Multicentric Carpotarsal Osteolysis Syndrome Associated Nephropathy: Novel Variants of MAFB Gene and Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Genotype
3.2. Bone Disease
3.3. Kidney Disease
3.4. Renal Treatment
3.5. Non-Renal and Non-Bone Manifestations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zankl, A.; Duncan, E.L.; Leo, P.J.; Clark, G.R.; Glazov, E.A.; Addor, M.C.; Herlin, T.; Kim, C.A.; Leheup, B.P.; McGill, J.; et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am. J. Hum. Genet. 2012, 90, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Narhi, A.; Fernandes, A.; Toiviainen-Salo, S.; Harris, J.; McInerney-Leo, A.; Lazarus, S.; Avela, K.; Duncan, E.L. A family with partially penetrant multicentric carpotarsal osteolysis due to gonadal mosaicism: First reported case. Am. J. Med. Genet. A 2021, 185, 2477–2481. [Google Scholar] [CrossRef] [PubMed]
- Upadia, J.; Gomes, A.; Weiser, P.; Descartes, M. A Familial Case of Multicentric Carpotarsal Osteolysis Syndrome and Treatment Outcome. J. Pediatr. Genet. 2018, 7, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Mehawej, C.; Courcet, J.B.; Baujat, G.; Mouy, R.; Gerard, M.; Landru, I.; Gosselin, M.; Koehrer, P.; Mousson, C.; Breton, S.; et al. The identification of MAFB mutations in eight patients with multicentric carpo-tarsal osteolysis supports genetic homogeneity but clinical variability. Am. J. Med. Genet. A 2013, 161A, 3023–3029. [Google Scholar] [CrossRef]
- Mumm, S.; Huskey, M.; Duan, S.; Wenkert, D.; Madson, K.L.; Gottesman, G.S.; Nenninger, A.R.; Laxer, R.M.; McAlister, W.H.; Whyte, M.P. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. Am. J. Med. Genet. A 2014, 164A, 2287–2293. [Google Scholar] [CrossRef]
- Addor, M.C.; Pescia, G.; Egloff, D.; Queloz, J. Hereditary multicentric osteolysis. J. Genet. Hum. 1986, 34, 293–303. [Google Scholar]
- Dworschak, G.C.; Draaken, M.; Hilger, A.; Born, M.; Reutter, H.; Ludwig, M. An incompletely penetrant novel MAFB (p.Ser56Phe) variant in autosomal dominant multicentric carpotarsal osteolysis syndrome. Int. J. Mol. Med. 2013, 32, 174–178. [Google Scholar] [CrossRef]
- Sun, K.; Barlow, B.; Malik, F.; Inglis, A.; Figgie, M.; Goodman, S. Total Hip Arthroplasty in a Patient with Multicentric Carpotarsal Osteolysis: A Case Report. HSS J. 2016, 12, 177–181. [Google Scholar] [CrossRef]
- Zhuang, L.; Adler, S.; Aeberli, D.; Villiger, P.M.; Trueb, B. Identification of a MAFB mutation in a patient with multicentric carpotarsal osteolysis. Swiss Med. Wkly. 2017, 147, w14529. [Google Scholar] [CrossRef]
- Stajkovska, A.; Mehandziska, S.; Stavrevska, M.; Jakovleva, K.; Nikchevska, N.; Mitrev, Z.; Kungulovski, I.; Zafiroski, G.; Tasic, V.; Kungulovski, G. Trio Clinical Exome Sequencing in a Patient with Multicentric Carpotarsal Osteolysis Syndrome: First Case Report in the Balkans. Front. Genet. 2018, 9, 113. [Google Scholar] [CrossRef]
- Nishikomori, R.; Kawai, T.; Toshiyuki, K.; Oda, H.; Yasumi, T.; Izawa, K.; Ohara, O.; Heike, T. Remarkable improvement of articular pain by biologics in a Multicentric carpotarsal osteolysis patient with a mutation of MAFB gene. Pediatr. Rheumatol. Online J. 2015, 13 (Suppl. 1), 152. [Google Scholar] [CrossRef][Green Version]
- Park, P.G.; Kim, K.H.; Hyun, H.S.; Lee, C.H.; Park, J.S.; Kie, J.H.; Choi, Y.H.; Moon, K.C.; Cheong, H.I. Three cases of multicentric carpotarsal osteolysis syndrome: A case series. BMC Med. Genet. 2018, 19, 164. [Google Scholar] [CrossRef]
- Klein, C.; Bellity, J.; Finidori, G.; Glorion, C.; Pannier, S. Multicentric carpotarsal osteolysis syndrome: Long-term follow-up of three patients. Skeletal. Radiol. 2018, 47, 1015–1019. [Google Scholar] [CrossRef]
- Miyazaki, K.; Komatsubara, S.; Uno, K.; Fujihara, R.; Yamamoto, T. A CARE-compliant article: A case report of scoliosis complicated with multicentric carpotarsal osteolysis. Medicine 2019, 98, e17828. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.; Lau, K.; Ma, Y.; Jia, S.; Gao, X. Identification of a novel mutation in the MAFB gene in a pediatric patient with multicentric carpotarsal osteolysis syndrome using next-generation sequencing. Eur. J. Med. Genet. 2020, 63, 103902. [Google Scholar] [CrossRef]
- Regev, R.; Sochett, E.B.; Elia, Y.; Laxer, R.M.; Noone, D.; Whitney-Mahoney, K.; Filipowski, K.; Shamas, A.; Vali, R. Multicentric carpotarsal osteolysis syndrome (MCTO) with generalized high bone turnover and high serum RANKL: Response to denosumab. Bone Rep. 2021, 14, 100747. [Google Scholar] [CrossRef]
- Chen, K.; Zamariolli, M.; Soares, M.F.F.; Meloni, V.A.; Melaragno, M.I. Multicentric Carpotarsal Osteolysis Syndrome in a Mother and Daughter with a MAFB Missense Variant and Natural History of the Disease. Mol. Syndromol. 2022, 13, 50–55. [Google Scholar] [CrossRef]
- Moriguchi, T.; Hamada, M.; Morito, N.; Terunuma, T.; Hasegawa, K.; Zhang, C.; Yokomizo, T.; Esaki, R.; Kuroda, E.; Yoh, K.; et al. MafB is essential for renal development and F4/80 expression in macrophages. Mol. Cell Biol. 2006, 26, 5715–5727. [Google Scholar] [CrossRef]
- Usui, T.; Morito, N.; Shawki, H.H.; Sato, Y.; Tsukaguchi, H.; Hamada, M.; Jeon, H.; Yadav, M.K.; Kuno, A.; Tsunakawa, Y.; et al. Transcription factor MafB in podocytes protects against the development of focal segmental glomerulosclerosis. Kidney Int. 2020, 98, 391–403. [Google Scholar] [CrossRef]
- Park, J.G.; Tischfield, M.A.; Nugent, A.A.; Cheng, L.; Di Gioia, S.A.; Chan, W.M.; Maconachie, G.; Bosley, T.M.; Summers, C.G.; Hunter, D.G.; et al. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects. Am. J. Hum. Genet. 2016, 98, 1220–1227. [Google Scholar] [CrossRef]
- Sato, Y.; Tsukaguchi, H.; Morita, H.; Higasa, K.; Tran, M.T.N.; Hamada, M.; Usui, T.; Morito, N.; Horita, S.; Hayashi, T.; et al. A mutation in transcription factor MAFB causes Focal Segmental Glomerulosclerosis with Duane Retraction Syndrome. Kidney Int. 2018, 94, 396–407. [Google Scholar] [CrossRef]
- Connor, A.; Highton, J.; Hung, N.A.; Dunbar, J.; MacGinley, R.; Walker, R. Multicentric carpal-tarsal osteolysis with nephropathy treated successfully with cyclosporine A: A case report and literature review. Am. J. Kidney Dis. 2007, 50, 649–654. [Google Scholar] [CrossRef]
- Kaimori, J.Y.; Mori, T.; Namba-Hamano, T.; Morimoto, T.; Takuwa, A.; Motooka, D.; Okazaki, A.; Kobayashi, K.; Asahina, Y.; Kajimoto, S.; et al. Cyclosporine A Treatment of Proteinuria in a New Case of MAFB-Associated Glomerulopathy without Extrarenal Involvement: A Case Report. Nephron 2021, 145, 445–450. [Google Scholar] [CrossRef]
- Gellermann, J.; Stefanidis, C.J.; Mitsioni, A.; Querfeld, U. Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr. Nephrol. 2010, 25, 1285–1289. [Google Scholar] [CrossRef]
- Gbadegesin, R.; Hinkes, B.G.; Hoskins, B.E.; Vlangos, C.N.; Heeringa, S.F.; Liu, J.; Loirat, C.; Ozaltin, F.; Hashmi, S.; Ulmer, F.; et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol. Dial. Transplant. 2008, 23, 1291–1297. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Bao, W.; Zheng, Q.Y.; Wang, Y.H.; Sun, L.Y. Efficacy and Safety of Finerenone in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Pharmacol. 2022, 13, 819327. [Google Scholar] [CrossRef]
- Liu, J.; Cui, J.; Fang, X.; Chen, J.; Yan, W.; Shen, Q.; Xu, H. Efficacy and Safety of Dapagliflozin in Children With Inherited Proteinuric Kidney Disease: A Pilot Study. Kidney Int. Rep. 2022, 7, 638–641. [Google Scholar] [CrossRef]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Mann, J.F. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Trautmann, A.; Vivarelli, M.; Samuel, S.; Gipson, D.; Sinha, A.; Schaefer, F.; Hui, N.K.; Boyer, O.; Saleem, M.A.; Feltran, L.; et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 1529–1561. [Google Scholar] [CrossRef]
- Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y.H.; Franz, S.; Delfgaauw, J.; Chang, J.M.; Choi, H.Y.; Campbell, K.N.; Kim, K.; et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938. [Google Scholar] [CrossRef]
- Qi, X.M.; Wang, J.; Xu, X.X.; Li, Y.Y.; Wu, Y.G. FK506 reduces albuminuria through improving podocyte nephrin and podocin expression in diabetic rats. Inflamm. Res. 2016, 65, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jefferson, B.; Harvey, S.J.; Zheng, K.; Gartley, C.J.; Jacobs, R.M.; Thorner, P.S. Cyclosporine a slows the progressive renal disease of alport syndrome (X-linked hereditary nephritis): Results from a canine model. J. Am. Soc. Nephrol. 2003, 14, 690–698. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zietse, R.; Wenting, G.J.; Kramer, P.; Schalekamp, M.A.; Weimar, W. Effects of cyclosporin A on glomerular barrier function in the nephrotic syndrome. Clin. Sci. 1992, 82, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chang, J.H.; Paik, S.Y.; Tang, Y.; Eisner, W.; Spurney, R.F. Calcineurin (CN) activation promotes apoptosis of glomerular podocytes both in vitro and in vivo. Mol. Endocrinol. 2011, 25, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Callis, L.; Vila, A.; Carrera, M.; Nieto, J. Long-term effects of cyclosporine A in Alport’s syndrome. Kidney Int. 1999, 55, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Bennett, W.M.; DeMattos, A.; Meyer, M.M.; Andoh, T.; Barry, J.M. Chronic cyclosporine nephropathy: The Achilles’ heel of immunosuppressive therapy. Kidney Int. 1996, 50, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
Total (n = 54) | Literature pts (n = 42) | Survey pts (n = 12) | |
---|---|---|---|
Bone Disease | |||
Bone involvement, n (%) | 53 (98) | 41 (98) | 12 (100) |
Age at first bone disease manifestation, years (IQR) | 2 (1–4) | 2 (1.5–4) | 2.3 (0.9–6.25) |
Misdiagnosis of reumathological disorder, n (%) | 16 (30) | 13 (32) | 3 (25) |
Age at MCTO diagnosis, years (IQR) | 9.7 (5.1–15.7) | 10.7 (5.1–14.7) | 9 (6–16.25) |
Median time from 1st bone manifestation to diagnosis, years (IQR) | 6.2 (2.8–11.2) | 7.2 (3.8–12.5) | 6 (2–9) |
Treatment bone disease | |||
Steroids, n (%) | 4 (7.5) | 3 (7.3) | 1 (8.3) |
NSAIDs, n (%) | 8 (15) | 7 (17) | 1 (8.3) |
DMARDs, n (%) | 11 (21) | 7 (17) | 4 (33.3) |
Denosumab, n (%) | 7 (13.2) | 2 (4.8) | 5 (41.6) |
Kidney disease | |||
Kidney involvement | 38 (70.3) | 28 (66.6) | 10 (83.3) |
Age at first kidney disease manifestation, years (IQR) | 7 (4–13.7) | 11 (4.5–15.5) | 5 (3.2–9) |
Median time from 1st bone manifestation, years (IQR) | 5 (1–11.3) | 9.5 (3.1–12.9) | 2.1 (1–3) |
Proteinuria | 30 (79) | 20 (100) | 10 (100) |
Nephrotic range proteinuria, n (%) | 4 (13) | 0 (0) | 4 (40) |
Non-nephrotic range proteinuria, n (%) | 20 (67) | 14 (70) | 6(60) |
Not available, n (%) | 6 (20) | 6 (30) | 0 (0) |
Microhematuria, n (%) | 1 (3) | 1 (4) | 0 (0) |
Chronic kidney disease at onset (eGFR < 90 mL/min/1.73 m2) | 1 (3) | 0 (0) | 1 (10) |
End-stage kidney disease at onset, n (%) | 5 (13) | 5 (18) | 0 (0) |
CAKUT, n (%) | 2 (5.2) | 1 (4) | 1 (10) |
Renal Histology | |||
Kidney Biopsy, n (%) | 11 (28) | 6 (28) | 5 (50) |
FSGS, n (%) | 9 (81.8) | 100 (6/6) | 3 (60) |
Mesangial abnormalities, n (%) | 2 (18) | - | 2 (40) |
Tubulointerstitial abnormalities, n (%) | 3 (27) | - | 3 (60) |
Treatment kidney disease | |||
RAASi, n (%) | 12 (31.5) | 5 (17.8) | 7 (70) |
Oral steroids, n (%) | 3 (7.8) | 1 (3.5) | 2 (20) |
Cyclosporine, n (%) | 1 (2.6) | 0 (0) | 1 (10) |
Renal outcomes | |||
Median follow-up time from renal disease onset, years (IQR) | 9 (3–13) | 7 (3–15) | 11 (6–13) |
End-stage kidney disease, n (%) | 17 (44.7) | 14 (50) | 3 (30) |
Median age at ESKD, years (IQR) | 17 (9.3–20) | 17 (10.5–20) | 11 (11–22.5) |
Median time from 1st renal manifestation to ESKD, years (IQR) | 8.7 (4.5–12) | 5.5 (3.3–9.2) | 8.1 (8.1–12) |
Other Manifestations | |||
Any extra renal/bone symptoms, n (%) | 26 (48) | 19 (45) | 7 (58) |
Facial dysmorphisms, n (%) | 17 (65.4) | 14 (73.6) | 3 (42.8) |
Intellectual disabilities/neurological abnormalities, n (%) | 4 (15.4) | 2 (10.5) | 2 (28.5) |
Eyes/sight impairment, n (%) | 8 (30.7) | 6 (31.5) | 2 (28.5) |
Hearing impairment, n (%) | 2 (7.7) | 2 (10.5) | 0 (0) |
Other symptoms, n (%) | 7(26.9) | 5 (26.3) | 2 (28.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drovandi, S.; Lugani, F.; Boyer, O.; La Porta, E.; Giordano, P.; Hummel, A.; Knebelmann, B.; Cornet, J.; Baujat, G.; Lipska-Ziętkiewicz, B.S.; et al. Multicentric Carpotarsal Osteolysis Syndrome Associated Nephropathy: Novel Variants of MAFB Gene and Literature Review. J. Clin. Med. 2022, 11, 4423. https://doi.org/10.3390/jcm11154423
Drovandi S, Lugani F, Boyer O, La Porta E, Giordano P, Hummel A, Knebelmann B, Cornet J, Baujat G, Lipska-Ziętkiewicz BS, et al. Multicentric Carpotarsal Osteolysis Syndrome Associated Nephropathy: Novel Variants of MAFB Gene and Literature Review. Journal of Clinical Medicine. 2022; 11(15):4423. https://doi.org/10.3390/jcm11154423
Chicago/Turabian StyleDrovandi, Stefania, Francesca Lugani, Olivia Boyer, Edoardo La Porta, Paolo Giordano, Aurélie Hummel, Bertrand Knebelmann, Joséphine Cornet, Genevieve Baujat, Beata S. Lipska-Ziętkiewicz, and et al. 2022. "Multicentric Carpotarsal Osteolysis Syndrome Associated Nephropathy: Novel Variants of MAFB Gene and Literature Review" Journal of Clinical Medicine 11, no. 15: 4423. https://doi.org/10.3390/jcm11154423
APA StyleDrovandi, S., Lugani, F., Boyer, O., La Porta, E., Giordano, P., Hummel, A., Knebelmann, B., Cornet, J., Baujat, G., Lipska-Ziętkiewicz, B. S., Ghiggeri, G. M., Caridi, G., & Angeletti, A. (2022). Multicentric Carpotarsal Osteolysis Syndrome Associated Nephropathy: Novel Variants of MAFB Gene and Literature Review. Journal of Clinical Medicine, 11(15), 4423. https://doi.org/10.3390/jcm11154423