cost-effectiveness analysis. Urology 1997, 49, 83–90. [Google Scholar] [CrossRef]
- Esteves, S.C.; Roque, M.; Agarwal, A. Outcome of assisted reproductive technology in men with treated and untreated varicocele: Systematic review and meta-analysis. Asian J. Androl. 2016, 18, 254–258. [Google Scholar] [CrossRef]
- Penson, D.F.; Paltiel, A.D.; Krumholz, H.M.; Palter, S. The cost-effectiveness of treatment for varicocele related infertility. J. Urol. 2002, 168, 2490–2494. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Ishikawa, T.; Kondo, Y.; Yamaguchi, K.; Fujisawa, M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008, 101, 1547–1552. [Google Scholar] [CrossRef]
- Smit, M.; Romijn, J.C.; Wildhagen, M.F.; Veldhoven, J.L.; Weber, R.F.; Dohle, G.R. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J. Urol. 2013, 189, S146–S150. [Google Scholar] [CrossRef]
- Jensen, S.; Ko, E.Y. Varicocele treatment in non-obstructive azoospermia: A systematic review. Arab J. Urol. 2021, 19, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Miyaoka, R.; Roque, M.; Agarwal, A. Outcome of varicocele repair in men with nonobstructive azoospermia: Systematic review and meta-analysis. Asian J. Androl. 2016, 18, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yue, H.; Yamaguchi, K.; Okada, K.; Matsushita, K.; Ando, M.; Chiba, K.; Fujisawa, M. Effect of surgical repair on testosterone production in infertile men with varicocele: A meta-analysis. Int. J. Urol. 2012, 19, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, D.; Lin, G.; Bao, J.; Wang, J.; Tan, W. Efficacy of varicocelectomy in the treatment of hypogonadism in subfertile males with clinical varicocele: A meta-analysis. Andrologia 2017, 49, e12778. [Google Scholar] [CrossRef]
- Benoff, S.; Marmar, J.L.; Hurley, I.R. Molecular and other predictors for infertility in patients with varicoceles. Front. Biosci.-Landmark 2009, 14, 3641–3672. [Google Scholar] [CrossRef] [Green Version]
- Dabaja, A.A.; Goldstein, M. When is a varicocele repair indicated: The dilemma of hypogonadism and erectile dysfunction? Asian J. Androl. 2016, 18, 213–216. [Google Scholar] [CrossRef]
- Corona, G.; Maggi, M. The role of testosterone in erectile dysfunction. Nat. Rev. Urol. 2010, 7, 46–56. [Google Scholar] [CrossRef]
- Kloner, R.A.; Carson, C., 3rd; Dobs, A.; Kopecky, S.; Mohler, E.R., 3rd. Testosterone and Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 67, 545–557. [Google Scholar] [CrossRef]
- Snyder, P.J.; Peachey, H.; Berlin, J.A.; Hannoush, P.; Haddad, G.; Dlewati, A.; Santanna, J.; Loh, L.; Lenrow, D.A.; Holmes, J.H.; et al. Effects of testosterone replacement in hypogonadal men. J. Clin. Endocrinol. Metab. 2000, 85, 2670–2677. [Google Scholar] [CrossRef]
- Hayden, R.P.; Li, P.S.; Goldstein, M. Microsurgical vasectomy reversal: Contemporary techniques, intraoperative decision making, and surgical training for the next generation. Fertil. Steril. 2019, 111, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, M.; Li, P.S.; Matthews, G.J. Microsurgical vasovasostomy: The microdot technique of precision suture placement. J. Urol. 1998, 159, 188–190. [Google Scholar] [CrossRef]
- Shin, D.; Lipshultz, L.I.; Goldstein, M.; Barmé, G.A.; Fuchs, E.F.; Nagler, H.M.; McCallum, S.W.; Niederberger, C.S.; Schoor, R.A.; Brugh, V.M., 3rd; et al. Herniorrhaphy with polypropylene mesh causing inguinal vasal obstruction: A preventable cause of obstructive azoospermia. Ann. Surg. 2005, 241, 553–558. [Google Scholar] [CrossRef] [PubMed]
- McCallum, S.; Li, P.S.; Sheynkin, Y.; Su, L.M.; Chan, P.; Goldstein, M. Comparison of intussusception pull-through end-to-side and conventional end-to-side microsurgical vasoepididymostomy: Prospective randomized controlled study in male wistar rats. J. Urol. 2002, 167, 2284–2288. [Google Scholar] [CrossRef]
- Chan, P.T.; Li, P.S.; Goldstein, M. Microsurgical vasoepididymostomy: A prospective randomized study of 3 intussusception techniques in rats. J. Urol. 2003, 169, 1924–1929. [Google Scholar] [CrossRef] [PubMed]
- Herrel, L.A.; Goodman, M.; Goldstein, M.; Hsiao, W. Outcomes of microsurgical vasovasostomy for vasectomy reversal: A meta-analysis and systematic review. Urology 2015, 85, 819–825. [Google Scholar] [CrossRef]
- Yoon, Y.E.; Lee, H.H.; Park, S.Y.; Moon, H.S.; Kim, D.S.; Song, S.H.; Kim, D.K. The role of vasoepididymostomy for treatment of obstructive azoospermia in the era of in vitro fertilization: A systematic review and meta-analysis. Asian J. Androl. 2018, 21, 67–73. [Google Scholar] [CrossRef]
- Chan, P.T.; Brandell, R.A.; Goldstein, M. Prospective analysis of outcomes after microsurgical intussusception vasoepididymostomy. BJU Int. 2005, 96, 598–601. [Google Scholar] [CrossRef]
- Wood, S.; Montazeri, N.; Sajjad, Y.; Troup, S.; Kingsland, C.R.; Lewis-Jones, D.I. Current practice in the management of vasectomy reversal and unobstructive azoospermia in Merseyside & North Wales: A questionnaire-based survey. BJU Int. 2003, 91, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Masterson, T.A.; Nackeeran, S.; Rainer, Q.; Hauser, N.; Marcovich, R.; Ramasamy, R. Survey of Microsurgery Training Availability in US Urology Residency Programs. World J. Men’s Health 2021, 39, 376–380. [Google Scholar] [CrossRef]
- Nagler, H.M.; Jung, H. Factors predicting successful microsurgical vasectomy reversal. Urol. Clin. N. Am. 2009, 36, 383–390. [Google Scholar] [CrossRef]
- Grober, E.D.; Hamstra, S.J.; Wanzel, K.R.; Reznick, R.K.; Matsumoto, E.D.; Sidhu, R.S.; Jarvi, K.A. Laboratory based training in urological microsurgery with bench model simulators: A randomized controlled trial evaluating the durability of technical skill. J. Urol. 2004, 172, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Sandlow, J.I.; Nagler, H.M. Vasectomy and vasectomy reversal: Important issues. Preface. Urol. Clin. N. Am. 2009, 36, xiii–xiv. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Li, P.S.; Goldstein, M.; Tanrikut, C.; Schattman, G.; Schlegel, P.N. A decision analysis of treatments for obstructive azoospermia. Hum. Reprod. 2008, 23, 2043–2049. [Google Scholar] [CrossRef] [Green Version]
- Pavlovich, C.P.; Schlegel, P.N. Fertility options after vasectomy: A cost-effectiveness analysis. Fertil. Steril. 1997, 67, 133–141. [Google Scholar] [CrossRef]
- Kolettis, P.N.; Thomas, A.J., Jr. Vasoepididymostomy for vasectomy reversal: A critical assessment in the era of intracytoplasmic sperm injection. J. Urol. 1997, 158, 467–470. [Google Scholar] [CrossRef]
- Deck, A.J.; Berger, R.E. Should vasectomy reversal be performed in men with older female partners? J. Urol. 2000, 163, 105–106. [Google Scholar] [CrossRef]
- Dubin, J.M.; White, J.; Ory, J.; Ramasamy, R. Vasectomy reversal vs. sperm retrieval with in vitro fertilization: A contemporary, comparative analysis. Fertil. Steril. 2021, 115, 1377–1383. [Google Scholar] [CrossRef]
- Hinz, S.; Rais-Bahrami, S.; Kempkensteffen, C.; Weiske, W.H.; Schrader, M.; Magheli, A. Fertility rates following vasectomy reversal: Importance of age of the female partner. Urol. Int. 2008, 81, 416–420. [Google Scholar] [CrossRef]
- Gerrard, E.R., Jr.; Sandlow, J.I.; Oster, R.A.; Burns, J.R.; Box, L.C.; Kolettis, P.N. Effect of female partner age on pregnancy rates after vasectomy reversal. Fertil. Steril. 2007, 87, 1340–1344. [Google Scholar] [CrossRef]
- Fuchs, E.F.; Burt, R.A. Vasectomy reversal performed 15 years or more after vasectomy: Correlation of pregnancy outcome with partner age and with pregnancy results of in vitro fertilization with intracytoplasmic sperm injection. Fertil. Steril. 2002, 77, 516–519. [Google Scholar] [CrossRef]
- Niederberger, C.; Makhlouf, A.A. Vasectomy reversal in the presence of diminished ovarian reserve: A complex clinical conundrum. J. Androl. 2006, 27, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Nicopoullos, J.D.; Gilling-Smith, C.; Almeida, P.A.; Ramsay, J.W. Effect of time since vasectomy and maternal age on intracytoplasmic sperm injection success in men with obstructive azoospermia after vasectomy. Fertil. Steril. 2004, 82, 367–373. [Google Scholar] [CrossRef]
- Osmanagaoglu, K.; Tournaye, H.; Kolibianakis, E.; Camus, M.; Van Steirteghem, A.; Devroey, P. Cumulative delivery rates after ICSI in women aged > 37 years. Hum. Reprod. 2002, 17, 940–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shridharani, A.; Sandlow, J.I. Vasectomy reversal versus IVF with sperm retrieval: Which is better? Curr. Opin. Urol. 2010, 20, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Belker, A.M.; Thomas, A.J., Jr.; Fuchs, E.F.; Konnak, J.W.; Sharlip, I.D. Results of 1,469 microsurgical vasectomy reversals by the Vasovasostomy Study Group. J. Urol. 1991, 145, 505–511. [Google Scholar] [CrossRef]
- Boorjian, S.; Lipkin, M.; Goldstein, M. The impact of obstructive interval and sperm granuloma on outcome of vasectomy reversal. J. Urol. 2004, 171, 304–306. [Google Scholar] [CrossRef]
- Grober, E.D.; Karpman, E.; Fanipour, M. Vasectomy reversal outcomes among patients with vasal obstructive intervals greater than 10 years. Urology 2014, 83, 320–323. [Google Scholar] [CrossRef]
- Magheli, A.; Rais-Bahrami, S.; Kempkensteffen, C.; Weiske, W.H.; Miller, K.; Hinz, S. Impact of obstructive interval and sperm granuloma on patency and pregnancy after vasectomy reversal. Int. J. Androl. 2010, 33, 730–735. [Google Scholar] [CrossRef]
- Kawwass, J.F.; Penzias, A.S.; Adashi, E.Y. Fertility-a human right worthy of mandated insurance coverage: The evolution, limitations, and future of access to care. Fertil. Steril. 2021, 115, 29–42. [Google Scholar] [CrossRef]
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinaro, J.; Goldstein, M. Microsurgical Management of Male Infertility: Compelling Evidence That Collaboration with Qualified Male Reproductive Urologists Enhances Assisted Reproductive Technology (ART) Outcomes. J. Clin. Med. 2022, 11, 4593. https://doi.org/10.3390/jcm11154593
Marinaro J, Goldstein M. Microsurgical Management of Male Infertility: Compelling Evidence That Collaboration with Qualified Male Reproductive Urologists Enhances Assisted Reproductive Technology (ART) Outcomes. Journal of Clinical Medicine. 2022; 11(15):4593. https://doi.org/10.3390/jcm11154593
Chicago/Turabian StyleMarinaro, Jessica, and Marc Goldstein. 2022. "Microsurgical Management of Male Infertility: Compelling Evidence That Collaboration with Qualified Male Reproductive Urologists Enhances Assisted Reproductive Technology (ART) Outcomes" Journal of Clinical Medicine 11, no. 15: 4593. https://doi.org/10.3390/jcm11154593
APA StyleMarinaro, J., & Goldstein, M. (2022). Microsurgical Management of Male Infertility: Compelling Evidence That Collaboration with Qualified Male Reproductive Urologists Enhances Assisted Reproductive Technology (ART) Outcomes. Journal of Clinical Medicine, 11(15), 4593. https://doi.org/10.3390/jcm11154593