Hemodynamic Performance of Two Current-Generation Transcatheter Heart Valve Prostheses in Severely Calcified Aortic Valve Stenosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Baseline Characteristics and Procedural Aspects
4.2. Permanent Pacemaker Rate and Hemodynamics
4.3. Clinical Outcomes
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, S.V.; Zhang, Y.; Baron, S.J.; McAndrew, T.C.; Alu, M.C.; Kodali, S.K.; Kapadia, S.; Thourani, V.H.; Miller, D.C.; Mack, M.J.; et al. Impact of Short-Term Complications on Mortality and Quality of Life After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 362–369. [Google Scholar] [CrossRef]
- John, D.; Buellesfeld, L.; Yuecel, S.; Mueller, R.; Latsios, G.; Beucher, H.; Gerckens, U.; Grube, E. Correlation of Device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC Cardiovasc. Interv. 2010, 3, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Spaziano, M.; Chieffo, A.; Watanabe, Y.; Chandrasekhar, J.; Sartori, S.; Lefèvre, T.; Petronio, A.S.; Presbitero, P.; Tchetche, D.; Iadanza, A.; et al. Computed tomography predictors of mortality, stroke and conduction disturbances in women undergoing TAVR: A sub-analysis of the WIN-TAVI registry. J. Cardiovasc. Comput. Tomogr. 2018, 12, 338–343. [Google Scholar] [CrossRef]
- Mauri, V.; Reimann, A.; Stern, D.; Scherner, M.; Kuhn, E.; Rudolph, V.; Rosenkranz, S.; Eghbalzadeh, K.; Friedrichs, K.; Wahlers, T.; et al. Predictors of Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement With the SAPIEN 3. JACC Cardiovasc. Interv. 2016, 9, 2200–2209. [Google Scholar] [CrossRef]
- Latsios, G.; Gerckens, U.; Buellesfeld, L.; Mueller, R.; John, D.; Yuecel, S.; Syring, J.; Sauren, B.; Grube, E. “Device landing zone” calcification, assessed by MSCT, as a predictive factor for pacemaker implantation after TAVI. Catheter. Cardiovasc. Interv. 2010, 76, 431–439. [Google Scholar] [CrossRef]
- Kodali, S.K.; Williams, M.R.; Smith, C.R.; Svensson, L.G.; Webb, J.G.; Makkar, R.R.; Fontana, G.P.; Dewey, T.M.; Thourani, V.H.; Pichard, A.D.; et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 2012, 366, 1686–1695. [Google Scholar] [CrossRef] [Green Version]
- Staubach, S.; Franke, J.; Gerckens, U.; Schuler, G.; Zahn, R.; Eggebrecht, H.; Hambrecht, R.; Sack, S.; Richardt, G.; Horack, M.; et al. Impact of aortic valve calcification on the outcome of transcatheter aortic valve implantation: Results from the prospective multicenter German TAVI registry. Catheter. Cardiovasc. Interv. 2013, 81, 348–355. [Google Scholar] [CrossRef]
- Morlock, J.; Schlick, S.; Psyrakis, D.; Sorg, S.; Schröfel, H.; Beyersdorf, F.; Reinöhl, J.; Heilmann, C. Calcification of Aortic Valve Is Not Associated with Neurologic Events or Need for Pacemaker Implantation in TAVI Patients. Thorac. Cardiovasc. Surg. 2016, 64. [Google Scholar] [CrossRef]
- Aggarwal, S.K.; Delahunty Rn, N.; Menezes, L.J.; Perry, R.; Wong, B.; Reinthaler, M.; Ozkor, M.; Mullen, M.J. Patterns of solid particle embolization during transcatheter aortic valve implantation and correlation with aortic valve calcification. J. Interv. Cardiol. 2018, 31, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Hansson, N.C.; Nørgaard, B.L.; Barbanti, M.; Nielsen, N.E.; Yang, T.-H.; Tamburino, C.; Dvir, D.; Jilaihawi, H.; Blanke, P.; Makkar, R.R.; et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2015, 9, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Koos, R.; Reinartz, S.; Mahnken, A.H.; Herpertz, R.; Lotfi, S.; Autschbach, R.; Marx, N.; Hoffmann, R. Impact of aortic valve calcification severity and impaired left ventricular function on 3-year results of patients undergoing transcatheter aortic valve replacement. Eur. Radiol. 2013, 23, 3253–3261. [Google Scholar] [CrossRef]
- Tzamtzis, S.; Viquerat, J.; Yap, J.; Mullen, M.J.; Burriesci, G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 2013, 35, 125–130. [Google Scholar] [CrossRef]
- Sturla, F.; Ronzoni, M.; Vitali, M.; Dimasi, A.; Vismara, R.; Preston-Maher, G.; Burriesci, G.; Votta, E.; Redaelli, A. Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: A finite element study. J. Biomech. 2016, 49, 2520–2530. [Google Scholar] [CrossRef] [Green Version]
- Forrest, J.K.; Kaple, R.K.; Tang, G.H.L.; Yakubov, S.J.; Nazif, T.M.; Williams, M.R.; Zhang, A.; Popma, J.J.; Reardon, M.J. Three Generations of Self-Expanding Transcatheter Aortic Valves: A Report From the STS/ACC TVT Registry. JACC Cardiovasc. Interv. 2020, 13, 170–179. [Google Scholar] [CrossRef]
- Meyer, A.; Unbehaun, A.; Hamandi, M.; Sündermann, S.H.; Buz, S.; Klein, C.; Stamm, C.; Falk, V.; Kempfert, J. Comparison of 1-Year Survival and Frequency of Paravalvular Leakage Using the Sapien 3 Versus the Sapien XT for Transcatheter Aortic Valve Implantation for Aortic Stenosis. Am. J. Cardiol. 2017, 120, 2247–2255. [Google Scholar] [CrossRef]
- Buono, A.; Gorla, R.; Ielasi, A.; Costa, G.; Cozzi, O.; Ancona, M.; Soriano, F.; de Carlo, M.; Ferrara, E.; Giannini, F.; et al. Transcatheter Aortic Valve Replacement with Self-Expanding ACURATE neo2: Postprocedural Hemodynamic and Short-Term Clinical Outcomes. JACC Cardiovasc. Interv. 2022, 15, 1101–1110. [Google Scholar] [CrossRef]
- Yang, T.-H.; Webb, J.G.; Blanke, P.; Dvir, D.; Hansson, N.C.; Nørgaard, B.L.; Thompson, C.R.; Thomas, M.; Wendler, O.; Vahanian, A.; et al. Incidence and severity of paravalvular aortic regurgitation with multidetector computed tomography nominal area oversizing or undersizing after transcatheter heart valve replacement with the Sapien 3: A comparison with the Sapien XT. JACC Cardiovasc. Interv. 2015, 8, 462–471. [Google Scholar] [CrossRef] [Green Version]
- Forrest, J.K.; Mangi, A.A.; Popma, J.J.; Khabbaz, K.; Reardon, M.J.; Kleiman, N.S.; Yakubov, S.J.; Watson, D.; Kodali, S.; George, I.; et al. Early Outcomes with the Evolut PRO Repositionable Self-Expanding Transcatheter Aortic Valve With Pericardial Wrap. JACC Cardiovasc. Interv. 2018, 11, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Falk, V.; Bax, J.J.; de Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Thorac. Cardiovasc. Surg. 2014, 148, e1–e132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.-K.; Renker, M.; Rolf, A.; Liebetrau, C.; van Linden, A.; Arsalan, M.; Doss, M.; Rieck, J.; Opolski, M.P.; Möllmann, H.; et al. Accuracy of device landing zone calcium volume measurement with contrast-enhanced multidetector computed tomography. Int. J. Cardiol. 2018, 263, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Yang, T.-H.; Rodès Cabau, J.; Tamburino, C.; Wood, D.A.; Jilaihawi, H.; Blanke, P.; Makkar, R.R.; Latib, A.; Colombo, A.; et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 2013, 128, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. Eur. Heart J. 2012, 33, 2403–2418. [Google Scholar] [CrossRef]
- Pibarot, P.; Hahn, R.T.; Weissman, N.J.; Monaghan, M.J. Assessment of paravalvular regurgitation following TAVR: A proposal of unifying grading scheme. JACC Cardiovasc. Imaging 2015, 8, 340–360. [Google Scholar] [CrossRef] [Green Version]
- Hahn, R.T.; Leipsic, J.; Douglas, P.S.; Jaber, W.A.; Weissman, N.J.; Pibarot, P.; Blanke, P.; Oh, J.K. Comprehensive Echocardiographic Assessment of Normal Transcatheter Valve Function. JACC Cardiovasc. Imaging 2019, 12, 25–34. [Google Scholar] [CrossRef]
- Lancellotti, P.; Pibarot, P.; Chambers, J.; Edvardsen, T.; Delgado, V.; Dulgheru, R.; Pepi, M.; Cosyns, B.; Dweck, M.R.; Garbi, M.; et al. Recommendations for the imaging assessment of prosthetic heart valves: A report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 589–590. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score. Am. Stat. 1985, 39, 33–38. [Google Scholar] [CrossRef]
- Mauri, V.; Kim, W.K.; Abumayyaleh, M.; Walther, T.; Moellmann, H.; Schaefer, U.; Conradi, L.; Hengstenberg, C.; Hilker, M.; Wahlers, T.; et al. Short-Term Outcome and Hemodynamic Performance of Next-Generation Self-Expanding Versus Balloon-Expandable Transcatheter Aortic Valves in Patients with Small Aortic Annulus: A Multicenter Propensity-Matched Comparison. Circ. Cardiovasc. Interv. 2017, 10, e005013. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Khan, F.; Asami, M.; Praz, F.; Heg, D.; Winkel, M.G.; Lanz, J.; Huber, A.; Gräni, C.; Räber, L.; et al. Prosthesis-Patient Mismatch Following Transcatheter Aortic Valve Replacement with Supra-Annular and Intra-Annular Prostheses. JACC Cardiovasc. Interv. 2019, 12, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Auffret, V.; Regueiro, A.; Del Trigo, M.; Abdul-Jawad Altisent, O.; Campelo-Parada, F.; Chiche, O.; Puri, R.; Rodés-Cabau, J. Predictors of Early Cerebrovascular Events in Patients with Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2016, 68, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Zaleska-Kociecka, M.; Dabrowski, M.; Stepinska, J. Acute kidney injury after transcatheter aortic valve replacement in the elderly: Outcomes and risk management. Clin. Interv. Aging 2019, 14, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Wendler, O.; Schymik, G.; Treede, H.; Baumgartner, H.; Dumonteil, N.; Ihlberg, L.; Neumann, F.-J.; Tarantini, G.; Zamarano, J.L.; Vahanian, A. SOURCE 3 Registry: Design and 30-Day Results of the European Postapproval Registry of the Latest Generation of the SAPIEN 3 Transcatheter Heart Valve. Circulation 2017, 135, 1123–1132. [Google Scholar] [CrossRef]
- Deharo, P.; Bisson, A.; Herbert, J.; Lacour, T.; Saint Etienne, C.; Grammatico-Guillon, L.; Porto, A.; Collart, F.; Bourguignon, T.; Cuisset, T.; et al. Impact of Sapien 3 Balloon-Expandable Versus Evolut R Self-Expandable Transcatheter Aortic Valve Implantation in Patients With Aortic Stenosis: Data From a Nationwide Analysis. Circulation 2020, 141, 260–268. [Google Scholar] [CrossRef]
- Grube, E.; van Mieghem, N.M.; Bleiziffer, S.; Modine, T.; Bosmans, J.; Manoharan, G.; Linke, A.; Scholtz, W.; Tchétché, D.; Finkelstein, A.; et al. Clinical Outcomes With a Repositionable Self-Expanding Transcatheter Aortic Valve Prosthesis: The International FORWARD Study. J. Am. Coll. Cardiol. 2017, 70, 845–853. [Google Scholar] [CrossRef]
- Kalogeras, K.; Ruparelia, N.; Kabir, T.; Jabbour, R.; Naganuma, T.; Vavuranakis, M.; Nakamura, S.; Wang, B.; Sen, S.; Hadjiloizou, N.; et al. Comparison of the self-expanding Evolut-PRO transcatheter aortic valve to its predecessor Evolut-R in the real world multicenter ATLAS registry. Int. J. Cardiol. 2020, 310, 120–125. [Google Scholar] [CrossRef]
- Mauri, V.; Frohn, T.; Deuschl, F.; Mohemed, K.; Kuhr, K.; Reimann, A.; Körber, M.I.; Schofer, N.; Adam, M.; Friedrichs, K.; et al. Impact of device landing zone calcification patterns on paravalvular regurgitation after transcatheter aortic valve replacement with different next-generation devices. Open Heart 2020, 7, e001164. [Google Scholar] [CrossRef]
- Abdelghani, M.; Allali, A.; Kaur, J.; Hemetsberger, R.; Mehilli, J.; Neumann, F.-J.; Frerker, C.; Kurz, T.; El-Mawardy, M.; Richardt, G.; et al. Impact of prosthesis-iteration evolution and sizing practice on the incidence of prosthesis-patient mismatch after transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2019, 93, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Theron, A.; Pinto, J.; Grisoli, D.; Griffiths, K.; Salaun, E.; Jaussaud, N.; Ravis, E.; Lambert, M.; Messous, L.; Amanatiou, C.; et al. Patient-prosthesis mismatch in new generation trans-catheter heart valves: A propensity score analysis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Ternacle, J.; Guimaraes, L.; Vincent, F.; Côté, N.; Côté, M.; Lachance, D.; Clavel, M.-A.; Abbas, A.E.; Pibarot, P.; Rodés-Cabau, J. Reclassification of prosthesis-patient mismatch after transcatheter aortic valve replacement using predicted vs. measured indexed effective orifice area. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Rahimtoola, S.H. The problem of valve prosthesis-patient mismatch. Circulation 1978, 58, 20–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, V.; Vignolo, G.; Soca, G.; Paganini, J.J.; Brusich, D.; Pibarot, P. Predictors and Outcomes of Prosthesis-Patient Mismatch After Aortic Valve Replacement. JACC Cardiovasc. Imaging 2016, 9, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Head, S.J.; Mokhles, M.M.; Osnabrugge, R.L.J.; Pibarot, P.; Mack, M.J.; Takkenberg, J.J.M.; Bogers, A.J.J.C.; Kappetein, A.P. The impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: A systematic review and meta-analysis of 34 observational studies comprising 27 186 patients with 133 141 patient-years. Eur. Heart J. 2012, 33, 1518–1529. [Google Scholar] [CrossRef] [Green Version]
- Bilkhu, R.; Jahangiri, M.; Otto, C.M. Patient-prosthesis mismatch following aortic valve replacement. Heart 2019, 105, s28–s33. [Google Scholar] [CrossRef]
- Tzikas, A.; Piazza, N.; Geleijnse, M.L.; van Mieghem, N.; Nuis, R.-J.; Schultz, C.; van Geuns, R.-J.; Galema, T.W.; Kappetein, A.-P.; Serruys, P.W.; et al. Prosthesis-patient mismatch after transcatheter aortic valve implantation with the medtronic CoreValve system in patients with aortic stenosis. Am. J. Cardiol. 2010, 106, 255–260. [Google Scholar] [CrossRef]
- van Linden, A.; Kempfert, J.; Blumenstein, J.; Rastan, A.; Holzhey, D.; Lehmann, S.; Mohr, F.W.; Walther, T. Prosthesis-patient mismatch after transcatheter aortic valve implantation using the Edwards SAPIEN™ prosthesis. Thorac. Cardiovasc. Surg. 2013, 61, 414–420. [Google Scholar] [CrossRef]
- Pibarot, P.; Weissman, N.J.; Stewart, W.J.; Hahn, R.T.; Lindman, B.R.; McAndrew, T.; Kodali, S.K.; Mack, M.J.; Thourani, V.H.; Miller, D.C.; et al. Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus surgical valve replacement in high-risk patients with severe aortic stenosis: A PARTNER trial cohort-A analysis. J. Am. Coll. Cardiol. 2014, 64, 1323–1334. [Google Scholar] [CrossRef] [Green Version]
- León Del Pino, M.D.C.; Ruíz Ortiz, M.; Delgado Ortega, M.; Sánchez Fernández, J.; Ferreiro Quero, C.; Durán Jiménez, E.; Romero Moreno, M.; Segura Saint-Gerons, J.; Ojeda Pineda, S.; Pan Álvarez-Ossorio, M.; et al. Prosthesis-patient mismatch after transcatheter aortic valve replacement: Prevalence and medium term prognostic impact. Int. J. Cardiovasc. Imaging 2019, 35, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Schofer, N.; Deuschl, F.; Rübsamen, N.; Skibowski, J.; Seiffert, M.; Voigtländer, L.; Schaefer, A.; Schneeberger, Y.; Schirmer, J.; Reichenspurner, H.; et al. Prosthesis-patient mismatch after transcatheter aortic valve implantation: Prevalence and prognostic impact with respect to baseline left ventricular function. EuroIntervention 2019, 14, 1648–1655. [Google Scholar] [CrossRef]
- Bleiziffer, S.; Rudolph, T.K. Patient Prosthesis Mismatch After SAVR and TAVR. Front. Cardiovasc. Med. 2022, 9, 761917. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
Before Matching | After Matching | |||||
---|---|---|---|---|---|---|
EPro (N = 177) | S3 (N = 263) | p-Value | EPro (N = 170) | S3 (N = 170) | p-Value | |
Matching parameter | ||||||
Age (years) | 82.4 ± 5.1 | 81.8 ± 7.7 | 0.33 | 82.5 ± 5.1 | 82.9 ± 6.7 | 0.519 |
Anulus size (mm2) | 23.85 ± 1.8 | 24.1 ± 1.7 | 0.09 | 23.7 ± 1.6 | 23.9 ± 1.5 | 0.41 |
Gender (male) | 74 (41.8) | 127 (48.3) | 0.18 | 74 (42) | 71 (40) | 0.66 |
LZ Calcification score 2 | 1229.36 ± 612.5 | 1211.25 ± 889.8 | 0.81 | 1239.4 ± 617.5 | 1209.3 ± 928.3 | 0.73 |
Ejection fraction (%) | 51.27 ± 7.7 | 51.3 ± 7.71 | 0.96 | 51.3 ± 7.6 | 51.2 ± 8.1 | 0.87 |
Baseline characteristics | ||||||
BMI (kg/m2) 3 | 26.45 ± 4.6 | 26.96 ± 4.9 | 0.27 | 26.4 ± 4.5 | 26.9 ± 4.9 | 0.29 |
EuroScore II (%) | 5.25 ± 5 | 6.49 ± 8 | 0.07 | 5.1 ± 4.9 | 7 ± 9.1 | 0.02 |
NYHA | 2.56 ± 0.6 | 2.72 ± 0.6 | 0.008 | 2.5 ± 0.6 | 2.7 ± 0.6 | 0.004 |
Diabetes mellitus | 58 (32.8) | 78 (29.7) | 0.49 | 45 (27) | 36 (21) | 0.25 |
Arterial Hypertension | 152 (85.9) | 238 (90.5) | 0.135 | 146 (86) | 156 (92) | 0.05 |
CHD 1 | 99 (55.9) | 152 (57.8) | 0.7 | 98 (57.8) | (61.2) | 0.53 |
Atrial fibrillation | 37 (20.9) | 81 (30.8) | 0.02 | 24 (13.9) | 36 (21.2) | 0.08 |
RBB | 16 (9) | 31 (11.8) | 0.35 | 15 (8.9) | 22 (13) | 0.22 |
LBB | 13 (7.3) | 9 (3.4) | 0.046 | 13 (7.7) | 6 (3.6) | 0.1 |
AVB I | 1 (0.6) | 2 (0.8) | 0.85 | 1 (0.6) | 1 (0.6) | 0.99 |
AVB II | 1 (0.6) | 1 (0.4) | 0.75 | 1 (0.6) | 1 (0.6) | 0.99 |
Previous Pacemaker | 12 (6.9) | 30 (11) | 0.15 | 13 (7.6) | 22 (13) | 0.65 |
Dialysis pre TAVI | 6 (3.4) | 11 (4.2) | 0.67 | 3 (1.8) | 7 (4.1) | 0.14 |
GFR (mL/min/1.72 m2) | 57.35 ± 18.2 | 55.35 ± 20.7 | 0.3 | 57.7 ± 18.4 | 54.6 ± 20.7 | 0.14 |
Haemoglobin (mg/dL) | 12.43 ± 1.7 | 12.46 ± 1.7 | 0.84 | 12.4 ± 1.7 | 12.4 ± 1.7 | 0.74 |
Echocardiography | ||||||
dPmean (mmHg) | 49 ± 15.7 | 47.5 ± 17.6 | 0.36 | 49.1 ± 15.9 | 47.8 ± 18.1 | 0.48 |
dPmax (mmHg) | 74.12 ± 22.8 | 74 ± 25.4 | 0.96 | 74.2 ± 23.2 | 74.5 ± 26.3 | 0.91 |
Aortic Valve Area (cm2) | 0.69 ± 0.2 | 0.71 ± 0.2 | 0.41 | 0.69 ± 0.17 | 0.69 ± 0.17 | 0.92 |
EPro (N = 170) | S3 (N = 170) | p-Value | |
---|---|---|---|
Fluoroscopy time (s) | 880.3 ± 355.5 | 747.8 ± 298.2 | <0.001 |
Contrast agent used (mL) | 120.7 ± 44.6 | 103.1 ± 33.4 | <0.001 |
Prosthesis size | |||
23/20 | 1 (0.6) | 0 (0) | 0.32 |
26/23 | 45 (26.5) | 61 (35.9) | 0.06 |
29/26 | 124 (72.9) | 109 (64.1) | 0.08 |
Pre-dilatation | 35 (20.6) | 14 (8.3) | 0.001 |
Post-dilatation | 79 (46.7) | 24 (14.3) | <0.001 |
Valve in Valve | 0 | 0 | |
Conversion to surgery | 0 (0) | 1 (0.6) | 0.32 |
Coronary obstruction | 0 | 0 | |
Acute kidney failure | 2 (1.2) | 1 (0.6) | 0.73 |
Myocardial infarction | 0 | 0 | |
Bleeding | 14 (8.4) | 15 (8.8) | 0.9 |
Minor | 7 (4.2) | 8 (4.7) | 0.83 |
Major | 4 (2.4) | 4 (2.4) | 0.97 |
Life threatening | 3 (1.8) | 3 (1.8) | 0.98 |
Vascular complication | 16 (9.6) | 19 (11.2) | 0.65 |
Minor | 13 (7.8) | 16 (9.4) | 0.61 |
Major | 3 (1.8) | 3 (1.8) | 0.98 |
Disabling Stroke | 3 (1.8) | 2 (1.2) | 0.63 |
New PPI 1 | 24 (14.1) | 21 (12.4) | 0.65 |
30-day mortality | 5 (2.9) | 4 (2.4) | 0.71 |
EPro (N = 170) | S3 (N = 170) | p-Value | |
---|---|---|---|
dPmean (mmHg) | 8.07 ± 4.24 | 11.11 ± 4.14 | <0.001 |
dPmax (mmHg) | 14.09 ± 7.11 | 19.81 ± 6.68 | <0.001 |
AVA post (cm2) 1 | 1.89 ± 0.46 | 1.62 ± 0.31 | <0.001 |
Aortic regurgitation | |||
None/Trace | 108 (63.5) | 117 (68.8) | 0.3 |
mild | 57 (33.5) | 46 (27.1) | 0.2 |
moderate | 5 (2.9) | 7 (4.1) | 0.56 |
severe | 0 (0) | 0 (0) | 1 |
EOAi 2 | 1.07 ± 0.3 | 0.9 ± 0.18 | <0.001 |
PPM moderate 3 | 30 (17.7) | 65 (38) | <0.001 |
PPM severe | 5 (2.9) | 15 (8.8) | 0.027 |
Predicted EOAi | 1.05 ± 0.13 | 0.92 ± 0.12 | <0.001 |
PPM moderate | 1 (0.6) | 25 (14.7) | <0.001 |
PPM severe | 0 (0) | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potratz, M.; Mohemed, K.; Omran, H.; Gortamashvili, L.; Friedrichs, K.P.; Scholtz, W.; Scholtz, S.; Rudolph, V.; Piper, C.; Gilis-Januszewski, T.; et al. Hemodynamic Performance of Two Current-Generation Transcatheter Heart Valve Prostheses in Severely Calcified Aortic Valve Stenosis. J. Clin. Med. 2022, 11, 4570. https://doi.org/10.3390/jcm11154570
Potratz M, Mohemed K, Omran H, Gortamashvili L, Friedrichs KP, Scholtz W, Scholtz S, Rudolph V, Piper C, Gilis-Januszewski T, et al. Hemodynamic Performance of Two Current-Generation Transcatheter Heart Valve Prostheses in Severely Calcified Aortic Valve Stenosis. Journal of Clinical Medicine. 2022; 11(15):4570. https://doi.org/10.3390/jcm11154570
Chicago/Turabian StylePotratz, Max, Kawa Mohemed, Hazem Omran, Lasha Gortamashvili, Kai Peter Friedrichs, Werner Scholtz, Smita Scholtz, Volker Rudolph, Cornelia Piper, Tomasz Gilis-Januszewski, and et al. 2022. "Hemodynamic Performance of Two Current-Generation Transcatheter Heart Valve Prostheses in Severely Calcified Aortic Valve Stenosis" Journal of Clinical Medicine 11, no. 15: 4570. https://doi.org/10.3390/jcm11154570
APA StylePotratz, M., Mohemed, K., Omran, H., Gortamashvili, L., Friedrichs, K. P., Scholtz, W., Scholtz, S., Rudolph, V., Piper, C., Gilis-Januszewski, T., Schramm, R., Furukawa, N., Gummert, J., Bleiziffer, S., & Rudolph, T. K. (2022). Hemodynamic Performance of Two Current-Generation Transcatheter Heart Valve Prostheses in Severely Calcified Aortic Valve Stenosis. Journal of Clinical Medicine, 11(15), 4570. https://doi.org/10.3390/jcm11154570